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Abstract—We propose a new model for peer-to-peer network-
ing which takes the network bottlenecks into account beyond
the access. This model allows one to cope with key features of
P2P networking like degree or locality constraints or the fact
that distant peers often have a smaller rate than nearby peers.
We show that the spatial point process describing peers in their
steady state then exhibits an interesting repulsion phenomenon.
We analyze two asymptotic regimes of the peer-to-peer network:
the fluid regime and the hard–core regime. We get closed form
expressions for the mean (and in some cases the law) of the peer
latency and the download rate obtained by a peer as well as for
the spatial density of peers in the steady state of each regime, as
well as an accurate approximation that holds for all regimes. The
analytical results are based on a mix of mathematical analysis and
dimensional analysis and have important design implications. The
first of them is the existence of a setting where the equilibrium
mean latency is a decreasing function of the load, a phenomenon
that we call super-scalability.

I. INTRODUCTION

Peer-to-peer (P2P) architectures have been widely used over
the Internet in the last decade. The main feature of P2P is
that it uses the available resources of participating end users.
In the field of content distribution (file sharing, live or on-
demand streaming), the P2P paradigm has been widely used
to quickly deploy low-cost, scalable, decentralized architec-
tures. For instance, the ideas and success of BitTorrent [1]
have shown that distributed file-sharing protocols can provide
practically unbounded scalability of performance. Although
there are currently many other architectures that compete with
P2P (dedicated Content Distribution Networks, Cloud-based
solutions, . . . ), P2P is still unchallenged with respect to its
low-cost and scalability features, and remains a major actor in
the field of content distribution.

The Achilles’ heel of todays’ P2P content distribution is the
access upload bandwidth, as even high-speed Internet access
connections are often asymmetric with a relatively low uplink
capacity. Therefore, most theoretical models of P2P content
distribution presented so far have been ‘traditional’ in the sense
of assuming a common, relatively low access bandwidth, in
particular concerning the upload direction, which functions as
the main performance bottleneck. However, in a near future
the deployment of very high speed access (e.g. FTTH) will
challenge the justification of this assumption. This raises the
need of new P2P models that describe what happens when
the access is not necessarily the main/only bottleneck and that

allow one to better understand the fundamental limitations of
P2P.

A. Contributions

A new model. The first contribution of the present paper
is the model presented in Section III, which features the
following two key ingredients which were lacking in previ-
ous models of the literature on P2P dynamics: 1) a spatial
component thanks to which the topology of the peer locations
is used to determine their interactions and their pairwise
exchange throughput; 2) a networking component allowing
one to represent the capacity of the network elements as well
as the transport protocols used by the peers and to determine
the actual exchange throughput between them.

More precisely, we consider a scenario where peers
randomly appear in some metric space, typically the
Euclidean plane representing the physical distance, and
download from their neighbors with a throughput that may
depend on some distance or RTT (it can be the case for e.g.
TCP transport). The typical P2P application we have in mind
is a BitTorrent-like file-sharing system. However, the high
abstraction level of our model also allows for interpretations
beyond this framework. Using proper QoS requirements, it
could be extended to any kind of P2P content distribution
services (like live and on-demand streaming). The space
could also be a representation of the peers’ interests, the
position of a peer representing its own centers of interest. In
such a space, two close peers share common interests, and
therefore are likely to exchange more data.

A promising form of scalability. The rationale that is
usually brought forward to explain P2P scalability is that the
overall service capacity growths with the number of peers.
This allows the system to reach an equilibrium point no
matters how popular the service is. This equilibrium was first
analytically studied in [2], under the traditional assumption
mentioned above that the upload/download capacity is the
bottleneck determining the exchange throughput obtained by
peers. The model proposed in [2] leads to an equilibrium
point which exhibits the expected scaling property in that
the service latency can be shown to remain constant when
the system load increases. In our new model, the equilibrium
point may exhibit a stronger form of scalability than that
in [2], that we propose to call super-scalability, where the



service latency actually decreases with the system load.

