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Chapter 31
Landmark-Based Registration
Using Features Identified
Through Differential Geometry

Xavier Pennec
Nicholas Ayache
Jean-Philippe Thirion
INRIA - Projet Epidaure

1 Features Extraction: Extremal
Points and Lines

Registration of 3D medical images consists in comput-

ing the “best” transformation between two acquisitions liabl ; h
or equivalently, determines the point to point correspo-rl:Q extract reliable curves on a surface, most approaches
to generalize the notion of “edges” to smooth surfaces

dence between the images. Registration algorithms Hyef_ dth lient h face- rid
usually based either on features extracted from the if-1nd the most salient features on the surace: ridges.

age (feature-based approaches) or on the optimizatior{:_’g)lpr to the Iatel 19h805 a_ndle_arly 1990?’ th(:] mter_est n
a similarity measure of the images intensities (intensity- ges was mostly theoretical, In areas of mathematics re-

based or iconic approaches). Another classification ﬁIed to catastrophe theory [33, 24, 21, 34, 1]. Crest lines

terion is the type of transformation sought (e.g. rigid Qe then defined as the cuspidal edges of a caustic surface,
non-rigid) and the link between caustics and curvatures on a surface

was established.

In this chapter, we concentrate on feature-based apPractical applications were then discovered by re-
proaches for rigid registration, similar approaches fégarchersincomputer vision, graphics, and medicalimag-
non-rigid registration being reported in another set of pulfd together with the specification of algorithms to extract
lication [35, 36]. We show how to reduce the dimension dlges. In the following, we are going to focus on trest
the registration problem by first extracting a surface frogfid extremal lines introduced in [25, 26] and developed
the 3D image, then landmark curves on this surface dfd38, 39]. Basically, these curves are (subsets of) the
possibly landmark points on these curves. This concé%i of the surface where one of the principal curvatures
proved its efficiency through many applications in medieaches a locally optimum in the associated principal di-
cal image ana|ysis as we will see in the Seque|_ This Wd’ﬂ@tlon In these WOka, the crest lines are extracted USing
has been for a |ong time a central investigation topic BTlrd order derivatives of the image intensities. An alter-
the Epidaure team [2] and we can only reflect here or@tive approach was presented in [14] with the use of a
small part of the research done in this area. B-spline approximation of the surface.

A different notion of ridges is given in [40, 10]: they

We present in the first section the notions of crest linase defined as the salient structures of the intensity surface
and extremal points and how these differential geomettgfined byl = f(x,y, z). Here, the ridges are surfaces
features can be extracted from 3D images. In Sectiona?d are more like results of the medial axis transform than
we focus on the different rigid registration algorithms thale intuitive notion of salient lines on a surface. Cuttéaig
we used to register such features. The last section aalg6] also developed a method using a template of ridges
lyzes the possible errors in this registration scheme aodassist in their extraction from image data. This method
demonstrates that a very accurate registration couldvi&s extended by Deast al [7]. A good review of the
achieved. many definitions of ridges can be found in [4].
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Figure 1: Differential geometry of 3D curves and surfaces. Left: principal directions and curvatures of a surface.
Right: Fienet trinedron of a 3D curve and first differential invariants: curvature and torsion.

1.1 Definition and Properties We have proposed another method to compute them in
[39, 38], for the case of iso-intensity surfaces. Our method
is based on the use of the implicit functions theorem. Ba-
Let us first recall briefly some results of differential geonfically, we have shown that the crest lines can be extracted
etry about surface curvatures (a good introduction to thee the intersection of two implicit surfacgs = I and
notions can be found in [9] or in [21]). In this paper, wé = 0, wheref represents the intensity value of the im-
call asmooth surfaca 3D surface which is continuously?d€.! an iso-intensity threshold, and= V&, - t, is the
differentiable up to the third order. At any poiRtof such €xtremality function (see Figure 2, left). We have pro-
a 3D surface, we can define one curvature per direttioR®S€d an algorithm, called the Marching Lines, to auto-
in the tangent plane of the surface. Thisectional cur- Matically extract these crest lines. This algorithm can also
vature is the curvature of the 3D curve defined by thB€ used to overcome some orientation problems (mainly
intersection of the plangP, t, n) with the surface, where due to the fact that the principal directions are only di-
n is normal to the surface. rections and not oriented vectors), by locally orienting the

Except for the points where this curvatuke is the principal directions along the extracted lines.

same for all the directions, which are calledumbilic In fact, for each point of the surface, two different ex-
points the total set of curvatures can be described witfemality coefficients can be defined, corresponding to the
only two privileged directionst; andts, and two asso- two principal curvatures:

ciated curvature valueg; = ki, andks = kt,, which

are called respectively the principal directions and the as-

sociated principal curvatures of the surface at péinas er = Vky -ty and  e2=Vky-ta (1)
shown in Figure 1. These two principal curvatures are

the extrema of the directional curvatures at pditand

(except for umbilic points) one of these two is maximalve found experimentally that the maxima (in absolute
in absolute value, let us say: we call this thelargest values) are more stable landmarks than the minima: crests

curvature in order not to be mistaken with the maximaf" 1ts (maxima) are stable, whereas the loci in a valley
curvature. We simply call theecond (principal) curva- where the ground floor is the flattest (minima) are very
ture the other principal curvature, sensitive to small perturbations in the data.

