
HAL Id: inria-00614779
https://inria.hal.science/inria-00614779

Submitted on 16 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SmartGroups: Focusing on Task-Relevant Source
Artifacts in IDEs

David Rothlisberger, Oscar Nierstrasz, Stéphane Ducasse

To cite this version:
David Rothlisberger, Oscar Nierstrasz, Stéphane Ducasse. SmartGroups: Focusing on Task-Relevant
Source Artifacts in IDEs. International Conference on Program Comprehension, Jun 2011, Passau,
Germany. �inria-00614779�

https://inria.hal.science/inria-00614779
https://hal.archives-ouvertes.fr


SmartGroups: Focusing on Task-Relevant Source Artifacts in IDEs
In: 19th International Conference on Program Comprehension, 2011

David Röthlisberger
Software Composition Group

University of Bern, Switzerland

Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland

Stéphane Ducasse
INRIA-Lille Nord Europe

France

Abstract—Navigating large software systems, even when
using a modern IDE, is difficult, since conceptually related
software artifacts are distributed in a huge software space. For
most software maintenance tasks, only a small fraction of the
entire software space is actually relevant. The IDE, however,
does not reveal the task relevancy of source artifacts, thus
developers cannot easily focus on the artifacts required to ac-
complish their tasks. SmartGroups help developers to perform
software maintenance tasks by representing groups of source
artifacts that are relevant for the current task. Relevancy is
determined by analyzing historical navigation and modification
activities, evolutionary information, and runtime information.
The prediction quality of SmartGroups is validated with a
benchmark evaluation using recorded development activities
and evolutionary information from versioning systems.

Keywords: development environments, development ac-

tivity analysis, task representation, software navigation, soft-

ware maintenance, dynamic analysis

I. INTRODUCTION

To maintain a software system, developers typically use a

development environment (IDE) to navigate the system and

to locate important artifacts relevant for a particular task, for

instance a method which introduced a defect. Navigation is

a crucial prerequisite to identify and comprehend the source

entities relevant for a software maintenance task [1], [3]. The

navigation of a large system in an IDE, however, is a time-

consuming activity as there are many source artifacts such

as packages, classes, or methods that implement the system

[11]. Identifying task-relevant artifacts is further exacerbated

by the fact that source artifacts are interconnected with each

other at runtime in ways that are hard to foresee while

browsing the software space [4], [2], [22], [18]. The set

of task-relevant entities, the working set, is usually just a

subset of the entire software space. The IDE, however, does

not offer a view specifically tailored to the current task to

enable developers to just focus on the task-relevant artifacts.

Instead, the development environment provides a view on

the complete, probably huge software space, which forces

developers to navigate forth and back in a complex space.

To determine the severity of these navigational difficulties

while performing software maintenance tasks on object-

oriented systems in the IDE, we analyzed twenty recorded

development sessions of six different software developers

performing defect correction and feature implementation

tasks in small and medium-sized applications written in

Squeak1 or Pharo2 Smalltalk. We opted to analyze Smalltalk

IDEs instead of wide-spread IDEs for Java such as Eclipse3

because of the availability of a framework gathering IDE

usage data (e.g., SmallBrother4) and of developers willing to

provide us with such data. As indicators for navigation diffi-

culties we consider the number of re-visits of source artifacts

purely for reading and understanding (without modification),

the edit/navigation ratio (ratio of edit actions compared

to navigation actions; as navigation actions we consider

clicking on any source artifact such as a class, a method,

or a package while an edit action is the modification of any

such artifact), and the average extent of navigation between

two edits (how many navigation actions occur between two

subsequent modification actions). Table I presents the results

of this analysis.

Indicator Arithmetic mean Variance

Number of entities revisited 35.10 10.83
Edit / navigation ratio 9.51% 3.21%
Number of navigation actions 19.31 8.22
between two edits

Table I
THREE INDICATORS HIGHLIGHTING NAVIGATION ISSUES OCCURRING IN

THE SMALLTALK IDE AFTER ANALYZING 20 DEVELOPMENT SESSIONS.

These results corroborate the hypothesis that navigating

the source space in an IDE is often difficult. The low

edit/navigation ratio (less than ten percent) indicates that

locating an artifact to be modified in order to carry out a

software maintenance task requires developers to perform

many navigation actions. Another indication for ineffective

navigation in IDEs is the average number of navigation

actions performed between two subsequent modification

actions; on average developers perform 19 navigation actions

until they again modify an artifact, which we consider to

be a large amount of navigation between two consequent

modification activities as such extensive navigation is a sign

of a missing focus on the relevant artifacts that have to be

modified to achieve a task.

We propose in this paper the inclusion of the concept

of working context in the IDE. A working context is a set

1http://www.squeak.org
2http://www.pharo-project.org
3http://www.eclipse.org
4http://www.squeaksource.com/SmallBrother



of artifacts relevant for a particular task. To identify these

relevant entities, we define types of tasks, namely defect

correction, feature implementation, and general program

understanding tasks. Different types of tasks have different

relevant artifacts, thus the procedure to identify relevant

source elements is dependent on the nature of the task.

For defect correction tasks, for example, we also take into

account evolutionary information, that is, artifacts that were

committed to the source repository in the past to correct

a defect. The execution of defective features often gives

additional information to find a cure for the problem, thus

we also exploit runtime information to identify task-relevant

artifacts. For program understanding tasks, mainly naviga-

tion activities performed in the IDE are analyzed to suggest

relevant entities. Developers manually specify the nature of

the task; this information is used to associate development

activities with a task type and to recommend based on these

past activities the artifacts relevant for future tasks of the

same type.

