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Abstract

In recent years, the field of active contour based image segmentation has seen the emer-
gence of two competing approaches. The first and oldest approach represents active contours in
an explicit (or parametric) manner corresponding to the Lagrangian formulation. The second
approach represents active contours in an implicit manner corresponding to the Fulerian frame-
work. After comparing these two approaches, we describe several new topological and physical
constraints applied to parametric active contours in order to combine the advantages of these
two contour representations. This paper proposes a framework for handling parametric active
contours shape and topology in a more intuitive manner. More precisely, the following three

algorithms are introduced:

1. Metric and Shape Control: a new internal force expression allows to regularize both
vertex spacing and vertex smoothness. The smoothness constraint is enforced without

producing any shrinkage.

2. Contour Resolution Control: the total number of contour vertices is periodically up-
dated in order to constrain the distance between vertices. This approach is more efficient

than performing any global reparameterization.

3. Topology Control: the connected components of a contour are automatically created or
merged based on the detection of edge intersections. Our algorithm can handle opened

and closed contours.



List of Symbols

C(u,t): two-dimensional contour of parameter u and evolving over time ¢,
finternal: internal force,

Sexternal: external force,

Nt: the number of contour vertices at time ¢,

p! or p;: position of vertex number ¢ at time ¢,
6t: time step,

~: damping factor,

a;: weight of internal force at vertex number 1,
Bi: weight of external force at vertex number 1,
t: tangent vector at point C(u,t),

t;: tangent vector at vertex number 4,

n: normal vector at point C(u,t),

n;: normal vector at vertex number ¢,

r;: half distance between the two neighbors of p;,
k: curvature at point C(u,t),

k;: local curvature at vertex number 1,

k}: reference curvature at vertex number 4,

¢;: angle at vertex number i,

F;: foot of p; on the segment [p;—1,Pit+1]s

F?: the reference foot position of p; on the segment [p;—1, Pit1],
p;: the reference position at vertex number g,

€;: the metric parameter at vertex number i,



o ¢: the reference metric parameter at vertex number ¢,

o L(r;, ¢i,€;): the elevation of vertex number ¢ above segment [p;—1, Pit+1],
® fiormal: the normal component of the internal force finternal,

® fiangent: the tangential component of the internal force finternal,

e g(u,t): metric function at point C(u,t),

o K f"'l: mean absolute curvature at the edge linking p; and p;41,

e AK; is the relative variation of absolute curvature at the edge linking p; and p;41,
® Spin and S;g.: the minimum and maximum edge length,

e FC(u) and F'S(u): the two cosine and sine Fresnel functions,

e L: the contour length,

e n: the number of contour vertices,

e d: the regular square grid size,

e r and ¢: the row and column indices,

e ¢(x,y): the level-set function,

e v(z,y): the propagation speed term,

e ((x,y): coefficient dependent on the image gradient norm,

e ¢: constant controlling the balloon force,



1 Introduction

1.1 Previous Work

Image segmentation based on active contours has achieved considerable success in the past few
years [McInerney and Terzopoulos, 1996]. Deformable models are often used for bridging the gap
between low-level computer vision (feature extraction) and high-level geometric representation. In
their seminal paper [Kass et al., 1988], Kass et al. choose to use a parametric contour represen-
tation with a semi-implicit integration scheme for discretizing the law of motion. Several authors
have proposed different representations [Menet et al., 1993] including the use of finite element mod-
els [Cohen et al., 1992], subdivision curves [Hug et al., 1999] and analytical models [Metaxas and Terzopoulos, 1991].
Implicit active contour representation was introduced by Malladi et al. [Malladi et al., 1995] follow-
ing the work of Osher and Sethian [Sethian, 1996]. This approach has been developed by several
other researchers including Caselles et al. [Caselles et al., 1997] who have introduced the concept
of “geodesic snakes”.

The opposition between parametric and implicit contour representation corresponds to the op-
position between Lagrangian and FEulerian frameworks. In Lagrangian frameworks, the deformation
of a body is described with a parameterization corresponding to the body rest position. In Eule-
rian frameworks, this deformation is described with a parameterization corresponding to the current
body position. Lagrangian frames are usually well-suited for solid mechanic computations whereas
Eulerian frames are well-suited for fluid mechanic computations.

In the following, we summarize the respective advantages and disadvantages of these two ap-

proaches. The comparison of the efficiency and the implementation of these two frameworks is

Parametric | Implicit
Contours | Contours
Efficiency * % % *
Ease of Implementation * % % ok
Topology Change No Yes
Open Contours Yes No
Interactivity Good Poor

Table 1: Properties of parametric and implicit active contour representations.



difficult because of the large variety of algorithms existing in the literature. However, in general,
implicit representations are regarded as being less efficient than parametric ones. This is because
the update of an implicit contour requires the update of at least a narrow band around each contour.
Furthermore, on parametric contours vertex sampling may not be constant or uniform whereas on
implicit contours the resolution is constrained by the resolution of a regular grid. Speed-up al-
gorithms of level-set methods were proposed either by constraining the contour evolution through
the Fast-Marching method [Sethian, 1996] or by using an asynchronous update of the narrow-band
[Paragios and Deriche, 1998].

If the implementation of basic parametric contours is usually straightforward, the implementation
of level-set algorithms requires a little more care due to the handling of the narrow band and the
discretization of the hyperbolic term in the differential equation.

The main advantage of the implicit representation is obviously its ability to change automatically
the contour topology during the deformation. This property makes it well-suited for reconstructing
contours of complex geometry for instance tree-like structures. Also, by merging different inter-
secting contours, it is possible to initialize a deformable contour with a set of growing seeds. For
parametric contours, it is in general not possible to achieve any automatic topological changes. How-
ever, several algorithms have been proposed to overcome this limitation [Leitner and Cinquin, 1991,
MclInerney and Terzopoulos, 1995, Lachaud and Montanvert, 1999]. These approaches are discussed
later in this paper.

Sometimes, it is necessary to handle open active contours for proper image segmentation as
shown with the work of Berger et al. [Berger and Mohr, 1990]. Open contours are even more widely
used when considering the more general problem of regularization and reconstruction from a cloud
of points. Because the implicit representation describes a contour as the zero-crossing of a scalar
field usually defined on a regular grid, only open contours having their extremities on the border of
the regular grid can be considered with this representation. Therefore, in practice, only a parametric
representation can properly describe the deformation of an active open contour.

Finally, we address the issue of user interactivity which, we believe, should be considered as being
of high importance. Indeed, because of their sensitivity to the initial position, in most applications,
active contours require some level of user interaction in order to locally or globally modify the

contour shape. In medical applications, this feature is regarded as essential.