Differential Geometry of 3D Surfaces

We callextremal linesall the lines defined as the zero-
crossings of eithet; or e;. There is therefore four major
different types of extremal lines, depending of whether
The crest lines are intuitively the loci of the surface whethe corresponding curvature is the largest or the second
the “curvature” is locally maximal. More precisely, weone and whether it is a local maximum or minimum. Fur-
define them as the loci of the surface where the largéstrmore, the signs of the largest and second curvatures
curvature,k, is locally maximal (in absolute value) inhelp to distinguish between four additional sub-types of
the associated principal directign. In [26], it is shown extremal lines, leading to a classification inté types.
that these points can be defined as the zero-crossing ofae crest lines are two of them: positive largest curvature
extremality functiore, which is the directional derivativemaxima &; > 0 andVe; - t; < 0) and negative largest
of k; in the directiont;. curvature minimak; < 0 andVe; - t; > 0).

Extremal Lines
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Crest surface: elix,y,z)=0 Second extremal surface: Extremal point
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Figure 2: Left: Crest lines as the intersection of two implicit surfaces. Right: Definition of the extremal points as the
intersection of three implicit surfaces.

Extremal Points Geometric Characteristics

_ _ . _ Letus begin with the points on a surface. We have already
We now d_eﬂng _the extremal points as the intersectionfgn (Figure 1, left) that any such point could be provided
the three implicit surfacesf = I, e; = 0 andey = 0. with a trihedron(n, t1, t2) formed by the normal to the
The notions of extremal lines and extremal points aggrface and the two principal directions. As our points are
closely related to the notion of corner points, in 2D imy|so on extremal lines, we could provide them with the
ages, as defined in [20], [27], and [8]. A study of thgifferential characteristics of 3D curves (Figure 1, right),
evolution in 2D of corner points with respect to the scale the Fenet trinedror(t, nc, b), wheret is the tangent
can be found in [13]. A similar study on the scale-spagg the curven, its normal and the binormal.

behavior of the extremal lines and the extremal points WaSrp o <e two trihedrons are not the same as the extremal
presented in [12]. lines are generally not lines of curvature. However, as

Extremalitiese; and e, are geometric invariants ofthe curve is embedded in the surface, the tangent to the
the implicit surfacef = I: they are preserved withcurvet is constrained to be in the tangent plane of the
rigid transforms (rotations and translations of the objec§lrface spanned ki1, t2). Thus, there are two indepen-
Therefore, the relative positions of the extremal points #€nt parameters characterizing the relative configuration
also invariant with respect to a rigid transformation, i.ef the trihedron: we can measure two angles (t,t1)

for two different acquisitions of the same subject. Thegghdg = (n:n)_ These characteristics are invariant with
are 16 different types of extremal points, depending Ofespect to rigid transformations.

tEe type of (T?(_tremaht)(/j: local dm|hn|m_um or fr:axwglzm of Two other invariants come from the surface (principal
the extremalities:; ande; and the signs ok, and k.. curvaturesk; andks). One could also think to add the

Tp{ﬁ clas\:,lf;fatmr; car;hbe used to reduce the Complexété{rvaturek:, the torsionr of the curve and the geodesic
ot the matching algorithm. torsion7, of the curve with respect to the surface but it

However, the intuitive interpretation of extremal point8Ppears thak andr, are completely determined by the
is not straightforward. The extremal lines are 3D curvedyrface invariantskcos¢ = ki cos” 6 + ko sin® ¢ and
for which we are able to compute the curvature, butthe €% = (k2 — k1) cosfsin6. Thus, we are left with the
tremal points are generally not the points of the extrend@rsion of the curve.
lines whose curvature is locally maximal. Even if they However, the computation of the &met trihedron
are not extremal curvature points, the extremal points dteg, b) and the curve torsion has to be done on the
very well defined, and there is no reason for their locaxtremal curve itself after its extraction. If this can be
tions along the extremal lines to be less precise that thene directly on the polygonal approximation, a much
lines positions themselves, because the precision of Hegter method is to compute the characteristics on a local
computation of; andk, is approximately the same. B-spline approximation of the curve [15].
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Figure 3: Extraction of the Extremal Points. An empty circle denotes a positive value, whereas a filled circle indicates
a negative one.

1.2 The Automatic Extraction of the Ex- defined as the intersection of the three implicit surfaces
tremal Points f =1,e1 =0, ande; = 0. The method varies according
) to the type of interpolation or convolution function used

In practical cases; ande, can be computed for eachq extend continuously the three values at the vertices of

point of the 3D image with the equations described {Re cubic cell to the entire cell. The tri-linear interpolation
[37] directly from the differentials of the intensity funcyg 5 good first order approximation.