We implemented our proposal as an IDE extension called

SmartGroups which is available for Squeak and Pharo

Smalltalk. This extension represents working contexts by

categorizing source entities in groups. These groups are

“smart” in the sense that they hold source entities auto-

matically categorized by algorithms tailored to specific task

types (defect correction, feature implementation, or system

understanding).

The main contributions of this paper are (i) an empirical

analysis of the difficulties in navigating the software space

in IDEs, (ii) an implementation of SmartGroups mitigating

these difficulties, and (iii) the validation of how accurately

SmartGroups identify task-dependent entities.

This paper is structured as follows: Section II intro-

duces SmartGroups in a nutshell while Section III reports

on related approaches such as Mylyn and NavTracks. In

Section IV, we describe SmartGroups in detail, that is,

the algorithms and their parameters SmartGroups use to

identify task-relevant source artifacts. Section V evaluates

the precision and recall of SmartGroups with a benchmark

validation based on a recorded set of development activities.

Ultimately, Section VI concludes the paper.

II. SmartGroups IN A NUTSHELL

When a developer has to correct a defect in a large

software system, SmartGroups can suggest artifacts that are

likely to be relevant for defect correction tasks. For this

purpose, the developer specifies in the IDE enhanced with

SmartGroups the type of task to be accomplished, in this

case “defect correction” (cf. Figure 1). Other supported

task types are feature implementation and general program

understanding tasks. Besides type of the task to be solved,

the developer can optionally also limit the search for task-

related artifacts to specific packages or can exercise partic-

ular features whose execution is analyzed by SmartGroups

to focus on just those artifacts used in these features.

Figure 1. SmartGroups identifies entities related to a task of the selected
type.

SmartGroups search for task-related artifacts using the

algorithms described in Section IV. The result, that is, the

artifacts likely to be relevant for a defect correction task are

directly presented in the IDE next to traditional source code

views. Figure 2 shows the list of artifacts that are relevant for

defect correction tasks and that were identified by analyzing

past development activities such as navigation, modification,

committing, or the execution of source artifacts.

The SmartGroups view is tightly integrated in familiar

IDE views. The developer can easily switch between a

view focusing on the task-relevant artifacts identified by

SmartGroups (as depicted in Figure 2) or the traditional view

showing the entire software space. This tight integration

lowers the burden for the adoption of smart groups pre-

senting task-relevant artifacts. Additionally, source artifacts

identified as task-relevant are highlighted in the traditional

IDE views to be able to quickly identify them in these views.

Figure 2. SmartGroups view integrated on the left side of Pharo Smalltalk’s
system browser, the core of the Smalltalk IDE.

III. EXISTING APPROACHES

Several existing proposals also aim at presenting task-

relevant entities and at representing a working context in the

IDE. However, these related works have several limitations

and shortcomings and cannot completely achieve our goal of

2



representing context in the IDE. In the following, we report

on these shortcomings of existing work and how we want

to overcome them.

FEAT. This approach identifies concerns from recorded

program investigation activities performed in the IDE and

visualizes these concerns with graphs [15]. However, the

quality of the identified concerns is heavily dependent on

how organized the analyzed investigation sessions were [14],

[16]. Disorganized investigation sessions cannot be used

to identify concerns [14], thus FEAT’s algorithms are not

robust. We tackle this problem in SmartGroups by exploiting

more than one data source to identify entities belonging to

the same context or concern. This renders the SmartGroups

approach more robust, that is, less dependent on the quality

of the analyzed transcript of past investigation activities

NavTracks. This technique recommends source entities

related to the currently selected entity by analyzing how

developers navigated and modified the system in the past

[17]. With SmartGroups we take into account more infor-

mation than just recency of navigation; we also consider evo-

lutionary data (age, versions, or authors of source artifacts)

or dynamic data such as number of invocations, memory

usage, or execution time. The analysis of this data yields

groups of entities that form a particular context, for instance

those that are relevant for a specific software feature or that

are related to a specific task such as bug correction. These

groups are permanently accessible and do not depend on the

currently selected artifact, thus they act as a categorization

of source entities. The nature of the current programming

task is an important factor for the identification of relevant

entities. NavTracks recommends related files independently

of the task and thus ignores the relation between tasks

and importance of entities. This work has been evaluated

empirically by observing developers and analyzing their

navigation patterns [17].

Mylyn. This proposal exploits programmer activities to

build a degree-of-interest model for the program elements

in a system and highlights the elements considered interest-

ing for the task-at-hand [8], [9]. SmartGroups are related

to Mylyn in the sense that they use similar information

to automatically build groups of source artifacts, namely

recency and frequency of modification and navigation of

source entities. However, as mentioned before, SmartGroups

also exploit dynamic and evolutionary information.

Another difference to Mylyn is that SmartGroups adapt to

the nature of the development task currently being performed

(either defect correction, feature implementation, or system

understanding). Depending on the type of task, SmartGroups

use different algorithms to determine the elements in spe-

cific groups. While Mylyn just provides a single and fixed

algorithm to identify related entities, SmartGroups allow

developers to influence how the approach locates relevant

artifacts. Developers understand their development task and

the system under study usually well enough to support

SmartGroups in the identification process by, for example,

specifying the task type and packages being involved in the

task, thus we do not apply such a strict model as Mylyn

which computes the degree of interest value for each artifact

independently of the nature of the task and the knowledge

and experience of the developer. Although developers can

alter the elements shown as relevant for the task in Mylyn,

they cannot influence how they are initially computed. With

a field study the authors have shown that Mylyn can reduce

the amount of navigation necessary to conduct software

changes [9].