1.2 Contributions

This paper includes three distinct contributions corresponding to the three different modeling levels

of parametric active contours:

1. Discretization. We propose two algorithms for controlling the relative spacing between the
vertices and the total number of vertices. On one hand, the vertex spacing is controlled through
the tangential component of the internal force applied at each vertex. On the other hand, the
total number of contour vertices is periodically updated in order to constrain the distance
between vertices. This approach based on a periodic update is more efficient than performing

any global reparameterization.

2. Shape. We introduce one intrinsic internal force expressions that does not depend on contour
parameterization. This force regularizes the contour curvature profile without producing any

contour shrinkage.

3. Topology. A new algorithm automatically creates or merges different connected components
of a contour based on the detection of edge intersections. Our algorithm can handle opened

and closed contours.

Furthermore, we propose a framework where the algorithms for controlling the discretization,
shape, and topology of active contours are completely independent of each other. This is in sharp
contrast with most previous approaches where at least two of these components were related. For
instance, in the level-set framework [Sethian, 1996], topology changes are naturally influenced by the
regular grid size which also determines the contour resolution. Also, in a typical implementation of
active contours [Kass et al., 1988], since tangential and normal components of the internal force are
not considered independently, shape and vertex spacing are not controlled separately which often
leads to undesirable coupled effects.

We believe that having algorithmic independence is important for two reasons. First, each mod-
eling component may be optimized separately and therefore this leads to computationally more
efficient algorithms. Second, a large variety of active contour behaviors may be obtained by com-
bining different algorithms for each modeling component.

This paper is organized as follows. In a next section, we address the issue of contour discretization
by introducing two algorithms: the former algorithm modifies the relative vertex spacing for instance

as a function of curvature whereas the latter algorithm dynamically controls the contour resolution



during its deformation. In section 3, we present new regularizing forces that are independent of the
contour parameterization and that create a smooth curvature profile along the contour. In section
4, we propose a new approach for performing automatic topology changes based on the detection of
edge intersections. This algorithm is independent of the contour resolution and can be applied on
opened or closed contours. In section 5 we show different results based on medical images. Finally,
in section 6, we provide a qualitative and quantitative comparison between our parametric active

contours and the level set method.

2 Discretization of Active Contours

2.1 Parametric Contour Deformation

In the remaining part of this paper, we consider the deformation over time of a two-dimensional
parametric contour C(u,t) € IR? where u designates the contour parameter (which in general differs
from the contour arc length) and ¢ designates the time. The parameter u belongs to the range
[0,1] with C(0,¢) = C(1,¢) if the contour is closed. We formulate the contour deformation with a

Newtonian law of motion:
pe__
oz~ ot

where finternal and fexternar correspond respectively to the internal and external forces. A contour

+ finternal + fexternal (1)

may include several connected components, each component being a closed or opened contour.
Temporal and spatial discretizations of C(u,t) are based on finite differences. Thus, the set of
Nt vertices {pt}, ¢ = 0...N* — 1 represents the contour C(u,t) at time ¢. The discretization of

equation (1) using centered and right differences for the acceleration and speed terms leads to:

pitt = pl+ (-2 -pi )+ (2)

26t(finternal)i + 26t(fexterna1 )i

where 6t is the time step. We simplify equation (2) by hiding the time step 6t inside two coefficients
a; and f; weighting the internal and external forces. Indeed, by removing the time step parameter,
the stability of this explicit scheme depends on the choice of the two distinct parameters «; and ;.

Therefore, the actual discrete law of motion is:

pit' = pi+(1-2y)(pl-pi ")+ (3)

(673 (finternal )i + /81' (fexternal)i-



In order to simplify the notation, in the remainder of this paper, we will write p; instead of p!

for the vertex position at time ¢.

2.2 Discrete Contour Geometry

We now describe the basic geometry of a discrete contour. At each vertex p;, we define a local
tangent vector t;, a normal vector n;, a metric parameter ¢;, and a curvature k;. We propose to
define the tangent vector at p;, as the direction of the line joining its two neighbors:

_ Pi+1 — Pi—1

t;
27“1'

where r; is the half distance between the two neighbors of p;:

||Pi+1 - Pi71||
B S—

r, =

The normal vector n; is defined as the vector directly orthogonal to t;: n; = t- with (z,y)* =
(—vy, z). The curvature k; is naturally defined as the curvature of the circle circumscribed at triangle
(Pi—1,Pi, Pit1)- If we write as ¢;, the oriented angle between segments [p;_1,p:] and [pi, Pi+1],
then the curvature is given by:

ki = sin(¢:) (@)

Ts

I:)i+1 P. P
i+1

Figure 1: The geometry of a discrete contour: definition of the tangent vector t;, normal vector n;, curvature

k;, angle ¢;, and foot F;.



Finally, the metric parameter ¢; measures the relative spacing of p; with respect to its two
neighboring vertices p;—1 and p;y1. If F; is the projection of p; on the line [p;_1, pit+1], then the

metric parameter is:

_Fi = pigall IFit1 — pi_1ll
€; = =1- .
2r; 2r;

In another words, €; and 1 — ¢; are the barycentric coordinates of F; with respect to p;—1 and p;y1:
F;=epic1 + (1 —€)Pita1-

Other definitions for the tangent and normal vectors could have been chosen. For instance, Gunn
et al. [Gunn and Nixon, 1997] and Lobregt et al. [Lobregt and Viergever, 1995] have chosen as the
tangent of the circumscribed circle at p;. However, our tangent and normal vector definitions have

the advantage of providing a simple local shape description:
P:i = €Pi1 + (1 — €)Piy1 + L(14, ¢i, )y, (5)

where L(r;, ¢;,€;) is the following function:

Ti

L(ri, i, €i) = tan &,

(1 + u\/l +4¢€;(1 — ¢;) tan? d))

with g = 11if |¢| < 7/2 and p = —1 if |§| > m/2. Equation (5) simply decomposes vertex position
p: into a tangential and normal component. The importance of this equation will be revealed in

Section (2.3).

2.3 Parameterization Control

For a continuous active contour C(u,t), the contour parameterization is characterized by the metric

function:
oc
g(u,t) = 5.

If g(u,t) = 1 then the parameter of C(u,t) coincides with the contour arc length. For a discrete con-
tour, the parameterization corresponds to the relative spacing between vertices and is characterized
by g; = ||pi — pi—1||- If all the spacings g} are equal for ¢ = 0...N — 1, then the current discrete
parameterization is proportional to the arc length.

For a continuous representation, parameterization is clearly independent of the contour shape.
For a discrete contour represented by finite differences, shape and parameterization are not com-

pletely independent as illustrated in figure (2). The effect of parameterization changes is especially

10



Figure 2: Two discrete circles with different parameterizations: this illustrates that a contour parameteri-

zation modifies its shape.

important at parts of high curvature. Therefore, parameterization is an important issue for handling
discrete parametric contours.