tion of the imagef. We compute these differentials with

: o . : . ) The extraction of a polygonal approximation of the
linear filtering, using the convolution of the discrete imal hoyg bp

k i > ) i o %test lines with some warranties about the topology and
with the differentials of the Gaussian function!*"/27". 0 qrientation of the reconstructed 3D curves is presented
The normalization of these filters is not straightforwargyii the marching line algorithm [39]. Its extension to the
we use the responses to simple polynomials, as propoggflaction of the extremal points was performed in [38].
in [26]. We choose the Gaussian function because it briefly recall here the method on a very simple ex-
isotropic, a prerequisite if we are looking for geometrigmja where the iso-surface is a triangle in the cell. This
invariants for rigid transf_ormations. Different \_/alu_eSoof operation can be extended to any configuration of the val-
can be chosen, depending on the level of noise in the §B of ande, while ensuring that the extracted segments
images. Changing is somewhat equivalent to changmgorm a continuous and closed 3D curve (except wfien
the scale at which we look for extremal lines and pointse1 is not defined, for instance at the borders of the im-
The hypothesis that the iso-surfaces are a good rep{ge)  The original algorithm also considers orientation
sentation of the surface of organs for the case of med'B%blems, which allows us to distinguish between mini-
images is a prerequisite: sometimes, the iso-surface ¢ahnm and maximum extremal points.

be ]?Xtra.CtT\;lj dlre?.tlyF\from the 3D| |mage;v|sFllech atshthtt-:; Sklr‘The first step (Figure 3, left) is to extract the iso-surface
;u)r(ace in Magnetic esor;ancc:h mag?t E ) or eh ONGRhin the cell. The iso-surface intersects the edges on the
N A-ray scannerimages. For otner SoftUSSues, SUCh asigyy i the valuel. Computing, by linear interpolation

the brain surface, a pre-segmentation step is require .
isolate the brain from the rest of the data. This can be do§1§ng the edges, the points whefre- I, we get the three

) L . . oints{Q1, Q2, Qs }. Since we are using a tri-linear inter-
:;Vt';?sa ;I?é?ibn'nagr?g tor:ergaetgrir;?gfilonmnoergtr;%m%ﬁzl grpv?iﬁ lation within the cell, the intersection of the iso-surface
' 9, P ith the cell is the trianglé Q1, Q2, Qs }.

an automatic “surface edge” extractor, such as the zeroi th d step (Fi 3 middl te th
crossing of the image Laplacian. In all cases, the final n the second step (Figure 3, middle), we compute the

step of the segmentation is performed usin iso-surfavifelues ofe, for {Ql’QQ’Q?}' by linear interpolation
b g P g ong the edges of the cubic cell. If they have the same

X a
techniques. . . . . . .
q sign, there is no extremal line of in this cell. Otherwise

we look for the two points along the triangle edges where
the interpolated value af; is null: we get the two points
One solution to get the set of extremal points of the 3071, 2} which form a segment. This is the approxima-
image is to compute; ande, for all the voxels of the 3D tion of the extremal line within the cell.

image and then to consider individually each cubic cell, The last step (Figure 3, right) is to compute the position
formed with 8 voxels (8-cell), as shown in Figure 3. Theref the extremal point. Sinc&, and P, lie on the surface
are therefore three values defined for each vertex of thfethe cell, we compute the value ef at these points
cube: f, e1, andey. The extremal points in that 8-cell arevith a bi-linear interpolation oks in the faces. If the

Computation of the Extremal Points in a 8-Voxel Cell
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Figure 4:Left: An axial slice of a 3D CT image of a dry skull in Plexiglddiddle and right: the crest lines extracted
on this image. The iso-intensity was manually chosen to delimit the skull. Original 3D Image courtesy of GE-CGR,
Buc, France.

two values have the same sign, there is no extremal pdim inverse of its length. This method reduces drastically
on this cell. Otherwise, as is shown here, we computee number of computations to perform, compared to the
its position P by interpolating the zero value along thextensive implementation: typically, one uses 10% of the
segment. number of voxels as seeds. Even if the set of generated
extremal points is not complete, it is generally sufficient

. . . to perform a reliable 3D registration.
Randomized Extraction of Extremal Points P 9

Of course, we could look for extremal points in all the

possible cells of the image, excepting regions of null grd-3 Example of Extracted Extremal Lines
dient and umbilics. However, it is much more efficient to and Points

randomize the search: we start with seed cells, randomly

chosen in the 3D image and discard the ones for whikhFigure 4, we can see an example of the lines extracted
the sign of f — I is the same for all the vertices. Themutomatically (with a manual choice of the iso-intensity
we compute the values ef for the 8 vertices of the cell. threshold) in a CT image of a dry skull. Some of the 550
Once again, a simple test discards the cells which are nagst lines may be recognized as anatomical landmarks,
crossed by &, extremal line (the sign of; is the same such as the orbits or the inferior border of the mandible.
for the 8 vertices). If there is an extremal line, we extrathe lines are colored by the sign of the extremality.

it from end to end, using the Marching Lines algorithiihus, extremal points are located at the color changes
(we follow the extremal line “marching” from one cell toalong the lines. There are around 3000 such extremal
the next). points.

At each point of the polygonal approximation of the In an MR image, the surface of the brain is not very
crest line, we compute the second extremadifyby bi- well defined by an iso-intensity of the image. A pre-
linear interpolation. If there is a sign change, we computegmentation step is usually needed to isolate the brain
the extremal point on the segment of the extremal line tfedm the rest of the data. This can be done with a combi-
we are currently following. nation of mathematical morphological operators, filtering,

The randomized implementation of the Marching Lineend the search for connected parts or with an automatic
allows us to extract the main extremal lines (i.e., thsurface edge” extractor, such as the zero-crossing of the
longest ones, which experimentally appeared to be theage Laplacian. In Figure 5, we used a segmentation of
most reliable ones) of the 3D image, with only very fewhe surface of the brain and extracted the crest lines on
seeds (with respect to the total number of voxels), rathis surface. Lines in red (with a positive largest curva-
domly distributed in the 3D images. The probability afure) roughly correspond to sulci whereas blue lines (with
missing an extremal line is approximately proportional ®negative largest curvature) could be interpreted as gyri.
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Figure 5: Left: A sagittal slice of a 3D MR imageMiddle and right: 3D views of the extremal lines extracted
superimposed on the surface of the brain. Original MR images and segmentation courtesy of Prof. R. Kikinis, Brigham
and Women'’s Hospital, Boston.

