A Biologically Inspired Algorithm for Microcalcification Cluster Detection

Abstract : The early detection of breast cancer greatly improves prognosis. One of the earliest signs of cancer is the formation of clusters of microcalcifications. We introduce a novel method for microcalcification detection based on a biologically inspired adaptive model of contrast detection. This model is used in conjunction with image filtering based on anisotropic diffusion and curvilinear structure removal using local energy and phase congruency. An important practical issue in automatic detection methods is the selection of parameters: we show that the parameter values for our algorithm can be estimated automatically from the image. This way, the method is made robust and essentially free of parameter tuning. We report results on mammograms from two databases and show that the detection performance can be improved by first including a normalisation scheme.
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00614995
Contributeur : Project-Team Asclepios <>
Soumis le : mercredi 17 août 2011 - 21:11:50
Dernière modification le : lundi 15 janvier 2018 - 14:34:01
Document(s) archivé(s) le : vendredi 25 novembre 2011 - 11:25:33

Fichier

Linguraru_MEDIA_2006.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Marius George Linguraru, Kostas Marias, Ruth English, Michael Brady. A Biologically Inspired Algorithm for Microcalcification Cluster Detection. Medical Image Analysis, Elsevier, 2006, 10 (6), pp.850-862. 〈10.1016/j.media.2006.07.004〉. 〈inria-00614995〉

Partager

Métriques

Consultations de la notice

112

Téléchargements de fichiers

194