In this section we propose a simple algorithm to enforce two types of parameterization:

e uniform parameterization: the spacing between consecutive vertices is uniform. This prop-
erty may be of interest for further processing such as performing 3D reconstruction from a set

of planar contours [Boissonnat and Geiger, 1993].

¢ curvature-based parameterization: vertices are concentrated at parts of high curvature.

This parameterization tends to optimize the shape description for a given number of vertices.

To modify a contour parameterization, only the tangential component of the internal force should
be considered. Indeed, Kimia et al [Kimia et al., 1992] have proven that only the normal component
of the internal force applied on a continuous contour C(u,t) has an influence on the resulting contour
shape. This is why only the deformation component along the gradient direction is considered in
the level-set method.

Therefore, if t and n are the tangent and normal vectors at a point C(u,t), then the contour

evolution may be written as:

aa—i = finternal = a(u,t)t + b(u, t)n.

In [Kimia et al., 1992], Kimia et al. show that only the normal component of the internal force

b(u, t) modifies the contour shape whereas the metric function g(u,t) = ||| evolution is dependent
on a(u,t) and b(u, t):

dg  Oa(u,t)

a = T + b(u,t)kg (6)

11



On the contrary, with parametric contours, it is important to define a tangential component of
the internal force a(u,t)t that constrains the nature of the parameterization. We propose to apply
this principle on discrete parametric contours as well by decomposing the internal force finternal into

its normal and tangential components:

(finternal)i = (ftangent)i + (fnormal)i7
(ftangent)i -n; = 07

(fnormal)i . ti =0.

Several researchers [Gunn and Nixon, 1997, Lobregt and Viergever, 1995] have previously pro-
posed to decompose the internal and external forces along the normal and tangential direction.
However, to our knowledge, none of them have considered simultaneously updating the vertex spac-
ing with the tangential component and the contour shape with the normal component. Furthermore,
we propose a simple and coherent formulation of these forces based on the two geometric parameters:
€; and ¢;.

More precisely, since the tangent direction t; at a vertex is the line direction joining its two

neighbors, we use a simple expression for the tangential component:

(ftangent)i = (6: - fi)(Pi+1 - pi—l)
= 2’!‘,’(63 — Ei)ti
where €} is the reference metric parameter whose value depends on the type of parameterization to

enforce.

2.4 Uniform Vertex Spacing

Uniform vertex spacing corresponds to the normal parameterization of a contour where all contour
edges have the same length. Such parameterization is well-suited when no specific information is

available. To obtain evenly spaced vertices, we simply choose:

The tangential force has then a simple geometric interpretation: each vertex is moved in the tangent

direction towards the middle of its two neighbors:

(frangent)i = ((w - Pi) 'ti) t;. (7)

12



When the contour reaches its equilibrium, i.e., when (fiangent)i = 0, then p; is equidistant from
pPi—1 and p;4+1. Equation (7) can be seen as the discretization of the force:

o°¢ t)t—@

(ftangent)i = (w : = 6ut

Because the second derivative vector % is the first variation of the weak string [ ||%||2du internal

energy, equation (7) is somewhat related to the classical “snakes” approach proposed by Kass et al.
[Kass et al., 1988].

Also, using equation (6), we can analyze the evolution of parameterization caused by this tan-
gential force. By setting a(u,t) = %, we obtain the following differential equation of the metric
parameter g(u,t): ,

% = % + b(u, t)kg.
When the normal component b(u,t) of the force is small enough, this equation corresponds to the
diffusion of the metric parameter along the contour. The steady state is reached when the metric

parameter g is uniform:% = 0 which implies that the parameter w is proportional to the arc length

S.

2.5 Curvature Based Vertex Spacing

The uniform vertex spacing describes with the same spatial resolution all contour parts independently
of their curvature. To obtain an optimal description of shape, it is necessary that the vertices are
concentrated at parts of high curvature and that the flat parts are only described with few vertices.
To obtain such a parameterization, we present a method where edge length is inversely proportional

to curvature. If e; is the edge joining p; and p;+1, then we compute its edge curvature Kt

;T as the

mean absolute curvature of its two vertices:

[Ka| + [Kita|

K’?+1 —
¢ 2

Then at each vertex p;, we can compute the local relative variation of absolute curvature AK; €

[-1,1] as: '
KM KL,

KH 4 K

To enforce a curvature-based vertex spacing, we compute the reference metric parameter €} as:

1
€ =5 - 04xAK.. 8)

13



When vertex p; is surrounded by two edges having the same curvature then AK; = 0 and therefore

€ is set to % which implies that p; becomes equidistant from its two neighboring vertices. On the
contrary, when the absolute curvature of p;y1 is greater than the absolute curvature of p;,_; then

AK; becomes close to 1 and therefore € is close to 0.1 which implies that p; moves towards p;+1.

2.6 Results of Vertex Spacing Constraints

In this section, we demonstrate the influence of these two tangential internal energies on the param-
eterization of a contour. To illustrate the ability to decouple parameterization and shape properties,
we propose to apply an internal force that modifies the vertex spacing on a contour without changing
its shape. For this purpose, we cannot choose fnormal = 0 because it would result in shrinking the
contour towards a point by applying a mean curvature flow. Instead we define a curvature con-
servative regularizing force that moves p; in the normal direction in order to keep the same local
curvature:
fnormal = (L(ri, ¢i, €7) — L(ri, ¢i, €))ns. (9)
Equation (9) has a simple geometric interpretation if we note that the total internal force
finternal = frangent + fnormal is simply equal to p} — p; where pJ is the point having the same
curvature as p; but with a metric parameter €. From figure (3), we can see that fiangent corre-
sponds to the displacement between F} and F; whereas fiormal corresponds to the difference of

elevation between p and p;.

-1 i+1

Figure 3: The internal force associated with the curvature-conservative flow is proportional to p; — p;.

Given an open or closed contour we iteratively apply differential equation (3) with the internal

14



force expression described above. To ensure stability, it is sufficient to choose a; = . Figure (4)
shows an example of the vertex spacing constraint enforced on a closed contour consisting of 150
vertices. The initial vertex spacing is uneven as shown by the diagram on the right column that
displays the distribution of edge curvature as a function of edge length. When applying the uniform
vertex spacing tangential force (e = 0.5), after 1000 iterations, all contour edge lengths become
equal within less than 5 percent without greatly changing the contour shape, as seen in the second
row of figure (4). Similarly, with the same number of iterations, the contour evolution using the
curvature-based vertex spacing force tends to concentrate vertices at parts of high curvature. The
corresponding diagram clearly shows that the edge length is inversely proportional to edge curvature.
There is no bijective relationship between edge length and edge curvature because the local variation

of length ||p; — pi+1ll/||Pi — Pi—1]| is not only related to the metric parameter €; but also to the local

angle ¢;. In both cases, the computation time on a Pentium IT 400 Mhz was 112 seconds.

