. Cgal, Computational Geometry Algorithms Library

F. Alauzet, Size gradation control of anisotropic meshes. Finite Elements in Analysis and Design, pp.181-202, 2010.

F. Alauzet, A. Loseille, A. Dervieux, and P. Frey, Multi-Dimensional Continuous Metric for Mesh Adaptation, Proc. 15th Int. Meshing Roundtable, pp.191-214, 2006.
DOI : 10.1007/978-3-540-34958-7_12

P. Alliez, D. Cohen-steiner, M. Desbrun, P. Schröder, and M. Yvinec, Variational tetrahedral meshing, Proceedings SIGGRAPH, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00226418

I. Babuska and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM Journal on Numerical Analysis, pp.736-754, 1978.

J. Boissonnat, C. Wormser, and M. Yvinec, Anisotropic diagrams: Labelle Shewchuk approach revisited, Theoretical Computer Science, vol.408, issue.2-3, pp.163-173, 2008.
DOI : 10.1016/j.tcs.2008.08.006

URL : https://hal.archives-ouvertes.fr/inria-00070277

J. Boissonnat and S. Oudot, Provably good sampling and meshing of surfaces, Graphical Models, vol.67, issue.5, pp.405-451, 2005.
DOI : 10.1016/j.gmod.2005.01.004

URL : https://hal.archives-ouvertes.fr/hal-00488829

J. Boissonnat, K. Shi, J. Tournois, and M. Yvinec, Anisotropic Delaunay Meshes of Surfaces, ACM Transactions on Graphics, vol.34, issue.2
DOI : 10.1145/2721895

URL : https://hal.archives-ouvertes.fr/hal-00907088

J. Boissonnat, C. Wormser, and M. Yvinec, Locally uniform anisotropic meshing, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, pp.270-277, 2008.
DOI : 10.1145/1377676.1377724

URL : https://hal.archives-ouvertes.fr/inria-00275430

H. Borouchaki, P. L. George, F. Hecht, P. Laug, and E. Saltel, Delaunay mesh generation governed by metric specifications. Part I. Algorithms, Finite Elements in Analysis and Design, vol.25, issue.1-2, pp.61-83, 1997.
DOI : 10.1016/S0168-874X(96)00057-1

F. Bossen and P. Heckbert, A pliant method for anisotropic mesh generation, 5th International Meshing Roundtable, 1996.

L. Chen, P. Sun, and J. Xu, Optimal anisotropic meshes for minimizing interpolation errors in $L^p$-norm, Mathematics of Computation, vol.76, issue.257, p.76179, 2007.
DOI : 10.1090/S0025-5718-06-01896-5

S. W. Cheng, T. K. Dey, and J. A. Levine, A Practical Delaunay Meshing Algorithm for a Large Class of Domains*, Proceedings of the 16th International Meshing Roundtable, pp.477-494, 2008.
DOI : 10.1007/978-3-540-75103-8_27

S. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S. Teng, Silver exudation, Journal of the ACM, vol.47, issue.5, pp.883-904, 2000.
DOI : 10.1145/355483.355487

S. Cheng, T. K. Dey, E. A. Ramos, and R. Wenger, Anisotropic surface meshing, Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm , SODA '06, pp.202-211, 2006.
DOI : 10.1145/1109557.1109581

S. W. Cheng, T. K. Dey, and J. Levine, Theory of a practical Delaunay meshing algorithm for a large class of domains. Algorithms, Architecture and Information Systems Security, pp.17-41, 2008.

L. Paul and C. , Guaranteed-quality mesh generation for curved surfaces, Proceedings of the ninth annual symposium on Computational geometry, pp.274-280, 1993.