Conditions for super-scalability to hold. As we shall see
in Sections II and IV, this super-scalability phenomenon is not
difficult to understand from a pure queuing theory or graph
theory viewpoint. Roughly speaking, super-scalability can be
shown to hold in a queue whenever the service rate of a typical
customer scales like the number of customers in the system
(rather than like a constant as in [2]). Equivalently, it is not
difficult to see that it holds if the peer interaction graph is
complete at any given time.

However, in practice, the network cannot sustain arbitrary
high rates. Also, interactions between peers are limited by
degree constraints and by the requirement to select peer
connections with good throughput. Section VI combines our
model together with an abstract network model to determine
the conditions on the peering rules, on the network capacity
and on the transport protocols for which the mathematical
analysis makes sense and for which the super-scalability
property can possibly survive.

The laws of super-scalability. The paper also provides a
full analytical quantification of the system at the equilibrium
point: in addition to the latency formula, it also provides
closed form expressions for e.g. the density of peers present
in the P2P overlay or the rate obtained by each peer, as
functions of the peering rules and the network parameters.
These equilibrium laws, which take specific forms for each
type of transport protocol, are the main analytical contributions
of the paper. These are gathered in Section IV for the simplest
scenarios and in Sections VII and VIII for a few variants that
can be built on our model: generic rate functions, auxiliary
servers, seeding behavior of users, access bottleneck condition,
etc.

These laws have important P2P implications. In particular,
they allow one to determine optimal tuning of the parameters
of the P2P algorithms e.g. the optimal peering degree or the
best parameters of the transport protocols to be used within
this context.

One theoretically novel feature of our model is the proof of
a repulsion phenomenon which was empirically observed in
[3]: as close peers get faster rates, they quit the system earlier,
so a node “sees” fewer peers in its immediate vicinity than one
would expect by considering the spatial entrance distribution
alone. All these results are validated through simulations in
Section V.

B. Related Work

Our main scenario is inspired by a BitTorrent-like file-
sharing protocol. In BitTorrent [1], a file is segmented into
small chunks and each downloader (called leecher) exchanges
chunks with its neighbors in a peer-to-peer overlay network. A
peer may continue to distribute chunks after it has completed
its own download (it is called a seeder then). Theoretical
studies and modeling have already provided relatively good
understanding of BitTorrent performance.

Qiu and Srikant [2] analyzed the effectiveness of P2P file-
sharing with a simple dynamic system model, focusing on
the dynamics of leechers and seeders. Massouli and Vojnovic
[4] proposed an elegantly abstracted stochastic chunk-level
model of uncoordinated file-sharing. In the case of non-
altruistic peers (who do not continue as seeders), their results
indicated that if the system has high input rate and starts with a
large and chunk-wise sufficiently balanced population, it may
perform well very long times without any seeder. However,
instability may be encountered in the form of the “missing
piece syndrome” identified by Mathieu and Reynier [5], where
one (and exactly one!) chunk keeps existing in very few copies
while the peer population grows unboundedly. Hajek and Zhu
[6], [7] proved that the syndrome is unavoidable, if the non-
altruistic peers enter empty-handed and if the peer arrival
rate is larger than the chunk upload rate offered by persistent
seeders. On the other hand, they also proved that the system
becomes stable for any input rate, if the peers have enough
altruism to stay as seeders as long as it takes to upload one
chunk. The missing piece syndrome can be avoided even in
the case of non-altruistic peers by using more sophisticated
download policies at the cost of somewhat increased download
times, see [8], [9], [10]. The above results were obtained in
a homogeneous, potentially fully connected network model.
The present paper introduces a much less trivial family of
peer interaction models, focusing on a bandwidth-centered
approach similar to the one proposed by Benbadis et al. [11].
To avoid excessive layers of complexity, we neglect chunk-
level modeling in this phase, although realizing that meeting
the rare chunk problem will modify and enrich the picture in
future research.

The natural feature of large variation of transfer speeds in
P2P systems has been considered in a large number of papers.
For example, part of the peers can rely on cellular network
access that is an order of magnitude slower than fixed network
access used by the other part. Such scenarios differ however
substantially from our model, where the transfer speeds depend
on pair-wise distances but not on the nodes as such.