2 Rigid Registration a rigid transformation is computed by superimposing the
Frénet frames and used to index the match in a new accu-

. ) . mulator sampling the rigid transformation space (Hough
Let us now consider two images of the same modality agdnsform step). Densely populated cells in this second ac-

of the same patient, but in a different position. We extragtmuy|ator are detected as rigid body transformations that
extremal lines on both images. The problem is to putinipe candidates to match a large number of crest points.
correspondence the two sets of lines (the model and & each such cell, a refined least-squares transformation

scene), which is often called the matching step, andjf0.omputed using the matches indexed in this cell.
compute the best rigid transformation that superimposes

the matched lines. ) ) ] _
It is important to note that a global registration algc?-2 E)_(tremal Points  Registration using
rithm, for instance superimposing the barycenters of all Alignment

pom_ts and the mertla_ axes, wil -often fail (_jue.to the 0(fl_\/ith the development of completely automated methods
clusion. Indeed, the images being taken in different po-

. . ) . 1o extract crest lines and the higher resolution of images,
sitions, the region of interest are frequently different |{1 ) . ; .
he number of crest lines drastically increased, leading

he two im leadin rest lin nd extremal poin . . . . .
the two mages, eading to ¢ est' es and extre a po tésa much higher density of invariants in the hash table.
present in one image and not in the other. The magg?
n
t

noise will also induce the extraction of spurious lines a e:ts v(:/‘())lljjllfj Iﬁsgr\t/(\jhaeTr:Tlﬁgrtcac?rtrg;mn?:trczfe?lS?rrﬁ)gsrllgz)e(i?
points in different parts of the two images. mum complexity would then be reached and the algorithm
could even provide a wrong answer. To address this prob-
2.1 Curve Registration lem, Thirion reduced once again the image information by
keeping only a very small number of specific points on the
Several algorithms adapted from computer vision hageest lines: the extremal points. Typically, they represent
been proposed and used over time. In [15],e@ac only 16% of the number of crest line points, but we are
matches the crest lines using a combination of geomestdl left with 2000 to 5000 points in each image.
hashing [22] and Hough transform (see for instance [23]).Thirion used in [37] another computer vision based
The basic idea was to index each point of each model cresthnique: alignment (or prediction-verification) [3, 17].
line in a hash-table using its invariant characteristics. Ahe basic idea is to compute the registration of each triplet
recognition time, the invariants of each scene crest linemodel points with each triplet of scene points, super-
point are used to recover, thanks to the hash table, the pogose the two sets of points using this transformation
sible matches with model points (geometric hashing stepipd verify this match using an iterative closest point al-
For each match (i.e., couple of model and scene pointggrithm (see Section 2.4). However, the search for com-
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patible triplets in the model and the scene can be reduéegp the matches that are above a given threshold (typi-
since there are some unary invariants (the principal cagelly 10 % of the number of extremal points).

vaturesk; and k»), secondary invariants (e.g. the dis-

tance between the two points, or the relative orientati . . e

of the surface normals and the principal curvatures) a% St'_a”ng_ Compatible Match_es ?”d Ve_rlflcatlon For_ .
even ternary invariants (involving the whole triplet of ex(—aaCh |nd|V|(_:IuaI match, we maintain during the recognition
tremal points). Thirion used 18 such invariants for ea@ﬁep an estimation qfthe associated trgnsf_ormatlon by fus-
triplet, pre-computed and stored them in a hash table'td the transformatlon_s between conflrm!ng frames. To
retrieve in constant time the compatible triplets. Thus, tQEouP matches pelongmg to t.he same (rigid) substructurg,
complexity of the algorithm i)(n*) since there are? we run a very S|r_nple clustering algorithm on the associ-
triplets, and a verification aP(n) for each triplet match. ated transformation. Indee_d,_up to measurement errors,
In practice, this complexity is not reached as we can stg mes should undergo a similar transforma_uon within a
as soon as a given number of points is matched after vé pgle substructure. Each cluster is then refined by an it-

fication (tvbically 10 %). erative closest neighbor technique where we enforce sym-
ication (typically 0 metry of the matches and verify their validity with&
test.
2.3 Substructure Matching with Frame
Features

Matching Crest Lines In order to reduce once again the

We came back in [16] to geometric hashing, but the ideamplexity of the algorithm, we exploited in this method
was to use all the geometric information on the featurthe structure of the extremal points: they belong to crest
while taking great care of the uncertainty handling for tHmes. The principle is to consider each model crest line
algorithm to be robust (see [29] for an analysis of recogs a different object. Index all model lines in the same
nition algorithms with uncertain geometric features). Imash-table, we retrieve at recognition time the model lines
addition to the point’'s position, we can add the normabrresponding to each scene crest line.
vectorn and the two principal directions andts of the However, different crest line matches can correspond
surface to constitute a local coordinate system, or a frartedifferent transformations. Thus, we run once again our

