Skip to Main content Skip to Navigation
New interface
Conference papers

Diffeomorphism Invariant Riemannian Framework for Ensemble Average Propagator Computing

Jian Cheng 1, 2, * Aurobrata Ghosh 2 Tianzi Jiang 1 Rachid Deriche 2 
* Corresponding author
2 ATHENA - Computational Imaging of the Central Nervous System
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Background: In Diffusion Tensor Imaging (DTI), Riemannian framework based on Information Geometry theory has been proposed for processing tensors on estimation, interpolation, smoothing, regularization, segmentation, statistical test and so on. Recently Riemannian framework has been generalized to Orientation Distribution Function (ODF) and it is applicable to any Probability Density Function (PDF) under orthonormal basis representation. Spherical Polar Fourier Imaging (SPFI) was proposed for ODF and Ensemble Average Propagator (EAP) estimation from arbitrary sampled signals without any assumption. Purpose: Tensors only can represent Gaussian EAP and ODF is the radial integration of EAP, while EAP has full information for diffusion process. To our knowledge, so far there is no work on how to process EAP data. In this paper, we present a Riemannian framework as a mathematical tool for such task. Method: We propose a state-of-the-art Riemannian framework for EAPs by representing the square root of EAP, called wavefunction based on quantum mechanics, with the Fourier dual Spherical Polar Fourier (dSPF) basis. In this framework, the exponential map, logarithmic map and geodesic have closed forms, and weighted Riemannian mean and median uniquely exist. We analyze theoretically the similarities and differences between Riemannian frameworks for EAPs and for ODFs and tensors. The Riemannian metric for EAPs is diffeomorphism invariant, which is the natural extension of the affine-invariant metric for tensors. We propose Log-Euclidean framework to fast process EAPs, and Geodesic Anisotropy (GA) to measure the anisotropy of EAPs. With this framework, many important data processing operations, such as interpolation, smoothing, atlas estimation, Principal Geodesic Analysis (PGA), can be performed on EAP data. Results and Conclusions: The proposed Riemannian framework was validated in synthetic data for interpolation, smoothing, PGA and in real data for GA and atlas estimation. Riemannian median is much robust for atlas estimation.
Document type :
Conference papers
Complete list of metadata

Cited literature [14 references]  Display  Hide  Download
Contributor : Jian Cheng Connect in order to contact the contributor
Submitted on : Friday, August 19, 2011 - 8:52:41 AM
Last modification on : Saturday, June 25, 2022 - 11:06:32 PM
Long-term archiving on: : Monday, November 12, 2012 - 3:35:48 PM


Files produced by the author(s)


  • HAL Id : inria-00615431, version 1
  • PRODINRA : 246169



Jian Cheng, Aurobrata Ghosh, Tianzi Jiang, Rachid Deriche. Diffeomorphism Invariant Riemannian Framework for Ensemble Average Propagator Computing. MICCAI - 2011 - 14th International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2011, Toronto, Canada. ⟨inria-00615431⟩



Record views


Files downloads