E. F. Azevedo, Optimal Triangular Mesh Generation by Coordinate Transformation, SIAM Journal on Scientific and Statistical Computing, vol.12, issue.4, p.755, 1991.
DOI : 10.1137/0912040

K. Tamal and . Dey, Curve and surface reconstruction, 2007.

C. Dobrzynski and P. Frey, Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations, Proceedings of the 17th International Meshing Roundtable, pp.177-194, 2008.
DOI : 10.1007/978-3-540-87921-3_11

URL : https://hal.archives-ouvertes.fr/hal-00353786

Q. Du and D. Wang, Anisotropic Centroidal Voronoi Tessellations and Their Applications, SIAM Journal on Scientific Computing, vol.26, issue.3, pp.737-761, 2005.
DOI : 10.1137/S1064827503428527

H. Edelsbrunner, X. Li, G. Miller, A. Stathopoulos, D. Talmor et al., Smoothing and cleaning up slivers, Proceedings of the thirty-second annual ACM symposium on Theory of computing , STOC '00, pp.273-277, 2000.
DOI : 10.1145/335305.335338

H. Edelsbrunner, R. Nimish, and . Shah, Triangulating topological spaces, Proceedings of the tenth annual symposium on Computational geometry, pp.285-292, 1994.

P. J. Frey and F. Alauzet, Anisotropic mesh adaptation for CFD computations Computer methods in applied mechanics and engineering, pp.48-495068, 2005.

F. Labelle and J. R. Shewchuk, Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.191-200, 2003.
DOI : 10.1145/777792.777822

L. Charles and . Lawson, Properties of n-dimensional triangulations, Computer Aided Geometric Design, vol.3, issue.4, pp.231-246, 1986.

X. Li, Generating well-shaped d-dimensional Delaunay Meshes, Theoretical Computer Science, vol.296, issue.1, pp.145-165, 2003.
DOI : 10.1016/S0304-3975(02)00437-1

X. Li and S. Teng, Generating well-shaped Delaunay meshed in 3d, SODA '01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pp.28-37, 2001.

X. Li, S. Teng, and A. Üngör, Biting ellipses to generate anisotropic mesh, 8th International Meshing Roundtable, 1999.

A. Loseille and F. Alauzet, Optimal 3D Highly Anisotropic Mesh Adaptation Based on the Continuous Mesh Framework, Proceedings of the 18th International Meshing Roundtable, pp.575-594, 2009.
DOI : 10.1007/978-3-642-04319-2_33

A. Loseille, A. Dervieux, and F. Alauzet, Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations, Journal of Computational Physics, vol.229, issue.8, pp.2866-2897, 2010.
DOI : 10.1016/j.jcp.2009.12.021

J. Mirebeau, Anisotropic finite element approximation. Theory and algorithms, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00452447

S. Oudot, L. Rineau, and M. Yvinec, Meshing Volumes Bounded by Smooth Surfaces, Engineering with Computers, vol.26, pp.265-279, 2010.
DOI : 10.1007/3-540-29090-7_12

URL : https://hal.archives-ouvertes.fr/inria-00097841

L. Rineau and M. Yvinec, Meshing 3D Domains Bounded by Piecewise Smooth Surfaces*, Meshing Roundtable conference proceedings, pp.443-460, 2007.
DOI : 10.1007/978-3-540-75103-8_25

URL : https://hal.archives-ouvertes.fr/hal-00681581

J. Schoen, Robust, guaranteed-quality anisotropic mesh generation, 2008.

J. R. Shewchuk, What is a good linear finite element? Interpolation, conditioning , anisotropy, and quality measures, 2002.

J. R. Shewchuk, Updating and constructing constrained delaunay and constrained regular triangulations by flips, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.181-190, 2003.
DOI : 10.1145/777792.777821

R. Shewchuk, Star splaying, Proceedings of the twenty-first annual symposium on Computational geometry , SCG '05, pp.237-246, 2005.
DOI : 10.1145/1064092.1064129

K. Shimada, A. Yamada, and T. Itoh, ANISOTROPIC TRIANGULATION OF PARAMETRIC SURFACES VIA CLOSE PACKING OF ELLIPSOIDS, International Journal of Computational Geometry & Applications, vol.10, issue.04, pp.417-440, 2000.
DOI : 10.1142/S0218195900000243

J. Tournois, C. Wormser, P. Alliez, and M. Desbrun, Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation, ACM Transactions on Graphics, vol.28, issue.3, pp.1-9, 2009.
DOI : 10.1145/1531326.1531381

URL : https://hal.archives-ouvertes.fr/inria-00359288