Other researchers also combine different information

sources (e.g., information retrieval with execution tracing)

to obtain better results to, for instance, locate concerns [5]

or bugs [12] in source code.

IV. THE SmartGroups APPROACH

To automatically identify source entities relevant for a

particular task, SmartGroups exploit various kinds of data

sources, namely recorded development activities performed

in the IDE, evolutionary information extracted from source

repositories (versions, authors, etc.), and dynamic infor-

mation extracted from program execution. All available

data sources are combined to reveal task-relevant relations

between source artifacts.

By specifying in the interface provided by SmartGroups

on which type of task the developer starts to work (cf. Fig-

ure 1), the developer supports the process of automatically

identifying the task-relevant source elements. This task spec-

ification is abstract and high-level: the developer can choose

between defect correction, feature implementation, and gen-

eral program comprehension tasks. This task specification

can optionally be further refined by enumerating system

packages that are relevant for a task or by exercising one or

several features with which the task-at-hand is concerned.

The developer is encouraged to manually specify when he

finished a task to improve the data quality of SmartGroups.

As soon as the developer has specified the nature of the

current task, SmartGroups analyze its various data sources

based on the given task specification. Recorded development

activities are analyzed with regard to the task type developers

performed during the recording. We assume that the same

types of tasks involve similar entities; for instance, bug

correction is likely to involve certain kind of entities, such

as recently added or modified elements [6], elements that

contained bugs in the past [20], [7], [10], or that have been

frequently changed [6]. Thus, SmartGroups specifically take

into account recency and frequency of modification to sug-

gest relevant entities for defect correction tasks. Typically,

more artifacts are navigated than modified; thus additionally

to entities frequently or recently modified we also consider

entities that have been frequently navigated but not modified

to be task-relevant; the importance of such entities depends

on the type of task. To support multiple developers working

3



on the same project, SmartGroups can store recorded devel-

opment sessions in the source versioning system so that all

developers can access the same recorded sessions to be used

for the suggestion of task-relevant artifacts by SmartGroups.

In object-oriented applications developers mostly modify

single methods to correct defects or adapt features. For pro-

gram comprehension, the understanding of methods is also

crucial, thus SmartGroups mostly suggest methods as task-

relevant entities. Classes are also suggested, in particular

for program comprehension tasks. As we do not consider

the addition of a method to a class as a modification of the

class itself (this is not true if attributes are added), classes

are rarely modified during maintenance tasks, thus they are

usually not directly considered as task-relevant for defect

correction or feature implementation tasks.

A. Task Type Identification

If recorded development activities do not have a task type

associated, SmartGroups try to automatically determine this

task type by analyzing the recorded activities. A sequence

of recorded activities usually contains several distinct de-

velopment sessions. Start and end of such a development

session is either marked manually by the developer, by the

termination of the IDE or after a certain period of inactivity

(two hours or more). A development session might contain

more than one task. For sessions containing commits to a

repository, we consider the time of a commit as the end of a

defect correction or feature implementation task (see below).

Sessions without commits are either considered to be a

single program comprehension task, or, if they contain mod-

ification activities, as a single defect correction or feature

implementation task. Note that the latter two kinds of tasks

might also include program comprehension activities; the

difference to pure program comprehension tasks is that such

kind of tasks also include modification activities. To distin-

guish between defect correction and feature implementation

tasks, we analyze the extent of modification: Sequences of

development activities containing just modification actions

limited to one or two particular methods or classes are

perceived as defect correction tasks; if modification involves

several different entities (that is, more than two methods),

we assume a feature implementation or adaptation task. This

criteria might not always correctly separate defect correction

from feature implementation tasks, however, we manually

categorized twenty percent of all recorded tasks used in the

validation (cf. Section V) by taking into account information

given by the developer concerning the task being performed

and revealed that this criteria correctly categorized the tasks

in all except two cases which corresponds to a precision

of nearly 98%, which we consider precise enough for our

purposes.

Determining task types from evolutionary data works

similar. As this kind of data does not include information

about entity navigation, we basically just distinguish be-

tween defect correction and feature implementation tasks by

considering the extent of modification using the same criteria

previously mentioned. If a programmer specifies a type of

task in SmartGroups, this information is automatically stored

in the commit message, thus we can retrieve this information

from evolutionary data.

Evolutionary data extends data about recorded develop-

ment activities (i) by grouping modified entities into a

coherent set, that is, the entities being part of the same

commit, and (ii) by finalizing a batch of modification

actions. From recorded modification actions it is difficult

to separate intermittent modifications from those finally

solving a particular task. We expect that committed entities

contain final changes while recorded modification actions

are often just a step towards the final modification of a

particular entity in a particular task. We thus take the time

of commit as the completion time of a task, at least in cases

where developers did not manually specify when a task is

finished. Furthermore, commits help to refine information

contained in recorded modification activities as they usually

just include entities that indeed have to be modified in order

to complete a task.

The identification of task-relevant entities based on devel-

opment activity and evolutionary data works as follows for

the different types of tasks:

B. Defect correction

First, we map particular commits to recorded development

sessions to mark the end of a task. The beginning of a

task has been either specified by the developer or has been

automatically determined as described above. As soon as

the extent of the task in the recorded development activities

is determined, we extract all modification actions and the

involved artifacts and count how frequently each artifact was

modified. The set of modified entities is firstly ordered by

frequency and extent of modification and secondly compared

to the set of committed entities; modified entities that have

not been committed are moved to the end of the ordered list

of entities. Additionally, we also incorporate entities that

have been frequently navigated but never modified. Such

entities are placed at the end of the list, after those not com-

mitted. Source elements that have been recently modified or

frequently and recently navigated in a development session

are considered to be more important and move up in the list.