2.7 Contour Resolution Control

In addition to constraining the relative spacing between vertices, it is important to control the
total number of vertices. Indeed, the computational complexity of discrete parametric contours is
typically linear in the number of vertices. By removing unnecessary vertices, a significant speed-up
may be achieved. Conversely, the shape complexity of a discrete contour is directly linked to the
total number of vertices and their relative spacing.

In order to add or remove vertices, we do not use any global contour reparameterization as
performed in the level-set method [Sethian, 1996] because of its high computational cost. Instead, we
propose to add or remove locally a vertex if the edge length does not belong to a given distance range,
similarly to Ivins et al. [Ivins and Porrill, 1995] and Lobregt et al. [Lobregt and Viergever, 1995].
This approach is simpler to implement and it fits nicely with the vertex spacing algorithm presented
previously. Indeed, for instance when the uniform vertex spacing is chosen, the combination of the
two constraints converges towards a contour where all edges have the same length belonging to a
given range. When curvature-based vertex spacing is applied, we must use a rather large range of
edge lengths to prevent the creation of vertex accumulations.

Our resolution constraint algorithm proceeds as follows. Given two thresholds Spyin and Spmax
corresponding to the minimum and maximum edge length, we scan all existing contour edges. If the
current edge length is greater than Smax and 2 * sy, then a vertex is added. Otherwise if current

edge length is less than spi, and if the sum of the current and previous edge length is less than

15
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Figure 4: (first row) The initial contour with the edge curvature-length diagram;(second row) contour
after applying the uniform vertex spacing tangential force. All edges have nearly the same length;(third
row) contour after applying the curvature-based vertex spacing tangential force. The edge curvature is

inversely proportional to edge length; (fourth row) enlarged view of the previous contour.
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Smax, then the current vertex is removed. In general, this procedure is called every 5 deformation

iterations.

3 Shape Regularization

3.1 Previous Work

In the previous section, we have defined two different tangential force expressions in order control the
vertex spacing on active contours. These forces have little influence on the contour shape evolution
because they are only related to the contour parameterization. In this section, we deal with the
internal force normal component which determines the contour shape regularization. The most

widely used internal forces on active contours are:

e Mean Curvature Motion used in the level-set method [Malladi et al., 1995] where finternal =

kn corresponding to the minimization of the contour length [ |45 ||du,

¢ Weak String or Laplacian Smoothing where finternal = 227% corresponding to the mini-

mization of the elastic energy [ |[|%<||?du,
e Thin Rod Smoothing where finterna = —% corresponding to the minimization of the

bending energy [ ||%||2du7

¢ Balloon Force where finternal = pn corresponding to the minimization of the area enclosed

by the contour,

b Spring Force where finternal = Z] (l] - l?)(p] - Pz)

First, we note that Laplacian Smoothing and Mean Curvature Motion have an identical regular-

izing effect since their normal components are equal:
2
% = %t + ¢%kn.

In fact, Laplacian Smoothing can be seen as a combination of a uniform vertex spacing constraint
on the tangent direction with the mean curvature motion in the normal direction. Figure (5) com-
pares the equilibrium position of an open active contour fixed at its two extremities and submitted
to Mean curvature motion and Laplacian Smoothing.

Laplacian Smoothing and Mean Curvature Motion have the drawback of significantly shrinking

the contour. This shrinking effect introduces a bias in the contour deformation since image structures

17



Figure 5: (top) Initial contour fixed at its two end vertices (bottom left) Equilibrium position after applying
the Mean Curvature Motion: vertices are unevenly spaced; (bottom right) Equilibrium position after applying

the Laplacian Smoothing: vertices are evenly spaced;

located inside the contour are more likely to be segmented than structures located outside the
contour. Furthermore, the amount of shrinking often prevents active contours from entering inside
fine structures.

To prevent the shrinking effect, several approaches have been proposed. Cohen et al. [Cohen, 1991]
propose to move each vertex a constant distance along the normal direction to compensate for over-
smoothing. This balloon energy leads to reaction-diffusion differential equations in the level-set
method. Similarly, Taubin [Taubin, 1995] proposes to apply a linear filter to curves and surfaces
in order to reduce the shrinking effect of Gaussian smoothing. However, these two methods only
remove the shrinking effect for a given curvature scale. For instance, when smoothing a circle, this
circle would stay invariant only for one given circle radius which is related to a set of filtering pa-
rameters. Therefore, in these methods, the choice of these parameters are important but difficult to
estimate prior to the segmentation process.

A regularizing force with higher degrees of smoothness than the Laplacian Smoothing such as
the Thin Rod Smoothing causes significantly less shrinking since it is based on fourth derivatives
along the contour. However, the normal component of this force —(% -n)n is dependent on the
nature of the parameterization which is a serious limitation. Also, minimizing the curvature integral

fu k%(s)ds is not appropriate because it also creates a shrinking effect [Delingette, 1994].

18



3.2 Curvature Diffusion Regularization

We propose to use the following expression as the governing regularizing force:

L[
2s0

finternal = ( kds — k') n (10)

—s0

This force tends to smooth the contour curvature profile by replacing the current curvature k(s)

1

with the average curvature 5
S0

ff‘;o kds in the neighborhood of p(s). In this equation, so represents
half the neighborhood length around p(s) which is used to compute the average curvature. In fact,
sp corresponds to a scale factor for the regularization of the curvature profile and it is important to
note that so(s) may not be the same along the contour.

The contours for which fipternar = 0 verifies k(s) = ﬁ f(;o kds have a linear curvature profile.
Thus, all closed contours converge towards circles, independently of their radii. For open contours,
clothoid curves having a linear curvature profile £ = as + b are the optimal curves associated with
this force.

Equation (10) is related to two different regularizing forces that have been previously proposed.
First, for closed contours, when sq is equal to the contour length £, then the proposed internal force

Corresponds to the volume pTeserm'ng mean curvature ﬂO/LU:
finternal = (]7C - k) n (11>

where k is the mean contour curvature. Contours evolving according to this flow have been studied
by Gage [Gage, 1986] and Huisken [Huisken, 1987]. In particular, it has the interesting property of
preserving the area enclosed by the contour.

When the scale parameter so converges toward zero, fio kds — k converges towards %‘ There-

fore, the internal force of equation (10) is also related to the surface diffusion flow:

finternal = %1’1
The properties of contours following this flow have also been largely studied by several researchers
including Escher [Escher et al., 1998].