There are some earlier papers considering P2P systems in
a spatial framework. As an example, Susitaival et al. [12]
assume that the peers are randomly placed on a sphere, and
compare nearest peer selection with random peer selection in
terms of resource usage proportional to distance. However, the
distance has no effect on transfer speed in their model. Our
paper seems to be the first where a peer’s downloading rate is
a function of its distances to other peers.

II. SUPER–SCALABILITY TOY EXAMPLE

Consider a system in steady state where jobs arrive to get
some service. This system will be said to be super-scalable if
the mean job latency decreases when the arrival rate increases
and all other system parameters remain fixed.

In order to understand how super-scalability can arise, we
propose the following two toy examples: consider a system
where peers arrive and want to download some file of size



F . Peers arrive in the system with intensity λ and leave the
system as soon as their own download is completed.

In our first toy example, the access upload bandwidth is
considered as the main bottleneck. If we neglect issues related
to data/chunk availability, and if U is the typical upload
bandwidth of a peer, then it makes sense to assume that U
is also the typical download throughput experienced by each
peer. In particular, in the steady state (if any), the mean latency
W and the average number of peers N should be such that

W =
F

U
and N = λW =

λF

U
(Little’s Law). (1)

Although very simple, (1) contains a core property of standard
P2P systems: the mean latency is independent of the arrival
rate. This is the scalability property, which is one of the main
motivations for using P2P.

Now, imagine a second toy example based on a complete
shift of the bottleneck paradigm. Let the main resource bot-
tleneck be the (logical, directed) links between nodes instead
of the nodes themselves. We should then consider the typical
bandwidth C from one peer to another as the key limitation.
If each peer is connected to every other one (the interaction
graph is complete at any time), then the equilibrium Equation
(1) should be replaced by

W =
F

(N − 1)C
and N = λW , which leads to

N =

√
λF

C
+

1

4
+

1

2
and W =

√
F

λC
+

(
1

2λ

)2

+
1

2λ
.

For λF
C � 1, this can be approximated by

N ≈
√
λF

C
and W ≈

√
F

λC
. (2)

The behavior of this new system is quite different from the
previous one. Among other things, the service time is now
inversely proportional to the square root of the arrival intensity,
so that super-scalability holds.

In this toy example, the central reason for super-scalability
is rather obvious: the number of edges in a complete graph is
of the order of the square of the number of nodes, and so is
the overall service capacity.

The main question addressed in the present paper is to better
understand the fundamental limitations of P2P systems and in
particular to check whether super-scalability can possibly hold
in future, network-limited, P2P systems, where the throughput
between peers will be determined by transport protocols and
network resource limitations rather than the upload capacity
alone. This requires the definition of a new model allowing
one to take both the latter and the former into account as
well as the limitations inherent to P2P overlays like e.g. the
constraints on the degree of the peering graph, the availability
of data/chunks, etc.

III. NETWORK LIMITED P2P SYSTEMS

The aim of this section is to define a model meeting all the
above requirements.

A. Dynamics

Our peers live in a spatial domain D. The domain can be
some general Euclidean or even abstract metric space. It can
describe physical distance between peers, distances derived
from metrics in the underlying physical network, or even
represent some semantic space.

For simplicity, we focus on a basic model where D is the
Euclidean plane R2, but there is no basic difficulty in extend-
ing this framework. We also use sometimes an arbitrarily large
torus as an approximation of D.

Assume that new peers arrive according to some time-space
random process. The set of the positions of peers present at
time t is denoted by Φt.

Each peer p has an individual service requirement Fp > 0.
In the basic example where the service required by every peer
consists of downloading one and the same file, Fp would most
naturally be modeled as a constant F describing the size of
the file.

We assume that two peers at locations x and y serve each
other at rate f(||x− y||), where f is a non-negative function
which we call the bit rate function of the model1. This function
describes the network transport and connectivity limitations.
We will see later how these limitations can be taken into
account.