In this context, each medical image is modeled by a sffistering algorithm on the transformations to find out the
of frames and the matching problem is to find the correempatible line matches and we obtain a single transfor-
spondences between two subsets of frames that are inrtfagion from the model to the scene image.
same configuration in the two “images”, up to a global

rigid transformation.
2.4 ICP on Frames

Invariant Representation: Preprocessing Step To ob- \yhen images are close enough, one can use still another
tain an invariant representation with respect to the glokg}orithm: the Iterative Closest Point [5, 41]. The basic
position and orientation of the considered structure, Weinciple is the following. For each scene point, we look
can express the configuration of all frames relative to of the closest point in the model with the current trans-
frame (called the basis). For efficiency, this representgrmation, compute a new rigid transformation with these
tion is stored in a hash table and, for correctness, we fjatches, and iterate the process until convergence.

clude the uncertainty of each invariant. As only part of of course, since we have more geometric information
the frames are in the same conﬁguratlon in the two Ifhan just the point position, we use a generalization: the
ages, the one chosen as the basis may not be presefititive Closest Feature [29]. The idea is to use a higher
the other image. The preprocessing step is thus repegigfensional space for the closest point search. In our

with each frame as the basis. case, the space is made of the extremal point position, the
trihedron(n, t1,t2), and the unary invariants, andks,.

Recognition Step Choosing a frame of the second’he important point is to set an appropriate metric on this
structure (the scene) as the basis, we compute the invgpiace in order to combine efficiently the different units
ant representation and retrieve, thanks to the hash tabfeaneasurement. In our algorithm, this is done using the
what are the compatible model frame couples. If the basiserse of the covariance matrix of the features. This ma-
belongs to a common substructure, then a significant numix can be re-estimated after convergence and the whole
ber of frames are in the same configuration with respectimcess iterated. However, we did not observe a critical
it. We then match the model and scene bases (Fig. 6). influence of the covariance matrix values, as soon as it is

This process is repeated for every extremal point as #ygproximately respecting the variation range of the differ-
basis to find its possible matches in the model and we oelyt components.
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Model Indexing the invarian space: Hash table
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Figure 6: Preprocessing:the 6D invariant vector associated with every couple of model frames is computed with
its error zone and used as an index for the couple in the hash fabtmgnition: for each scene frame couple, we
compute the 6D invariant vector and retrieve through the hash table every compatible model frame couple. For each

such couple, we tally a vote for the matching of the reference frames (here the taighKs;) scores 2).

Figure 7: Example of registered crest lines between two CT skull images of the same phantom acquired in two different
positions. Extremal points are represented by a color change from yellow to blue on thé &ftedzront view with

all crest lines from the two skulls after registratidviiddle: Left view of the matched crest lineRight: Closeup on

the occipital foramen on the right. In this last image, the width of a line is a tenth of a voxel, which shows the very
precise registration of these extremal points. One can also see that the trihedron part of the matched frames is very

well conserved.
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Figure 8: Example of registered crest lines between two MR T1 images of the same patient. Only the 240 matched
lines are displayed. Extremal points are represented by a color change from yellow to blue on thefinagew of
matched crest lines from the left of the hestiddle: View from the front.

2.5 Examples of Rigid Registrations 3 Robustness and Uncertainty
Registration of CT Images of the Skull Figure 7 AnaIySIS

presents an example of the registration of two CT images

of the a dry skull in a Plexiglas box in two different posiOnce we have registered the images, i.e. found matches
tions. We used the geometric hashing algorithm on framgsd a rigid transformation, the question is: how confident
(Section 2.3). As the transformation between the two irgan we be with this result? There are two main types of
ages is close enough to the identity, the ICP algoritherors in feature-based registration algorithms. Firstly, the
also gives very similar results. About 75 crest lines argatches could be completely wrong and we simply rec-
matched with more than 4 extremal points among the 58§nized by chance features in approximately the same
lines in each image leading to a total of 550 matched &¥nfiguration. This is called gross errorin statistics and
tremal points (only on the 75 matched lines). Using thefalse positivein recognition. But even if we got the
techniques described in Section 3.2, we have computadiches right, the features we are using to compute the
that the typical object accuracy (the expected standaggistration are corrupted by noise and induce a small er-
RMS error on image super-imposition due to the trangr, or uncertainty, on the transformation parameters. In
formation in the area of the matched features) is 0.04 mhis section, we analyze in turn these two types of error.
whereas the typical corner accuracy is 0.1 mm. This is to