We propose to generalize these two regularizing force expressions by including a spatial parameter
so in equation (10). This additional parameter naturally corresponds to the notion of deformation
scale. The choice for sy depends on the maximum level of detail size required on the reconstructed
curve but also on the noise level of external datasets. On the other hand, parameters a; and 3;

are related to the relative confidence given to these datasets. Of course these two factors are often
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correlated since a low confidence value is often given to noisy data. However, the parameter sg
enables us to properly scale the internal force deformation. For instance, if a first contour has the
same shape than a second contour but with half the number of vertices, then they would have the
same evolution if they have the same scale parameter so. This would not have been the case if we
had use an internal force like finternal = %n, because its discrete value strongly depends on the
contour discretization. Finally, a major advantage of equation (10) over the surface diffusion flow of
equation (3.2) is that it does not involve any fourth-derivatives of the position. It only requires the
estimate of the contour curvature for which equation (4) provides a stable computational scheme.
For the discretisation of equation (10), we do not use straightforward finite differences, since this
would lead to complex and potentially unstable schemes. Instead, we propose a geometry-based

implementation that is similar to equation (9):

fnormal = (L(Th ¢:76:) - L(Tia ¢i7€i))ni (12)

where ¢7 is the angle at a point p} for which 227'; = 0. The geometric interpretation of equation (12)

is also straightforward, since the internal force finternal = frangent + fnormal corresponds to the

displacement p¥ — p;. The angle ¢f is simply computed from equation (4):

Figure 6: The internal force associated with the curvature continuity constraint which is proportional to

P; — Pi-

¢r = arcsin(k} * ;)

where k7 is the average curvature around p}. If ||k} * r;|| > 1 then we consider that ¢ = 0.
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If we only take into account the two closest neighbors, then the average curvature k} can be

written as:
B = IPiPi—1llki+1 + |PiPst1|lki—1
lPiPit1|l + [lPiPi—1]|

1
Furthermore, we can compute the local average curvature over a greater neighborhood which results

in increased smoothness and faster convergence. If o; > 0 is the topological scale parameter, and

l; i+; is the distance between p,; and p,;; then we compute k; as :

a;
pr = =t ki + liiyikio
T o3
Dim b+ lisit

with

J
lijivs = Z [Pi+k—1Pitll
k=1

This scheme generalizes the intrinsic polynomial stabilizers proposed in [Delingette, 1994] that
required a uniform contour parameterization. Because of this regularizing force is geometrically
intrinsic, we can combine it with a curvature-based vertex spacing tangential force, thus leading to
optimized computations. Finally, the stability analysis of the explicit integration scheme is linked to
the choice of a;. We have found experimentally, without yet having a formal proof, that we obtain
a stable iterative scheme if we choose a; < 0.5. We believe that this simple and remarkable result is
related to the geometric nature of the internal force finternal = P} — Pi-

Parametric contours are well-suited for implementing this curvature diffusive force. Indeed,
Picinbonno [Picinbono, 1997] reported an approximative implementation of this force on level-sets.
Instead of estimating the average curvature along the contour, he resorted to estimating the average
curvature in a two-dimensional neighborhood of each pixel. To obtain a better estimate of the
average curvature along each level-set, it would be necessary to extract geometrically all level-sets.
Similarly, Chopp and Sethian [Chopp and Sethian, 1999] have reported difficulties in implementing
the surface diffusion flow %¢ = %n.

In figure (7), we show an example of contour evolution under the influence of this curvature
diffusion force. We use an open contour consisting of 50 vertices and initialized as a straight line.
The boundary conditions consist of the curvatures at the two contour extremities : kg = —7 and
kn—1 = m. Finally, we use the maximal value of ¢; in order to speed-up the convergence. We display
in figure (7), the contour after 100, 200, and 400 iterations. It took 2.20 seconds on a Pentium

IT 400 Mhz to iterate 400 times. The resulting curve is a simple clothoid curve having equation

C(u) ={FC(u), FS(u)} where FC(u) and F'S(u) are the Fresnel cosine and sine functions. In order

21



Curvature
.

2084

-08 -06 =0+ 0.2 0.4 0.6 0.8 .

0000 + . + + .
0333 0,667 1000 1333 1.666
-02 Are Length

-1.047

04 -2094

Figure 7: (left) Curve evolution from a line to a clothoid curve fixed at its two extremities; (right)

Curvature profile of the deformed contour.

to estimate the accuracy of the resulting contour, we have fixed the two extremities at positions
{FC(-1),FS(-1)} and {FC(1),FS(1)}. We have verified that the relative position error of each
vertex was less than 1% after 400 iterations. The curvature profile of the resulting curve as intrinsic
equation: k = ws.

Figure (8) shows the evolution of a closed curved under the flow 2 = <ﬁ J2 kds — k) n.
The initial contour consists of the contour displayed in figure (4) with a curvature-based vertex
spacing. We chose a deformation scale parameter o; = 5. The final circle is obtained after 7500
iterations. During the deformation, we fix all metric parameters. Therefore, the circle resulting
from this contour evolution is also non-uniformly discretized. This example demonstrates that this
regularizing force is clearly independent on the contour parameterization.

Finally, in figure (9), we show the importance of the shrinking effect on the reconstruction of
a curvy boundary. The rightmost image corresponds to the action of Laplacian smoothing that
tries to minimizes the total curve length. On the other hand, when applying the curvature diffusion
regularization of equation (10) with the same parameters «;, the deformable contour is able to

capture most of the curvy shape while enforcing a higher order of geometric continuity.

4 Topology Constraints

Automatic topology changes of parametric contours have been previously proposed by Leitner and

Cinquin [Leitner and Cinquin, 1991], Mc Inerney and Terzopoulos [McInerney and Terzopoulos, 1995],
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Figure 8: Curve evolution under the curvature diffusive flow starting from figure (4) towards a circle;

(bottom right) Non-uniformly discretized circle resulting from the curve evolution.

Figure 9: Segmentation of a curvy shape using (a) Laplacian smoothing and (b) curvature diffusive internal

force expressions.
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Figure 10: Topological operator applied to two edges of the same connected component (left) or two different

connected components (right).

and Lachaud and Montanvert [Lachaud and Montanvert, 1999]. Using Mc Inerney et al.approach,
all topological changes occur by computing the contour intersections with a simplicial decomposi-
tion of space. The contour is reparameterized at each iteration, the intersections with the simplicial
domain being used as the new vertices. Recently Lachaud et al. [Lachaud and Montanvert, 1999] in-
troduced topogically adaptive deformable surfaces where self-intersections are detected based on the
distance between vertices. Our algorithm is also based on a regular lattice for detecting all contour
intersections. However, the regular grid is not used for changing the contour parameterization and
furthermore topology changes result from the application of topological operators. Therefore unlike
previous approaches, we propose to completely decouple the physical behavior of active contours
(contour resolution and geometric regularity) with their topological behavior in order to provide a
very flexible scheme. Finally, our framework applies to closed or opened contours.