In order to focus on bandwidth aspects, we do not explicitly
take into account issues related to chunk availability. Follow-
ing the approach proposed by [2], we assume that filesharing
effectiveness can be affected by some factor η ≤ 1 because
sometimes, a peer may not have any chunk that a neighbor
would want. In the following, we omit η by assuming that file
sizes are always scaled by a factor 1

η . We are aware, however,
that handling chunk availability through a constant η has some
limitations, and we will point out the scenarios where chunk
availability can become a real issue.

The services received from several peers are additive, so
that the total download rate of a peer at x is

µ(x, φt) =
∑

y∈φt\{x}

f(||x− y||).

By symmetry, µ(x, φt) is also the upload rate of a peer at
x. In order for the access not to be a further limitation, the
access capacity of a peer at x should exceed µ(x, φt). This is
our default assumption here (access as a possible bottleneck
is considered in Section VIII).

A peer p born at point xp at time tp leaves the system when
its service requirement has been fulfilled, i.e. at time

τp = inf{t > tp :

∫ t

tp

µ(xp, φs)ds ≥ Fp}.

A peer is usually called a leecher if it has not completed its
download, and seeder if it has. Although this paper is mainly
focused on leechers-only system, the situation where peers

1We implicitly assume that bandwidth rates are automatically adjusted by
the system, at the network layer, in a TCP-like fashion, or at the applicative
layer, using a UDP-like approach.



continue as seeders after having completed their service will
be considered in Section VIII.

B. Examples of Bit Rate Functions

We will consider two basic cases throughout the paper:
1) peers use a TCP-like congestion control mechanism;
2) peers use UDP.

In P2P, UDP is often used in place of TCP. However, P2P-
over-UDP protocols try to be TCP–friendly [13], [14]: they
are designed to respect TCP flows and actually mimic TCP2.

Consider first the case where peers use TCP Reno. On
the path between two peers, let ϑ denote the packet loss
probability and RTT denote the round trip time. Then the
square root formula [15] stipulates that the rate obtained on
this path is ξ

RTT
√
ϑ
, with ξ =∼ 1.309. Assuming the RTT to

be proportional to distance r yields a transfer rate of the form

g(r) =
C

r
. (3)

We can refine (3) by assuming that RTT is not simply linear in
r but some affine function of it, namely RTT = ar+b, where
a accounts for propagation delays in the Internet path and b
accounts for the mean delay in the two access networks. Then
the transfer rate between two peers with distance r becomes

g(r) =
C

r + q
, with C =

ξ

a
√
ϑ
, q =

b

a
. (4)

Another natural model is that where one accounts for an
overhead cost of c bits per second. The transfer rate between
two peers at distance r is then

g(r) =

(
C

r + q
− c
)+

, with (.)+ := max(., 0). (5)

In the case where peers use UDP, on the path between two
peers, the transfer rate is of the form

g(r) = C, where C is a constant. (6)

C. Connectivity Limitation

Having specified some transfer rate function g, we notice
that a peer cannot interact with all other peers of the overlay
network: it would result in a full mesh overlay, impossible
to handle for large networks. Therefore, peers usually limit
their neighborhood, for instance by selecting only peers within
a certain distance and/or by limiting its total number of
neighbors. This constraint is even more meaningful in the
wireless contex, as it can correspond to some transmission
range. This leads to the following choices for the bit rate
function:
• Constant Range model: take f(r) = g(r)1r≤R (R is

called the range), so that

µ(x,Φ) =
∑

xi∈Φ,xi 6=x

1||xi−x||≤R g(||xi − x||), (7)

2For instance, TFRC (www.ietf.org/rfc/rfc3448.txt) recommends that UDP
flows use the square root formula to predict the transfer rate that a TCP flow
would get and use this rate for throttling their traffic. The TCP model is hence
directly applicable to such a setting.