be compared with the voxel size: 1 x 1 x 1.5 mm. 3.1 Robustness Analysis

Since our features are noisy, we had to allow for a cer-
Registration of MR Images of the Head Figure 8 is tain error when matching them. In the registration algo-
an example of the registration of two MR T1 images afthm of Sections 2.3 and 2.4, this is computed from the
the same patient. In this case, 240 crest lines are matchedariance matrices. The existence of such an error zone
among approximately 2100 in each image, for a total allows us to match features that by chance fall in this area.
860 matched extremal points among 3600 in each imad#hen this probability is sufficiently high, individual false
(about 25 %). We used the zero-crossing of the Laplaciaratches can combine themselves (conspiracy) to produce
to define the interest surfaces. Thus, there are crest limasmportant matching score.
all over the head. However, if some of the matched linesHowever, we should note that such a false positive is a
are located on the surface of the skin (we can recogna@rect recognition from a feature point of view (a glob-
the nose and the eyes), most of them are located on #llg consistent matching) but is incorrect from the image
surface of the brain. The typical object accuracy of the data point of view. This problem is inherent to the as-
registration is 0.06 mm for a typical corner accuracy eendent organization of information: some important in-
0.125 mm. Once again, the accuracy is far below the vofetmation can be dismissed by simplifying the image as a
size (0.97 x 0.97 x 1.5 mm). set of features.
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In [30], we developed a generic method to evaluate theThe actual matches found involve about 500 features
probability of matchingr features just by chance. Theand the probability of being a false positive is thus practi-
basic framework is the following. Let us assume for thaally zero. However, we must be careful that the “object”
moment that the transformation between the two images registered is not always the one we wanted, even if
is fixed. First, we compute theelectivityn, which is the this is definitely not a false positive: there can be several
probability that a random feature (uniformly distributed idifferent rigid motions in a single image, for instance the
the image) falls in a given error zone. Then, we compud&ull and the brain in MR images.
the probability that at least of the m scene features fall
in one of then model error zones. In our analysis, coms .
putations are simplified by assuming that all featuresn;l:?e2 From Feature to Transformation Uncer-
randomly distributed. tainty

Now, we will accept a match if there exists one trangygre  we assume that the matches are right. However,
formation such that at least features are put into €or-measyrement errors on the features induce an estimation
respondence. Thus, to obtain the mean number of fal3g,r on the transformation. We developed in [32, 31] a
positives, we just have to integrate over all possible trangathod where we register the features, estimate the noise
formations. Letl be the “diameter” of the images, we geg, the frames and propagate this noise to estimate the un-

the following estimation: certainty of the rigid transformation.
3 T J
P~ @ 1 — e~ (nmm) Z M ) Feature Uncertainty For extremal points (modeled as
3 =0 J! frames), we proposed a “compositive” model of noise.

Basically, this means that the noise is assumed to be iden-
In the example of Section 3.3, we compute that the digal on all extremal pointén the local frame(i.e., with

lectivity is n,: = 2.107¢ if we just use the position of therespect to the surface normal and the principal directions).
extremal points and, = 1.5.10~8 if we model them us- This has to be compared with the standard additive noise
ing frames. The diameter of the imagelis- 400mm and model on points where we assume an identical noise with
we extracted around 2,500 extremal points in each imaggspect to the image axes. In the case of the MR images
We plot in Figure 9 the number of false positivBswith  of the next Section, this leads to an interesting observa-
these values. tion: we draw in Figure 10 a graphical interpretation of

the covariance matrix estimated on the extremal points af-

ter registration.

Probability of false positive We obtain an approximately diagonal covariance ma-
e m = n=2500 ) trix with standard deviations;, ~ oy, ~ 2 deg,o,, =
= Frames .
» Points Ci)Lnn
10° d_._:i‘_:"" . 10 n
‘.\‘?—:m -
.~ (,//
107‘00 m :-; - 3 t1 P
' x c _, Z
ey tt
| t2 , En |
= /
= - ‘ _ =
0 U.LU 100.0 2000 SUJU.U Zt2t2

Number of matched features

Figure 9: Qualitative estimation of the number of fals€igure 10: Graphical interpretation of the “compositive”
positives involving at least matches in MR images ofnoise model estimated on extremal points. The uncer-
2500 features. Comparison between frames and poingénty of the origin (pointX) is 4 times larger in the tan-
we need roughly 5 times more point matches than fragent plane than along the surface normal. The uncertainty
matches to obtain the same probability (10 frames and&@he normal is isotropic, whereas the principal directions
point matches for a probability a0 —1°). t; andt, are 3 times more uncertain in the tangent plane.

This draft paper is provided to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. This work may not be
reposted without the explicit permission of the copyright holder.



509 Handbook of Medical Imaging - Processing and Analysis IV Registration

Figure 11: Uncertainty induced on the point positions (image corners, left; some object points, right) by the transfor-
mation.

6 deg for the rotation vector (these are typical values @dlues for the rotation and metric values for the transla-
the angle of rotation around the corresponding axis) atioh. To characterize the transformation accuracy with a
Oy, = 0z, = 0.8mm,o, = 0.2mm for the position. single number, we can compute the uncertainty (expected
As far as the trihedron part is concerned, this means tR#IS error) induced on a set of representative points by
the surface normal is more stable than the principal dirdbe registration uncertainty alone (without the uncertainty
tions, which is expected since the normal is a first ordéue to the feature extraction). In our case, two sets are
differential characteristic of the image and the principphrticularly well suited: the position of the matched ex-
directions are second order ones. tremal point represents the localization of the object of
For the position, the coordinate along the normal isterest, whereas the corners of the image symbolize the
once again more stable than in the tangent plane for therst case. In the example below, we find for instance
same reasons. The 3D standard deviation of the pasitypical boundary precision arourd,,, = 0.11 mm
tion is ¢ = 1.04, which is in agreement with the ad-and a typical object precision far below the voxel size:
ditive noise model on points. However, for the additive,,; = 0.05 mm for echo-1 registrations. The values are
noise model, the estimated covariance is isotropic. Thesen a little smaller for echo-2 registrations,,.,, = 0.10
using an adapted model of noise on frames allows usaiedo,,; = 0.045 mm.
extract much more information about the feature noise.
This constitutes am-posteriorivalidation of our “com-
positive” model of noise on extremal points. Validation Index Last but not least, we need to vali-
date this whole chain of estimations to verify if our uncer-
Transformation Uncertainty Now the problem is to tainty prediction is accurate. We observed that, under the
propagate the feature uncertainty to the rigid transfornfa@ussian hypothesis, the Mahalanobis distance between
tion. Let f represent a rigid transformation afiche ob- the estimated and the exact transformation (or between
served data. The optimal transformatirminimizes a tWo independent estimations of the same transformation)
given criterionC/(f, y) (for instance the least-squares cthould bexZ distributed (if the covariance matrix on the
the Mahalanobis distance). L&{(f, x) = 0C(f,x)/of. estimation is exact). To verify this, the idea is to repeat a