In this section, we propose an algorithm for changing the topology of a contour. A contour
topology is defined by the number of its connected components and whether each of its components
is closed or opened. Therefore, the topology constraint consists in changing the number of connected
components or in closing or opening a given component. Our approach consists in using two basic
topological operators. The first operator illustrated in figure (10) consists in merging two contour
edges. Depending whether the edges belong to the same connected component or not, this operator
creates or remove a connected component. The second topological operator consists in closing or
opening a connected component.

Our approach for modifying a contour topology can be decomposed into three steps:
1. Building of a grid-based data structure.

2. Detection of intersecting edges.
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3. Application of topological operators based on these intersecting edges.

The first step creates a data structure where the collision detection between contour connected
components is computationally efficient. The second determines the geometric intersection between
edges and the last step actually performs all topological modifications. Figure (11) details the

topology change algorithm steps explained in the following sections.

4.1 Data Structure for the Detection of Contour Intersections

Finding pairs of intersecting edges has an a priori complexity of O(n?) where n is the number of
vertices (or edges). Our algorithm is based on a regular grid of size d and has a complexity linear
with the ratio £/d where L is the length of the contour. Therefore, unlike the approach proposed
in [McInerney and Terzopoulos, 1995], our approach is not region-based (inside or outside regions)
but only uses the polygonal description of the contour.

The two dimensional Euclidean space with a reference frame (0, x,y) is decomposed into a regular
square grid whose size d is user-defined. The influence of the grid size d is discussed in section (5.1).
In this regular lattice, we define a point of row and column indices r and ¢ as the point of Cartesian
coordinates 0griq + 7X + cy where 0giq is the grid origin point. This point is randomly determined
each time topology constraints are activated in order to make the algorithm independent of the
origin choice. Furthermore, we define a square cell of index (r,c¢) as the square determined by the
four points of indices (r,¢), (r +1,¢), (r+1,c+1) and (r,c+1). In each cell of the regular grid, we
store the list of grid edges corresponding to the decomposition of a contour on the regular lattice.

In order to build the sampled contour, we scan all edges of each connected component. For each
edge, we test if it intersects any row or columns of the regular lattice. Since the row and column
directions correspond to the directions x and y of the coordinate frame, these intersection tests are
efficiently computed. When a vertex position coincides with a grid point (which is very unlikely)
, then one cell is consistently chosen. Each time an intersection with the row or column direction
is found, a grid verter is created and the intersecting contour edge is stored in the grid vertex.
Furthermore, a grid verter is stored in a grid edge structure. A grid edge is either a pair of grid
vertices or a grid verter associated with an end vertex (when the connected component is an opened

line). Finally, the grid edge is appended to the list of grid edges inside the corresponding grid cell.
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Figure 11: Topology change algorithm steps.
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Figure 12: (Left) the original contour with the regular grid (Right) the contour decomposed on the regular
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Figure 13: (a) Definition of a grid vertex, a grid edge, and grid cell; (b) Contour edge associated with a

grid edge.
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4.2 Finding Intersecting Grid Edges

In order to optimize memory space, we store all non-empty grid cells in a hash table, hashed by its
row and column indices. The number of grid cells is proportional to the length £ of the contour.
In order to detect possible contour intersections, each entry to the hash table is scanned. For each
cell containing n grid edges with n > 1, we test the intersection between all pairs of grid edges (see
figure (13) (a)). Since each grid edge is geometrically represented by a line segment, this intersection
test only requires the evaluation of two dot products.

Once a pair of grid edges has been found to intersect, a pair of contour edges must be associated
for the application of topological operators (see section (4.3)). Because a contour edge is stored in
each grid vertex, one contour edge can be associated with each grid edge. Thus, we associate with
each grid edge, the middle of these two contour edges (in terms of topological distance) as shown in
figure (13) (b).

Our contour edge intersection algorithm has the following properties:

1. If one pair of grid edges intersects then there is at least one pair of contour edges that intersects

inside this grid cell.

2. If a pair of contour edges intersects and if the corresponding intersecting area is greater than

d * d then there is a corresponding pair of intersecting grid edges.

In another words, our method does not detect all intersections but is guaranteed to detect all
intersections having an area greater than d * d. In practice, since the grid origin 0giq is randomly
determined each time the topology constraint is enforced, we found that our algorithm detected all

intersections that are relevant for performing topology changes.

4.3 Applying Topological Operators

All pairs of intersecting contour edges are stored inside a hash table for efficient retrieval. Since
in general two connected components intersect each other at two edges, given a pair of intersecting
contour edges, we search for the closest pair of intersecting contour edges based on topological
distance. If such a pair is found, it is processed right after the current pair.

The processing of a pair of intersecting contour edges consists in the following tasks. If both
edges belong to the same connected component, then the smallest number of edges between the two

edges is counted. If the two edges are too close to each other, then the two edges are not merged in
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order to avoid creating connected components that are too small. This topological distance threshold
must be greater or equal to three (for the creation of a triangle) and is equal to 8 in the examples
shown in this paper. In all other cases, the two edges are merged with the topological operator
presented in figure (10). Finally, we update the list of intersecting edge pairs by removing from the

hash table all edge pairs involving any of the two contour edges that have been merged.

4.4 Preventing the Fusion of Connected Components

The algorithm presented in the previous sections merges intersecting edges regardless of the nature of
the intersection. If it corresponds to a self-intersection, then a new connected component is created,
otherwise two connected components are merged.

With our framework, it is possible to prevent the merging of two distinct connected components
while allowing the removal of self-intersections. To do so, given a pair of intersecting contour
edges belonging to distinct connected components, we search for the closest pair of intersecting
contour edges as described in the previous section. If such pair is found, instead of performing
two edge merging operations, we simply align all the vertices that are located between intersecting
edges belonging to the same connected component (see figure (14), top). Thus, each component
pushes back all neighboring components. In figure (14), bottom, we show an example of image
segmentation where this repulsive behavior between components is very useful in segmenting the
two heart ventricles.

Therefore, our scheme not only allows us to change contour topologies but it also provides
a simple mechanism for controlling these topology changes. This is not the case of the typical
implementation of the level-set method where we cannot prevent the fusion of two distinct connected
components. Several researchers including Zhao et al. [Zhao et al., 1996] have proposed multiple
interface extensions of the level-set method. However, it currently seems to be limited to a limited

number of interfaces with constant speeds.