This procedure is repeated for all defect correction tasks

in the recorded set of development activities. The lists

of relevant entities from all considered tasks are merged;

entities from recent development sessions are prioritized and

thus appear higher in the merged list.

As defects often occur in artifacts that have been recently

added to the system [6], we increase the priority of artifacts

that are young (age is measured in number of commits

since an artifact has been initially added to the system). We

also rank artifacts higher that have been changed in many

4



Parameter Defect correction tasks Feature implementation tasks
Initialization Initially, the list is ordered by extent of modification, that is, number

of lines that are added or adapted, and by frequency of modification.
Same as for defect correction

Committed entities Entities that have been modified but not committed are appended to
the end of the list in their initial order.

Same as for defect correction

Frequently navigated The 30 most frequently navigated entities are ordered by frequency Same as for defect correction, but taking the 20
but not modified and appended in this order to the end of the list. most frequently navigated entities

Recent navigation The 100 most recently navigated entities are ordered and the weight
of each entity in the ranked list is increased by its rank from the
’recent navigation’ list.

Same as for defect correction, but taking the 200
most recently navigated entities

Frequent navigation The 40 most frequently navigated entities are ordered and the weight
of each entity in the ranked list is increased by its rank from the
’frequent navigation’ list.

Same as for defect correction, but taking the 100
most frequently navigated entities

Recent modification The 20 most recently modified entities are ordered and the weight of
each entity in the ranked list is increased by its rank from the ’recent
modification’ list.

Same as for defect correction, but taking the 100
most recently modified entities

Recent dev. session All development sessions are ordered by recency and the weight of all
entities in the ranked list is increased by the rank of the development
session in which they have been lastly modified.

Same as for defect correction

Age (young entities The 50 youngest entities are ordered by age (number of commits Not used
ranked higher) since creation) in ascending order and for each of these entities

appearing in the ranked list we increase its weight by the rank from
the ’age’ list.

Number of authors Each entity is ordered by number of authors in descending order and
the weight of each entity in the ranked list is increased by its rank
in the ’number of authors’ list.

Not used

Same author Not used Entities changed by the same author as the current
developer are ordered by the recency of the devel-
opment session in which this author changed the
entity. The weight of each entity in the ranked list
is increased by its rank in the ’same authors’ list.

Table II
THE PARAMETERS USED IN THE ALGORITHM TO IDENTIFY ENTITIES RELEVANT FOR DEFECT CORRECTION AND FEATURE IMPLEMENTATION TASKS

AND HOW THEY INFLUENCE THE ORDER OF THE RELEVANT ENTITIES.

commits or that have many different authors, as we expect

the likelihood to contain a defect to be higher for artifacts

with these characteristics.

The ranked list is shown in the SmartGroups view under

the label “suggestions” as illustrated in Figure 2. Only the

first twenty elements are shown by default. Developers are

presented with all elements in the list on demand. We limit

the maximum number of entities in the list to 50 elements;

elements placed beyond this limit are not presented. De-

velopers can change the position of elements in the list or

manually add or remove elements, but the list can never grow

beyond 50 elements. This hard limit has been empirically

determined by interrogating developers that considered it

to be an appropriate compromise between having many

suggestions for related artifacts and not overloading the

SmartGroups view.

The algorithm to rank a specific artifact to determine its

position in the list of related artifacts encompasses many

parameters such as how frequently navigated entities move

up in the list. Each element in the ranked list has an initial

weight which equals its position in the list. Each parameter

adds weight to some of the entities. We automatically add

the maximum weight given by a parameter and increase this

weight by one for entities that have not yet received weight

for this parameter to move such entities towards the end of

the list. Eventually, the list is sorted by the weight of entities

in ascending order which leads to the final ranked list.

The parameters in this algorithm are listed and explained

in Table II, left column. We empirically determined the

optimal value of each parameter by running a benchmark

experiment using ten recorded development sessions (the

benchmark principle is explained in more detail in Sec-

tion V). Each session contained several defect correction

tasks for which we knew precisely the involved development

activities. We used the recorded activities of all but one task

to compute the ranked list of relevant entities for the last

task in the session. We knew precisely the elements that

actually had to be modified to correct the defect of this last

task. We then gradually varied in several benchmark runs

the parameters in a given range and chose ultimately the

parameters from the benchmark run which proposed a list

of relevant artifacts best aligned with the set of elements that

developers actually had to modify to correct the last defect in

each development session. For instance, for the parameter of

how many of the most frequently navigated entities should

added to the list of relevant entities, we initially started

with five entities, increased this value in steps of five, and

ultimately revealed that a value of 30 entities yields best

results.

5



C. Feature implementation

The identification of source elements relevant for feature

implementation tasks works largely in the same way as de-

scribed above for defect correction tasks, except that feature

implementation tasks extracted from recorded development

activity and source code history are analyzed instead of

defect correction tasks.

There are some minor differences in the identification

algorithms compared to defect correction. For instance, we

rank artifacts higher that have been previously modified or

navigated by the same author as the current developer, as we

consider it to be likely that the same developer will work on

similar features throughout the lifetime of a system. Thus,

entities this developer changed during previous development

sessions are more likely to be relevant for the current task

than artifacts this developer has never touched before. We

expect this effect to be less pronounced for defect correction

tasks as often defects have to be urgently corrected, thus the

first available developer may perform the correction and not

the one who normally works on the affected feature. Com-

pared to defect correction tasks, we adapted the parameters

of the identification algorithm as depicted in Table II, right

column.