Name Description Units

CTCP Speed parameter bits · s−1 ·m
CUDP Speed parameter bits · s−1

F Mean file size bits
R Peering range m

λ Leecher arrival rate m−2 · s−1

W Mean latency s

µ Mean rate bits · s−1

U Upload bottleneck bits · s−1

TABLE I
TABLE OF NOTATION

where g is one of the functions considered above.
• Constant Number of Nearest Peers model: take the L

closest peers as the set of communicating neighbors. This
rule is non-symmetric and difficult to deal with exactly.
To begin with, computing the effective rate f between to
peers at x and y is not a function of ||x − y|| only, but
of the configuration φt.

In this paper, the main model will be that where the transfer
rate between two communicating peers is given by (3) or (6)
and where the range is constant. More general rate functions
(e.g. as defined in (4) and (5)) and an approximation of
connectivity defined by the number of peers will be analyzed
in Section VIII.

Let us stress again that the framework can be extended
to more general metric spaces and/or to more general rate
functions. For instance, in a noise limited wireless network
of the Euclidean plane, it makes sense to assume that the
rate between two peers at distance r is determined by some
Signal to Noise Ratio condition and is hence proportional to
log
(
1 + C

rα

)
with α > 2 the path loss exponent. Of course

the additive assumption on the point-to-point rates only makes
sense in rather particular cases (e.g. orthogonal channels) and
more general models should be considered within this wireless
setting. We will not pursue the general wireless setting in the
present paper. We will however consider more general rate
functions than the above TCP and UDP functions in Section
VIII including the above additive wireless setting, which will
be referred to as the SNR model.

D. Mathematical Assumptions

We assume that new peers arrive according to a Poisson pro-
cess with space-time intensity λ (‘Poisson rain’). λ, expressed
in m−2.s−1, describes the birth rate of peers: the number of
peer arrivals taking place in a domain of surface A (expressed
in m2) in an interval [s, t] (in seconds) is a Poisson random
variable with parameter λA(t− s).

For the sake of mathematical tractability, we assume the
Fp’s to be independent and identically distributed random
variables with finite expectation, denoted by F = E(Fp).
More specifically, we assume in this paper that their common
distribution is exponential of mean F in order to gain in
mathematical tractability.

Proposition 1: If the domain D in which the peers live is
compact, then φt is a Markov process which is ergodic for
any birth rate λ > 0.



The proof, which can be found in Appendix X, is based
on a domination argument which can easily be extended to
unbounded domains. The existence of stationary regimes for
φt in the case of an unbounded domain then follows from
this and a tightness argument. However, the ergodicity of
φt and the uniqueness of its stationary regimes cannot be
established as easily in this case. Garcia and Kurtz [16] proved
the existence and ergodicity of a wide class of attractive spatial
birth-and-death processes in infinite domains. Extending their
approach to our repulsive case (see below for the terminology)
seems feasible but goes way beyond what can be done within
the space limitations of the present paper. In what follows,
for results stated on the (infinite) Euclidean plane case, we
conjecture that the spatial birth-and-death processes of interest
admit a unique stationary regime. In any case, all our results
can be rephrased on a large torus where this conjecture is not
needed.

IV. MATHEMATICAL ANALYSIS

In this section, we focus on the main model under TCP
(3) with fixed range R. The results on UDP (6) are provided
as well. We adopt the same strategy concerning the proofs as
above for Proposition 1: we give proofs in the torus case, so
as to provide the main ideas, but refrain from discussing their
extensions to the infinite Euclidean plane. The limiting argu-
ments for these extensions are left for future work. The final
formulas are however always given in the infinite Euclidean
plane where they have a particularly simple form.

For the main model, the system has 4 basic parameters: the
range R in meters (m), the typical filesize F in bits, the peer
arrival rate λ in m−2 ·s−1 and a rate constant C in bits·m·s−1

(bits · s−1 in the UDP case).
According to Proposition 1, the model admits a steady state

regime where the peers (in the basic model all leechers) form
in R2 a stationary and ergodic point process [17].

We denote by βo the density of the peer (leecher) point
process, by µo the mean rate of a typical peer, by Wo the
mean latency of a typical peer, and by No the mean number
of peers in a ball of radius R around a typical peer, all in the
steady state regime of the P2P dynamics.