The characterization of an optimunﬂa{f, %) = 0. Now, registration experimen¥ times and to compute the em-

. . . iri _ =2 _ 1 2 H
if the data are moving around their observed values, wg,lcal mean valud = fi* = & > p; and the variance

can relate the new optimal parameters using a Taylor & _of this Maha_llanobis distance. The values for_an exact
pansion. Let] = 9&/df andJp = 9® /9y be the val- X6 &€ respectively 6 and 12. We can also verify using

ues of the second order derivatives of the criterion at tH¢ Kolmogorov-Smirnov test (K-S test) that the empiri-
P cal distribution corresponds to the exact distribution. The

actual valuegy, f). We have Rttty ) uust.
validation index/ [32] can be interpreted as an indication
B+ 0x, f+0f) ~ Jo.bx+HSf =0 of how the estimation method ur?der-estima_\té&((i) or
& % =E (5F.5f7) = HD Jp g JI HD Qver-estlmatesl( < _6) the covariance matrix of the es-
timated transformation. It can also be seen as a sort of
Thus, we can express (an approximation of) the covaig¢lative error on the error estimation.
ance of the resulting transformation using the covarianceWVe run several sets of tests with synthetic data and ver-
on features and the criterion derivatives. ify that our uncertainty estimations very perfectly vali-
However, a covariance matrix on a rigid transformalated for more than 15 extremal point matches. Now, the
tion is quite hard to understand since it mixes angulguestion we want to answer is: is it still valid for real data?
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Figure 12:Left: Example of MS images. The same slice of one acquisition in echo-1 (left) and echo-2 [®gft). evolution

of an image row going through a lesion across 24 time points over a year. Left: without registration; Right: after registration and
intensity correction. Original 3D Images courtesy of Dr. Charles Guttmann and Prof. Ron Kikinis from the Brigham and Woman'’s
Hospital (Harvard Medical School, Boston).

3.3 \Validation with Real Data ages. The resulting validation index clearly indicates that

] ) ] ) . the transformations do not agrege £ [ > 50 instead of
The experiment is performed using multiple 2D contigygy - However, our registration method cannot detect sys-
ous Magnetic Resonance images (MRI) which constityigatic biases.

a 3D representation of the head. The images are pal
of an extensive study of the evolution of the Multipl%v h ; . hil ing th
Sclerosis (MS) disease performed at the Brigham al ere we repeated the same registration while varying the

, . . orithm parameters. This confirms that the observed un-
Woman's Hospital (Harvard Medical School, Boston) bélertainty is similar in size and shape to the predicted one.

.Rﬁoreover, other experiments show that the inter-echo-1

a complete head MR gxamma’uon seygrgl times dur.'gﬂd the inter-echo-2 registrations are compatible but the
one year (typically 24 different 3D acquisitions). The ai o groups significantly differ (Figure 13). Thus we con-

i_s to reg_ister_ precisely all the images acguired at multig ded that there was a systematic bias between echo-1
time points in orde_r o segment the lesions and evalu%@d echo-2 registrations. Additional experiments showed
very accurately their evolution.

2 . , _ that the bias was different for each registration.
Each acquisition provides a first echo image and a sec-

ond echo image (typically 256 x 256 x 54 voxels of size f

.9375 x .9375 x 3mm). The two images represent the _AGL
same slice of T2 weighted signal imaged at different echo
times. Thus, they are expected to be in the same coordi- /
nate system. This protocol was designed to optimize the hal )
contrast in the two channels for easier tissue segmenta- Al B 1 - -~
tion. Considering two acquisitiond and B, the regis- § / § / f /

A 13'\ C

I . . . .
1‘0 discover the biases, we ran a series of experiments

fas,
T T

trations of echo-1 imagesi{ to B;) and echo-2 images : '\

(A, to By) give two relatively independent estimates of ' o |

the genuine transformation frosito B. The comparison _A"_ - B 7_ -

of these two transformations using the Mahalanobis dis- fin, fre.

tance gives a real validation index which can be tested for

the accuracy of the uncertainty estimation.