D. General program comprehension

Identifying source elements relevant for program compre-

hension tasks differs from the procedure discussed above as

this type of task does not encompass any modification, thus

we cannot consider evolutionary information or modification

activities for the identification process. We only take into

account navigation activities for program comprehension

tasks. We build the list of related entities in the following

way: (i) the initial list is ordered by how often an entity

was navigated, (ii) recently navigated entities are ranked

higher, (iii) entities which developers selected in the result

lists of searches are considered to be more important, (iv)

the more time developers spent reading a specific artifact,

the more importance we assign to it (an entity’s “reading

time” is measured in the outlier-adjusted time spent between

selecting this entity and selecting the next one), and (v) the

longer a view on a particular entity is open, the higher we

rank this entity. An entity can still be opened in a view,

even though the developer currently looks at another entity in

another open window or tab, hence time of visibility is often

longer than reading time. Table III depicts the parameters of

this algorithm.

For program comprehension, entities added or changed

during defect correction and feature implementation could

also be highly interesting. The ten top elements appearing

in the ranked lists of the two other task types are also taken

into account for program comprehension tasks; they either

move up in the ranked list of the latter if they have already

been identified as relevant for the program comprehension

task, or are appended to the end of the list otherwise.

Parameter Description
Recent navigation The 100 most recently navigated entities are

ordered and the weight of each entity in the
ranked list is increased by its rank from the
’recent navigation’ list.

Recent dev. session All development sessions are ordered by re-
cency and the weight of all entities in the ranked
list is increased by the rank of the development
session in which they have been lastly modified.

Search results The weight of all entities to which developers
have navigated from search results is not in-
creased while the weight of all other entities is
increased by ten.

Reading time All entities are ordered by reading time in
descending order and the weight of each entity
in the ranked list is increased by its rank in the
’reading time’ list.

Time of visibility All entities are ordered by their visibility time
in a view in a view in descending order, and the weight

of each entity in the ranked list is increased by
its rank in the ’time open in view’ list.

Table III
THE PARAMETERS USED IN THE ALGORITHM TO IDENTIFY ENTITIES

RELEVANT FOR PROGRAM COMPREHENSION TASKS AND HOW THEY

INFLUENCE THE ORDER OF THE RELEVANT ENTITIES.

Parameter Description
Not used artifacts All artifacts not used in the recorded execution of

a feature are moved to the end of the list. Thus,
such entities appear after all used entities in the
order they had in the original list.

Frequency All used entities are ordered by frequency of oc-
currence in the method call tree and their weight
in the ranked list is increased by the rank they
have in the ’frequency of occurrence’ list.

Table IV
THE PARAMETERS FOR CONSIDERING DYNAMIC INFORMATION TO

REFINE THE RANKED LIST OF RELEVANT ENTITIES.

E. Inclusion of dynamic information

Behavioral information is not always available, thus we do

not include such information in the basic algorithms identi-

fying task-relevant entities. However, if dynamic information

is available it can greatly improve the predictive quality

of the algorithms used in SmartGroups. To gather dynamic

information the developer has to run the software feature(s)

to be corrected, adapted or understood. The execution of

features is analyzed using partial behavioral reflection [19]

which allows us to precisely select which operations of

a program should be analyzed. For feature analysis it is

enough to only analyze method invocations in application

methods and classes, but not in libraries for instance.

The collected dynamic information (basically a tree of

method invocations) influences the ranked list of task-

relevant artifacts identified based on development activity

and source history information in the following ways: (i)

the ranking of artifacts not used in the executed feature(s) is

decreased and (ii) artifacts appearing several times in the

method invocation tree in different branches move up in

the list. The parameters used in the algorithm considering

dynamic information are depicted and explained in Table IV.

Artifacts appearing in the gathered method invocation

tree but not in the ranked list are only appended to the

6



list if it has not yet reached the limit of 50 elements.

These dynamically identified entities are added to the list in

the order determined by number of occurrences in distinct

branches of the call tree. Thus, dynamic information refines

the ranked list already identified based on development

activity and evolutionary information.

V. VALIDATION

This section validates SmartGroups by two means: (i)

we evaluate how accurate the suggestions for task-relevant

artifacts are and (ii) we report on the practicality of Smart-

Groups by presenting user feedback.

A. Correctness of SmartGroups

For the adoption of SmartGroups by developers it is

crucial that the suggestions for relevant artifacts be accurate,

that is, the automatically determined entities supposed to

be relevant for the current task should meet the following

criteria: (i) the suggested entities should indeed be task-

relevant (high precision, few false positives) and (ii) many

of the task-relevant entities should be suggested (high recall,

few false negatives).

Procedure. To evaluate precision and recall of the sugges-

tions of SmartGroups for task-relevant artifacts, we conduct

a benchmark validation; benchmark validations have already

been used for similar purposes by other researchers such

as Robbes et al. [13]. We analyze a recorded sequence of

development activities (navigation and modification actions

performed in the Smalltalk IDE) accompanied with evolu-

tionary information (commits, versions, authors). We auto-

matically identify the task types as described in Section IV

because developers did not specify the task types during

the development activities we recorded. In an initialization

phase, we use the first ten tasks of each type appearing in the

sequence of development activities to build the initial lists of

recommendations for task-related artifacts. To measure the

accuracy of SmartGroups, we compare the recommendation

list for a particular task type with the set of entities that

have actually been relevant for the subsequent task of this

type. For example, the ten first defect correction tasks

suggest relevant entities for the eleventh defect correction

task in the recorded sequence of development activities and

the accuracy of the suggestions for the eleventh task is

measured. The first eleven tasks are then analyzed to build

the lists of relevant entities for the twelfth task, the accuracy

of the suggestions for this twelfth task is measured, and so

on until the end of the sequence of activities is reached.

