On the number of lattice points in a small sphere

Abstract : Let L be a lattice in Rn. We upper bound the number of points of L contained in a small sphere, centered anywhere in Rn. One way to do this is based on the observation that if the radius of the sphere is sufficiently small then the lattice points contained in that sphere give rise to a spherical code with a certain minimum angle. Another method involves Gaussian measures on L in the sense of [2]. Examples where the obtained bounds are optimal include some root lattices in small dimensions and the Leech lattice. We also present a natural decoding algorithm for lattices constructed from lattices of smaller dimension, and apply our results on the number of lattice points in a small sphere to conclude on the performance of this algorithm.
Type de document :
Communication dans un congrès
WCC 2011 - Workshop on coding and cryptography, Apr 2011, Paris, France. pp.463-472, 2011
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00614482
Contributeur : Marie Trape <>
Soumis le : jeudi 11 août 2011 - 17:02:56
Dernière modification le : mardi 3 octobre 2017 - 01:15:38
Document(s) archivé(s) le : lundi 12 novembre 2012 - 15:22:04

Fichier

126.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00614482, version 1

Collections

Citation

Annika Meyer. On the number of lattice points in a small sphere. WCC 2011 - Workshop on coding and cryptography, Apr 2011, Paris, France. pp.463-472, 2011. 〈inria-00614482〉

Partager

Métriques

Consultations de la notice

227

Téléchargements de fichiers

460