4.5 Image Borders

Image borders are natural boundary conditions for the contour deformation process. When a contour
reaches an image border, image gradient information becomes meaningless. Furthermore, if a contour
is submitted to a balloon force, it would indefinitely inflate outside the image borders. Therefore,
since we deal with close as well as open curves, we propose to break all contours reaching the

borders of an image. Figure (15) shows the result of a carotid branching segmentation from an
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Figure 14: (a) Two intersecting connected components; (b) after merging the two pairs of intersecting edges;
(c) after aligning vertices along the intersecting edges.(d) and (e) Example of 2 active contours reconstructing
the right and left atrium in an MR image without any topology changes (c) and with a repulsive behavior

between each components.
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Figure 15: Segmentation of a carotid branching from an ultrasound image without (left) and with

(right) automatic topology changes of the contour on the image borders.

ultrasound image using a deformable contour initialized as an ellipsoid. In the leftmost image, no
border constraint has been used and the contour flows outside the image borders. On the rightmost
image, the contour has been automatically cut at the contact of the image borders.

Figure (16) details the contour evolution from its initial position (upper left) to its carotid
branching shape. Each contour vertex is displayed as a small square. The contour is regularized
by a curvature diffusion constraint. The contour resolution constraint is used every 10 iterations to
dynamically add vertices when the contour length increases. Image border constraints are computed
every 10 iterations as well to detect all contour intersections with the image border.

Figure (16), lower right, shows the evolution of the number of contour vertices over time.

5 Results

5.1 Automatic Topology Adaptation

We evaluate the performance of our automatic topology adaptation algorithm on the example in
figure (17). The contour, consisting of 50 vertices, is deformed from a circular shape towards two
circular connected components. The computation time for building the data structure described in
section (4.1) is displayed in figure (18) as a function of the grid size d. It varies from 175 ms to
1 ms when the grid size increases from 0.17 to 10 image pixels on an Alphastation 500 Mhz. The
computation time for applying the topological operators can be neglected in general. When the grid

size is equal to the mean edge distance (around 2 pixels), the computation time needed to detect

31



1500

1000

Number of vertices

00 %0 %00 750 1000
Iteration

Figure 16: Evolution of a closed curve towards an open carotid branching in an ultrasound image.
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Figure 17: Segmentation of a ring shape by an active contour with a balloon force.

edge intersections becomes almost equal to the computation time needed to deform the contour
during one iteration (4.8 ms).

When the grid size increases, the contour sampling on the regular grid becomes sparse and
therefore some contour intersections may not be detected. However, we have verified that topological
changes still occur if we choose a grid size corresponding to 20 image pixels with contour intersections
checked every 20 iterations. In practice, we choose a conservative option with a grid size equal to
the average edge length and with a frequency for topology changes of 5 iterations which implies an

approximate additional computation time of 20 percent.

5.2 Evolution of Closed and Opened Contours

In figure (19), we show the evolution under Laplacian Smoothing (equivalent to curvature motion
as described in section (3)) of the Ying-Yang symbol represented with three circles and one central
opened curve. We apply topology change and resolution constraints on these contours at each

iteration in order to ensure a smooth contour evolution.
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Figure 18: Plot of the computation time for testing contour intersections as a function of the grid

size.

Figure 19: Evolution of three closed contours and one opened contour under Laplacian smoothing.

34



5.3 Medical Image Example

This last example illustrates the segmentation of an aortic arch angiography. Figure (20) shows the
initial contour (upper left) and its evolution towards the aorta and the main vessels. The image seg-
mentation is made difficult by the contrast variations. The contour is attracted towards the highest
gradient value in the vicinity of each vertex. External forces are computed as a function of the vertex
distance to a gradient point to avoid oscillations around image edges. The contour is regularized
by a curvature diffusion constraint. Internal forces are responsible for the contour parameterization
(tangential displacement) and the external forces are back projected on the normal direction. The
contour resolution constraint is applied every 10 iterations which makes the resampling overhead
very low. Topology constraints are computed every 5 iterations on a 4 pixel grid size to fuse the

self-intersecting contour parts. Intersections with image borders are computed every 10 iterations.

6 Comparison with the Level-set Method

The level-set method has been introduced in the computer vision community by Malladi et al.
[Malladi et al., 1995]. It is based on an implicit representation of contours that allows topology
changes during the contours evolution. However, the major drawbacks of level-set methods are
related to their difficult user interaction and their computational cost, although some speed-up
algorithms based on narrow bands have been proposed.

The key idea of the implicit representation of contours is to embed the two-dimensional contour
in a three-dimensional surface. A contour is defined as the level-set of that surface corresponding to

2=0. Let ¥ : IR? — IR denote the level-set function. The contour C is defined by:
C={peR*¥(p)=0}.

Since it corresponds to the zero-crossing over a scalar field defined on a regular grid, C represents
a set of closed curves and opened curves having their extremities on the regular grid boundary.
However, in practise, authors have only considered the case of closed contours. As the surface ¥
continuously evolves over time, C is deformed and may encounter topology changes. The evolution

equation is governed by a Hamilton-Jacobi equation:

ov
— I = 1
- +vIvE| =0, (13)

where v is a propagation speed term. Given that v is regular enough, ¥ remains a function as it

evolves.

35



Figure 20: Evolution of a closed curve towards the aortic arch and the branching vessels.
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A formal comparison between both the parametric and level-set approaches has been estab-
lished recently by Aubert et al. [Aubert and Blanc-Fraud, 1999] in the case of geodesic snakes. In
this section, we propose a practical comparison between both approaches including implementation

issues.

6.1 Level-set Implementation

We describe here the level-set implementation used to compare our discrete contours with the level-
set method. The level-set function ¥ is discretized on a rectangular grid whose resolution corresponds
to the image pixel size.

The propagation speed term v is designed to attract C towards object boundaries extracted from

the image using a gradient operator with an additional regularizing term. Thus

v(p) = B(p) (k(p) + ¢) (14)
where:
2’ gu? _ 90U p¥ 2°% | W gu?
o k(p) = &% 9z 9y 028y 99" 97 jenotes the contour curvature at point p. This is a

3

o2 pw2)2
dy Oz

regularizing term corresponding to the mean curvature flow: each vertex is moved towards its

center of curvature.

e cis a constant resulting in a uniform contour evolution inwards or outwards depending on its

sign. It is equivalent to the application of a balloon force [Cohen, 1991].

e ((p) € [0,1] is a multiplicative coefficient dependent on the image gradient norm at point p.
A truncated decreasing function illustrated in figure (21) is used, where I represents the image
intensity. When C moves across pixels of high gradient, this term slows down the level-set
propagation. The parameter s is determined as a threshold on the minimum gradient norm

(i.e., the minimal image boundary strength) required to stop a level-set evolution.

Equation (13) is discretized in space using finite differences in time using an explicit scheme. It
reduces to

&
T = W, — 6tw|| Vi T

where ¥U,; and v;; denote the values of ¥ and v at pixel (i,7), 6t is the discrete time step, and V;;

is a finite difference operator.
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Figure 21: Multiplicative coefficient 3(p) for the speed term.