Identification of task-relevant entities. For a particular

task, we determine the entities that are actually relevant as

follows: For defect correction and feature implementation

tasks, relevant entities are those that are committed to the

source code repository during the execution of a task. For

program comprehension tasks that usually do not contain any

modifications or commits, we consider all navigated entities

to be relevant.

Dataset. The recorded datasets we analyzed in this bench-

mark stem from five different developers who contributed in

total nearly 50’000 navigation and modifications events that

were accompanied by 268 commits to a source repository.

These developers worked on six different systems of medium

size (consisting of between 300 and 1200 classes with

an average of approx. 75,000 LOC). All developers are

experienced Smalltalk developers with at least four years of

programming experience in the Smalltalk environment. Dur-

ing this study these developers were performing their daily

programming work in their normal working environment on

various kind of systems ranging from developing industrial

web-based applications to software analysis environments.

These systems were very familiar to the respective develop-

ers, in most cases the developers originally developed them.

The time span covered in the recorded sets for each system

varies from three weeks to five months. For each system,

we use the recorded sequences of development activities in-

dependently of sequences originating from other systems to

evaluate the accuracy. At the end, we average the determined

accuracy measured over all available sequences of activities.

All datasets have been recorded with the publicly available

IDE activity recording framework SmallBrother.

Evaluation. To determine how accurate the identified

task-related entities are, we compare the set of entities that

have actually been related to the task (determined with

recorded development activities and evolutionary informa-

tion) with the suggestion list of SmartGroups. This list is or-

dered and contains a maximum of 50 elements. None of the

recorded defect correction or feature implementation tasks

spanned 50 elements (the number of relevant elements varied

between one and 37). Actually relevant task entities should

be included in the respective suggestion list for each task

to achieve a recall of 100%. Some program comprehension

tasks exceeded the limit of 50 elements. For these tasks,

we temporarily allowed SmartGroups to suggest more than

50 entities, namely all elements it could identify as being

task-relevant. To measure recall we count the number of

task-relevant entities not identified by SmartGroups (false

negatives). Precision is measured by analyzing how many

entities SmartGroups suggest that are actually not task-

relevant (counting false positives). Precision and recall are

computed according to the definitions of Rijsbergen [21].

True positives are the relevant entities SmartGroups cor-

rectly identified, false positives the entities SmartGroups

wrongly identified as being relevant, false negatives are the

relevant entities SmartGroups could not identify. Note that

it is not possible to determine the true negatives as we

do not know the exact number of source artifacts in the

system at any one time during the recorded dataset. Thus,

we cannot compute the accuracy of SmartGroups defined as

the proportion of true results. Precision and recall, however,

7



Measure Value

Number of tasks 172

Number of activities 15’364

Number of commits 179

Precision 39.0%

Recall 65.3%

Table V
RESULTS FOR DEFECT

CORRECTION TASKS.

Measure Value

Number of tasks 84

Number of activities 7’982

Number of commits 86

Precision 35.2%

Recall 54.9%

Table VI
RESULTS FOR FEATURE

IMPLEMENTATION TASKS.

Measure Value

Number of tasks 143

Number of dev. activities 21’354

Number of commits 0

Precision 24.9%

Recall 20.7%

Table VII
RESULTS FOR PROGRAM COMPREHENSION TASKS.

give a good impression of SmartGroups’s accuracy. High

precision and high recall values lead to a high accuracy [23].

These measures are computed for each task individually

and are averaged over different tasks by computing the

arithmetic mean value.

Results. We show the results of the benchmarks separated

by type of tasks. The result tables present precision and

recall averaged over all analyzed tasks of a particular type

(except the tasks used to initialize the identification pro-

cedure). Table V presents the results for defect correction

tasks, Table VI for feature implementation and adaptation

tasks, and Table VII for program comprehension tasks.

Note that we were not able to use all recorded develop-

ment activities as some were identified as belonging either

to a defect correction or a feature implementation task, but

there was no corresponding commit in this time period,

hence we could not determine a set of entities actually being

relevant for such a task. We skipped such sequences of

development activities. For program comprehension tasks

it is not necessary to have a corresponding commit. We

ignored, however, development sessions that matched the

criteria for being concerned with a program comprehension

task but which lasted a very short amount of time, that is,

a few minutes. In general, we consider the identification of

program comprehension tasks as less reliable than for the

other two task types.

Result interpretation. The results show that precision

and recall for defect correction and feature implementation

tasks are fairly high. While a precision below 40% might

be considered as low, we need to be aware that a reduction

of the number of entities that need to be studied by a

developer is already beneficial in itself; even though there

are elements in the suggested list that are not accurate (as

indicated by the precision of less than 40%), it is much

easier for a developer to navigate a selection of entities

than the entire system. For that reason we accept some

false-positives in the list as long as many of the actually

important elements are included (as indicated by a recall

value of up to 65%). One reason why recall is not higher is

that developers also have to work on bugs or features that

are completely unrelated to any tasks that have previously

been solved; in such a case SmartGroups cannot correctly

derive the relevant artifacts from the recorded development

history. As closely related proposals such as NavTracks [17]

or Mylyn [8] do not indicate their precision and recall, we

cannot compare our results. For program comprehension

tasks, both precision and recall are rather low. We attribute

this to the fact that identifying program comprehension tasks

and separating them from other kind of tasks was more dif-

ficult than for defect correction and feature implementation

tasks. Furthermore, SmartGroups have to rely on much less

information, basically just historical navigation activities, to

determine artifacts related to program comprehension tasks,

while for the other types of tasks, modification activities and

evolutionary information can considerably improve the pre-

diction quality of SmartGroups. We expect that SmartGroups

yield similar results for program comprehension tasks as

Mylyn, NavTracks or FEAT.

