Deformation Analysis to Detect and Quantify Active Lesions in Three-Dimensional Medical Image Sequences - Inria - Institut national de recherche en sciences et technologies du numérique Accéder directement au contenu
Article Dans Une Revue IEEE Transactions on Medical Imaging Année : 1999

Deformation Analysis to Detect and Quantify Active Lesions in Three-Dimensional Medical Image Sequences

Résumé

Abstract--Evaluating precisely the temporal variations of lesion volumes is very important for at least three types of practical applications: pharmaceutical trials, decision making for drug treatment or surgery, and patient follow-up. In this paper we present a volumetric analysis technique, combining precise rigid registration of three-dimensional (3-D) (volumetric) medical images, nonrigid deformation computation, and flow-field analysis. Our analysis technique has two outcomes: the detection of evolving lesions and the quantitative measurement of volume variations. The originality of our approach is that no precise segmentation of the lesion is needed but the approximative designation of a region of interest (ROI) which can be automated. We distinguish between tissue transformation (image intensity changes without deformation) and expansion or contraction effects reflecting a change of mass within the tissue. A real lesion is generally the combination of both effects. The method is tested with synthesized volumetric image sequences and applied, in a first attempt to quantify in vivo a mass effect, to the analysis of a real patient case with multiple sclerosis (MS).
Fichier principal
Vignette du fichier
thirion-tmi-1999.pdf (356.55 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

inria-00615095 , version 1 (17-08-2011)

Identifiants

  • HAL Id : inria-00615095 , version 1

Citer

Jean-Philippe Thirion, Guillaume Calmon. Deformation Analysis to Detect and Quantify Active Lesions in Three-Dimensional Medical Image Sequences. IEEE Transactions on Medical Imaging, 1999, 18 (5), pp.429-441. ⟨inria-00615095⟩
102 Consultations
230 Téléchargements

Partager

Gmail Facebook X LinkedIn More