In order to speed-up the level-set algorithm, we use a narrow band method [Malladi et al., 1995]
which requires periodical reinitialization of the level-set contour.

In order to compare active contours to level-sets, we compute external forces similar to equa-
tion (14) at discrete contour vertices. First, we use mean curvature motion described in section (3)
as the governing internal force. Then, we have implemented for the external force, a balloon force
(a constant force applied along the contour normal either inwards or outwards) weighted by the
coefficient 8 proposed in figure (21). Therefore, we were able to use the same gradient threshold in

both approaches.

6.2 Torus Example

We first propose to compare both approaches on the synthetic image shown in figure (22), on the
left. This image has two distinct connected components. It was obtained by intersecting a 3D torus
with a plane as illustrated in center image. Due to partial volume effect, the gradient magnitude
image shown on the right is not completely dark near the center region.

A discrete contour is initialized around the two components as illustrated in figure (23), left.
In this example, the contour is regularized with a curvature continuity internal force. A medium
grid size (8 pixels resolution) is used and topology constraints are computed every 10 iterations.
Throughout the deformation process, vertices are added and removed to have similar edge length
along the contour.

The corresponding initial level-set is shown in figure (23), center. The irregular square corners
are due to a rounding approximation of the level-set initialization procedure but they are quickly
regularized and have no effect on the deformation process. A 7 pixel wide narrow band appeared

to optimize the convergence time. A 0.3 time step is used. It is the maximal value below which the
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Figure 22: Image with two connected components (left) obtained by intersecting a torus with a

plane (center) and its gradient norm magnitude (right).

evolving curve is stable.

Figure 23: Initial discrete contour (left), initial level-set (center) and level-set narrow band (right).

Figure (24) shows the convergence of the discrete contour (upper line) and the level-set (bottom
line). Due to different regularizing constraints, final shapes are slightly different in both cases. The
discrete contour converges in 0.42 seconds opposed to 3.30 seconds for the level-set, that is a 7.85
acceleration factor in favor of the discrete contour. These time measures do not include any display
procedures since it would greatly penalize the level-set method. The difference of computational
time is due to the small vertex number used for the discrete contour (varying between 36 and 48
vertices) compared to the much greater number of sites (from 1709 up to 3710) updated in the

level-set narrow band.

6.3 Parameter Comparison

As much as possible, the same parameter values were used to compare discrete contours and level-

sets. The time step parameter is specific to level-sets and in our experiments it appeared to be
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Figure 24: Discrete contour (upper row) and level-set (bottom row) deformations.

difficult to optimize. Only observing the level-set behavior for different time steps allowed us to set
an optimal value. Also, few parameters needed to be set for the discrete contour topology algorithm.
However, the grid size and the topology algorithm frequency are much more intuitive parameters to
set since they are clearly related to pixel size and the number of iterations.

The gradient threshold s is common to both discrete contour and level-set methods. In this
experiment we have set s to a value of 140. This value is high enough to “break” the contour through
the gradient barrier between the two connected components but it is still low enough to prevent it
from entering each component. Using a slightly lower value slows downs the level set evolution and
stops it on the center potential barrier (see figure (25), left). On the contrary, with a slightly higher
value, the level-set contour crosses the barrier and converges towards the components inner regions
(figure (25), right). In practice, we found that the level-set evolution was particularly sensitive to s
variations. On the other hand, due to the force computation method of the discrete contour implying
a wider range scanning and the different regularizing constraint, the discrete contour is much less

sensitive to s variations.

6.4 Synthetic Data

This experiments shows the ability of the discrete contour topology algorithm to follow difficult
topology changes. We use a synthetic fractal image showing a number of small connected compo-
nents. Figure (26) shows the discrete contour convergence in the image while figure (27) shows the

level set convergence.



(right) s parameter value.

Figure 25: Level-set convergence with a too weak (left) or a too strong
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Figure 26: Discrete contour convergence in a fractal image.
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Figure 27: Level-set convergence in a fractal image.

In both cases, the initial contour is a square located at the image border. It evolves under a
deflation force that stops on strong image boundaries. For the discrete contour, a small grid size is
used due to the small image structure size (4 pixels grid size and 5 iterations algorithm frequency).
A weak regularizing constraint allows the contour to segment the square corners. The contour is
checked every 10 iterations to add the necessary vertices.

A 0.3 time step is used for the level-set. This high value leads to a rather unstable behavior
as can be seen in figure (27). As the level-set contours gradually fills-in the whole image, we have
verified that the convergence time is not minimized by using any narrow bands.

Figure (28) shows the computational time function as a function of the number of iterations until
the contour and the level-set converge. The level-set convergence time is linear while the discrete
contour slows down as vertices are added. However, the discrete contour converges almost four times

faster than the level-set method.

6.5 Medical Images

Finally, we show a medical image segmentation example using both approaches. Figure (29) shows
a discrete contour deformation in a vertebra CT-scan image. The contour is resampled and the
topology algorithm is applied every 5 iterations. It converges in 3.2 seconds. The corresponding seg-

mentation using a level-set is shown in figure (30). A 0.5 time step value and a strong inflating force
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Figure 28: Level-set (full line) and discrete contour (dashed line) convergence time.

are used to speed-up the convergence. The deformation process is unstable but almost stabilizes.
The instabilities cause a double segmentation of the inner and the outer contour of the vertebra.
The image border is also segmented due to level-set update method border effects. The convergence

time for the level-set is 4.2 seconds.

7 Conclusion

We have introduced three contributions related to contour discretization, regularization, and topol-
ogy changes. We believe that these three algorithms greatly improve the generality of parametric
active contours while preserving their computational efficiency. Furthermore, these algorithms are
controlled by simple parameters that are easily understood by the user.

For the internal force, two parameters should be set. The first parameter «; must be chosen
between 0 and 1 is used to set the amount of smoothing. Because the resulting shape only depends
on the ratio a; /f3;, we often set a; to 1.0 and chose to modify j; instead. The second parameter is the
deformation scale parameter o; that is an integer that belongs to the range [1,..., N/2]. In general,
we choose a value of 1. When the data is sparse or when the contour resolution is greater than the
finest level of detail required, we increase this value. Setting the external force parameter j3; typically
depends on the confidence in the dataset. For resolution and topology constraint algorithms, distance

parameters must be provided as well as the frequency at which they apply. Given an image, all these

43



Figure 29: Discrete contour convergence in a vertebra CT-scan image.
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Figure 30: Level-set convergence in a vertebra CT-scan image.
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parameters can be intialized automatically to meaningful values providing good results in most cases.

Finally, we have compared the efficiency of this approach with the level set method. These exper-
iments seem to conclude that our approach is at least twice as fast as the implicit implementation.
Above all, we believe that the most important advantage of parametric active contours is their user

interactivity.
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