Threats to validity. There are several threats to validity

in our experiment:

Task type identification. As mentioned above, automati-

cally deferring the type of task from a sequence of recorded

development activities is error-prone. We might have mis-

taken feature implementation tasks for defect correction

tasks, and vice-versa. Furthermore, since separating a de-

velopment session from another one is either based on a

large amount of time elapsed between two activities or by

terminating the IDE, the same task might actually span more

than one development session. However, for program com-

prehension tasks we assume that they are completed at the

end of a development session while the developer actually

might have continued with this task in the next session.

Similarly, it could be that at the beginning of a session,

the developer worked on a program comprehension task

unrelated to the defect correction task following afterwards.

Yet still the entire session, at least until the first commit

ending the defect correction task, is considered to be a defect

correction task.

Granularity of tasks. The three task types we propose are

very high level. There are several kinds of tasks such as

performance optimization or refactoring that do not match

any of the three task types. In our experiment, however, such

tasks would be considered to be either defect correction or

feature implementation tasks. A more fine grained catego-

rization of tasks is more realistic and is likely to also improve

the accuracy of the suggestions determined by SmartGroups.

Parameter determination. We determined the different

parameters and their values (cf. Table II, Table III, and

Table IV) used in the algorithms to identify relevant entities

for specific types of tasks by running a benchmark validation

using ten recorded datasets. These datasets were different

than those used in this validation, but partially stem from

the same developers working with the same systems as we

8



considered in the validation. The ten datasets stem from

three different developers working on four different systems.

Two of these three developers also contributed datasets to

this validation, and two of the four systems were also

covered in the validation. Thus, the determination of the

parameters is based on similar development sessions as those

we used to validate SmartGroups. Nonetheless, we do not

expect that this fact imposes a considerable threat to validity

as the different development activities and tasks are fairly

typical for software maintenance because all of them were

concerned with software systems representative in size and

complexity for many industrial applications. Thus, we expect

similar validation results even if the parameters had been

gauged using other sequences of development activities.

Assumption of optimal navigation. For program compre-

hension tasks, we specify that all entities that have been

navigated in the recorded dataset are task-relevant. It is

likely, however, that developers did not optimally navigate

the system to answer the task-relevant questions as they

did not have a perfect knowledge about the system. As

the developers whose activities we recorded were very

familiar with the respective systems they were working on,

we expect their navigation to be effective and close to

optimal. An indicator for navigation problems mentioned

in the introduction, namely number of entities revisited,

was with 16.79 on average lower than in the datasets of

developers navigating unfamiliar systems, which makes us

confident that the recorded navigation was focused. As no

modification occurs in program comprehension tasks, we

could not measure indicators like edit/navigation ratio.

Generalization. It is unclear how well the recorded dataset

of development activities and tasks are typical and represen-

tative for software maintenance. There are several variables

that might impose a threat to the generalization of the

experimental results, such as the extent or severity of the

defects corrected during the recorded tasks, the extent of

the implemented or adapted features, the software systems

being worked on, the length of the development sessions

or tasks, and the developers themselves. Most developers

that provided us with recorded datasets are researchers from

academia working on research tools. It is impossible to

say whether systems and developers from industry would

lead to other results when assessing the prediction quality

of SmartGroups for entities relevant for tasks concerned

with industrial software systems, even though the considered

systems are fairly representative in terms of size and com-

plexity. Further experiments need to clarify this point. We

do not expect the performance of SmartGroups to depend

heavily on the nature of the system or on the developers

maintaining this system. The quality of the recorded datasets

on which SmartGroups base the prediction of task-relevant

entities, particularly for program comprehension tasks, is

crucial though. For this reason, recorded navigation of

novice developers unfamiliar with a system should not, for

instance, be used to predict relevant artifacts.

Conclusions. This benchmark validation showed that the

algorithms proposed by SmartGroups are able to identify

task-relevant entities with a precision ranging from 24.9%

to 39%, and a recall ranging from 20.7% to 65.3%, at least

for defect correction and feature implementation tasks. The

predictive quality for relevant entities, however, drops for

program comprehension tasks, which we attribute to the

lack of substantial and reliable information to suggest related

entities for this type of task.

B. User Feedback

From face to face discussions with five developers using

SmartGroups, we got the following feedback:

Importance of Context. All developers stressed how

important a context representation in the IDE is when we

showed SmartGroups to them. In their daily work, they

are overwhelmed with information, particularly with views

containing too many static source artifacts. Developers want

to be able to focus on artifacts relevant for their current task.

For this reason, they considered the various smart groups

as very useful. They also appreciated the categorization of

search results, but asked for an automatic mechanism to

remove old queries from this group as old search results are

unlikely to be useful anymore after a while. The developers

we discussed with were not very excited about the manual

smart groups. They might use them occasionally, but it is

usually too much of a burden for them to manually add

entities to a smart group and to maintain these groups

on a regular basis. They appreciate, however, the fact that

such manual groups can be used to communicate important

aspects of a system by distributing smart groups containing

for instance, important artifacts of a system crucial for its

understanding. In general, the ability to distribute smart

groups between developers was highly appreciated.