In this experiment, the images being close enough, we f_a.c:

used the iterative closest feature algorithm. Typically, we

match 1000 extremal points out of the about 3000 eRigure 13:This diagram represents three acquisitions A, B, and

tracted with a residual mean square error (RMS) of abalitvith the three echo-1 imaged(, B:, C;) and the three echo-

1mm. 2 images 4., B2, C3). The echo-1 and echo-2 registrations
are significantly different(*(fap,, fass)s 1> (facy, facs),
w>(fBoy, fBo,) ¢ 50) but the intra-echo-1 and intra-echo-2 reg-

Direct Validation Shows Biases With n different ac- istrations are compatibleut(fzc, o fas,, fac,) ~ 6 and

quisitions, we can runx* (n—1) /2 registrations per echo.u?(fsc, © fap,, fac,) ~ 6). This led us to assume a global

In a first experiment, we compared directly the registrhias for each acquisition between echo-1 and echo-2 images,

tions between the corresponding echo-1 and echo-2 iigPresented here by the transformatigns f, andfc.
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I or K-S test num. im. num. reg.
Theoretical values 6 V12 = 3.46 0.01-1 n <24 nx*(n—1)/2
patient 1 6.29 4.58 0.14 15 105
patient 2 5.42 3.49 0.12 18 153
patient 3 6.50 3.68 0.25 14 91
patient 4 6.21 3.67 0.78 21 210

Table 1:Theoretical and observed values of the real validation index with bias for different patients. The number of registrations

(which is also the number of values used to compute the statistics on the validation index) is directly linked to the number of images
used. Results indicate a very good validation of the registration accuracy prediction: the mean validation index is within 10% of its
theoretical value and the K-S test exhibits impressively high values.

Estimation of the Biases To estimate the biases, weOrigin of the Bias Most of the extremal points we

first observed that the transformation from imageto match are situated on the surface of the brain and the ven-
imageB; can be writterfa, g, = feofap, = fap,ofa. tricles. These surfaces appear differently in echo-1 and
If measurements where perfect, the bfascould be ex- echo-2 images due to the difference in contrast. Other ar-
pressed for any other image Zy = f(, o fz o faz,. tifacts such as chemical shift or susceptibility effects (see

AZ2
Since measurements are noisy, we obtain an estimatofaofinstance [18]) may also account for the observed bias
the biasf 4 by taking the Fechet mean value [28]: as they influence the detection of extremal points. Indeed,

the two echoes are acquired with different receiver RF
bandwidth to improve the signal/noise ratio [19]. There-
fa = argmin Z dist’ (f, fay,0fzo faz) p. fore, the chemical shift and the susceptibility effect are
Z+A different in the two echoes.
We plan to correlate the biases with diverse quantities in
In this formula, each acquisition bias depends upon ttige images in order to understand their origin. Ultimately,
others. Thus, we begin with null biases (identity transfolire would like to predict the biases in each acquisition be-
mations) and iteratively estimate each bias until convéore registration. This would allow the definite validation
gence. of the registration accuracy prediction.
We effectively obtain a different bias for each acqui-
sition that significantly differs from the identity. How-
ever, from a more global point of view, all the biased Conclusion
could be modeled as an “additional” noise on the trans=

formation with an identity mean and standard deviations o _
of o, = 0.06 deg on the rotation (not significantly differ-We presented in this chapter a method to extract reliable
ent from 0) andr, = 0.09, o, = 0.11 ando, = 0.13 mm differential geometry features (crest lines and extremal

on the translation (significantly different from 0). Venp0ints) from 3D images and several rigid registration al-

similar values were observed for other patients. gorithms to put into correspondence these features in two
different images and to compute the rigid transformation
between them. We also presented an analysis of the ro-

Validation with Bias Although the biases appear verpustness with the computation of the probability (or mean

small, they are sufficient to explain the previous errors iumber) of false positives and an analysis of the accuracy

the registration accuracy prediction. Indeed, taking tloéthe transformation.

biases into account, the real validation index between acThis method proves to be very powerful for monomodal

quisition A and B becomes: rigid registration of the same patient imaged at different
times, as we show that an accuracy of less than a tenth
Inp =p? (fBo fap, , fap, o fa). of voxel can be achieved. In the last experiment, we

showed that this uncertainty estimation technique is pre-
Since the biases are estimated from the registration \@ise enough to put into evidence systematic biases on the
ues, using their uncertainties in this formula would biagder of 0.1 voxel between features in echo-1 and echo-2
the validation index toward low values. Thus we considégnages. Once corrected, multiple experiments on several
them as deterministic. The mean value and standard patients show that our uncertainty prediction is validated
viation of this new index across all registrations are nown real data.
very close to their theoretical value (see table 1). This registration technique is currently used in many
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medical applications, such as the registration of a pre-
operative MR used for planning and MR with a stereotac-
tic frame for neuro-surgery navigation (European Com-
munity project Roboscope), or the registration of a seriel]
of acquisitions over time of images of Multiple Sclerosis

patients to study the disease’s evolution (European Com-
munity project Biomorph). 6

Several tracks have been followed to generalize this
work to non-rigid registration. Feldmar [11] used the prin-
cipal curvatures to register surfaces with rigid, affine, and

locally affine transformations. Subsol designed an algci—
rithm for non-rigid matching of crest lines. In [35], he

7]

used this method to warp 3D MR images of different pa-
tients’ brains in the same coordinate system, and even to
warp an atlas onto a given 3D MR image of a brain in
order to segment it. In [36], he used the same method to
construct automatically a morphometric atlas of the skull
crest lines from several acquisitions of different patients[s]
CT images, with applications in cranio-facial surgery.
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