Limited number of presented entities. All developers

were glad to be able to focus on a limited number of entities

(not more than 50) considered to be task-relevant. They

agreed with the principle of ranking the entities by assumed

relevance and to show low-ranked entities less prominently,

that is, in an extended list, while only the first 20 elements

are shown by default. As developers experienced that some-

times the suggested elements did not include those they

actually had to modify, for instance, to correct a defect,

they expressed the wish to be able to access the complete

list of entities considered to be relevant by SmartGroups,

even the elements ranked after the first 50 elements. In

general, developers considered the ranking mechanism as

intransparent and thus wanted to see all entities identified as

possibly relevant, since the automatic ranking might have

wrongly put a related entity after the first 50 elements

causing it to be stripped away.

9



VI. CONCLUSIONS

SmartGroups mitigate the problem of being overloaded

with information in IDEs by explicitly representing context

by means of working sets consisting of a small portion of

all source artifacts of a particular system. In particular the

automatic identification of task-relevant artifacts supports

developers to quickly locate artifacts of importance for a

particular defect correction or feature implementation task.

Developers have to spend less time navigating the software

space as SmartGroups provide them with a suggestion list

of relevant artifacts on which they can focus. As revealed by

empirically validating SmartGroups by means of a bench-

mark validation, the automatic determination of task-relevant

entities provides a precision of 39% and a recall of 65.3% for

tasks encompassing modification activities and commits, but

it is more error-prone for pure navigation tasks performed

to gain an initial understanding of an unfamiliar system.

Acknowledgments. We gratefully acknowledge the financial

support of the Swiss National Science Foundation for the project

“Bringing Models Closer to Code” (SNF Project No. 200020-

121594, Oct. 2008 - Sept. 2010)

REFERENCES

[1] V. Basili. Evolving and packaging reading technologies.
Journal Systems and Software, 38(1):3–12, 1997.

[2] M. C. Chu-Carroll, J. Wright, and A. T. T. Ying. Visual
separation of concerns through multidimensional program
storage. In AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development, pages
188–197, New York, NY, USA, 2003. ACM Press.

[3] T. A. Corbi. Program understanding: Challenge for the
1990’s. IBM Systems Journal, 28(2):294–306, 1989.

[4] A. Dunsmore, M. Roper, and M. Wood. Object-oriented
inspection in the face of delocalisation. In Proceedings
of ICSE ’00 (22nd International Conference on Software
Engineering), pages 467–476. ACM Press, 2000.

[5] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Gueheneuc.
Cerberus: Tracing requirements to source code using infor-
mation retrieval, dynamic analysis, and program analysis. In
Proceedings of ICPC 2008, pages 53–62. IEEE Computer
Society, 2008.

[6] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans-
actions on Software Engineering, 26(2), 2000.

[7] A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault
prediction. In Proceedings of ICSM 2005, pages 263–272,
2005. IEEE Computer Society.

[8] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest
model for ides. In AOSD ’05: Proceedings of the 4th inter-
national conference on Aspect-oriented software development,
pages 159–168, New York, NY, USA, 2005. ACM Press.

[9] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In SIGSOFT ’06/FSE-
14: Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, pages
1–11, New York, NY, USA, 2006. ACM Press.

[10] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller. Predicting
faults from cached history. In ICSE ’07: Proceedings of the
29th international conference on Software Engineering, pages
489–498, Washington, DC, USA, 2007. IEEE Computer
Society.

[11] A. J. Ko, H. Aung, and B. A. Myers. Eliciting design re-
quirements for maintenance-oriented ides: a detailed study of
corrective and perfective maintenance tasks. In Proceedings
of ICSE 2005, pages 125–135, 2005.

[12] D. Poshyvanyk, A. Marcus, G. Antoniol, and V. Rajlich.
Combining probabilistic ranking and latent semantic indexing
for feature identification. In Proceedings of ICPC 2006).
IEEE Computer Society, 2006.

[13] R. Robbes and M. Lanza. How program history can improve
code completion. In Proceedings of ASE 2008, pages 317–
326, 2008.

[14] M. P. Robillard and G. C. Murphy. Automatically inferring
concern code from program investigation activities. In Pro-
ceedings of the 18th International Conference on Automated
Software Engineering, pages 225–234, Oct. 2003.

[15] M. P. Robillard and G. C. Murphy. Feat: A tool for
locating, describing, and analyzing concerns in source code.
In Proceedings of 25th International Conference on Software
Engineering, pages 822–823, May 2003.

[16] M. P. Robillard and G. C. Murphy. Representing concerns
in source code. ACM Transactions on Software Engineering
and Methodology (TOSEM), 16(1):3, 2007.

[17] J. Singer, R. Elves, and M.-A. Storey. NavTracks: Supporting
navigation in software maintenance. In Proceedings of ICSM
2005, pages 325–335, 2005. IEEE Computer Society.

[18] E. Soloway and K. Ehrlich. Empirical studies of programming
knowledge. Readings in artificial intelligence and software
engineering, pages 507–521, 1986.

[19] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behav-
ioral reflection: Spatial and temporal selection of reification.
In Proceedings of OOPSLA ’03, ACM SIGPLAN Notices,
pages 27–46, nov 2003.

[20] A. Tarvo. Mining software history to improve software
maintenance quality: A case study. IEEE Software, 26(1):34–
40, Jan. 2009.

[21] C. v. Rijsbergen. Information Retrieval. Butterworths,
London, 1979.

[22] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engineer-
ing, SE-18(12):1038–1044, Dec. 1992.

[23] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429–445, 2005.

10