In the following, we will also consider several approxima-
tions of the main model:
• a fluid regime/limit, where the corresponding quantities

will be denoted by a f subscript (e.g. βf );
• a hard–core regime/limit for which we will use the

notation .h (e.g. βh);
• a heuristic description of the main model with a hat

notation (e.g. β̂0)
In any of these regimes, Little’s law tells that the average

density verifies β = λW .

A. Fluid Limit

The fluid limit consists in assuming that the density is
uniformly distributed in space at any time. In particular, in the
fluid limit, the presence of one single peer in a given point
does not impact the system.

From Campbell’s formula [17], the mean total bit rate of a
typical location of space (or equivalently of a newcomer peer)
is

µf = βf2π

∫ R

r=0

(C/r)rdr = βf2πCR. (8)

Now, the fluid limit hypothesis allows one to assume that a
peer sees µf during its whole lifetime. We get that the mean
latency of a peer is

Wf =
F

µf
. (9)

Hence
βµ = λF. (10)

From (8), (9) and (10), we have

βf =

√
λF

2πCR
, µf =

√
λF2πCR, Wf =

√
F

λ2πCR
. (11)

In the fluid limit, the mean number of peers in a ball of radius
R around a typical peer is

Nf = πR2βf =

√
π

2

√
λFR3

C
. (12)

For UDP, the same reasoning gives:

βf,UDP =
√

λF
πCR2 , µf,UDP =

√
λFπCR2,

Wf,UDP =
√

F
λπCR2 , Nf,UDP =

√
π

√
λFR2

C
(13)

As we see in the expression for the mean latency in (11) and
(13) both the TCP and the UDP fluid limits exhibit the same
super-scalability as the toy example: in spite of the fact that
the interactions are not as in the complete graph and depend
on the distance, the mean latency decreases in 1√

λ
when λ

tends to infinity and everything else is fixed.

B. Dimensional Analysis

At this point of the paper, the fluid limit is a thought experi-
ment, not necessarily related to the actual model. Dimensional
analysis [18] helps to address this issue.

We first use the π-theorem [18] to strip our problem from
redundant variables: if we choose R as a new distance unit,
then the arrival intensity becomes l = λR2, the download
constant becomes c = C/R and the other parameters are
unchanged. If we now define F as an information unit, then the
download speed constant becomes c = C/(RF ) and the other
parameters are unchanged. Finally, if we take a time unit such
that the download speed constant is 1, we get a system where
all parameters are equal to 1 but for the arrival rate which is
equal to l = λFR3

C . As the system itself is not affected by the
choice of measurement units, all its properties only depend on
the (dimensionless) parameter

ρ = ρTCP =
λFR3

C
. (14)

The π-theorem allows some freedom in the choice of the
parameter. By noticing that Nf =

√
π
2

√
ρ, we can use Nf ,



which has a physical interpretation (the number of neighbors
predicted by the fluid limit), instead of ρ.

By similar arguments, we have

ρUDP =
λFR2

C
, (15)

so we use Nf,UDP =
√
π
√
ρUDP.

The π-theorem tells that all systems that share the same
parameter Nf are similar. Now consider the union of two
independent systems that use the same parameters (λ, F , C,
R): the real model, with latency Wo, and the fluid model, with
latency Wf . The ratio Wo

Wf
is a dimensionless property of the

overall system, therefore it is a function of Nf only. In other
words, there exists a dimensionless function M(Nf ) such that:

Wo = M(Nf )Wf . (16)

From Little’s law, we also deduce the density:

βo = βfM(Nf ). (17)

These equations are true for both the TCP and UDP rates
(with a different M function in each case).

To summarize, although our system may be subject to com-
plex interactions and is defined by four independent parame-
ters, dimensional analysis allows one to express its general
behavior through a one-parameter function M (unknown),
which expresses how far the real system is from its fluid limit.

C. Fluid as a Bound

We now give a better understanding of the behavior of the
real system through the following theorem.

Theorem 1 (Repulsion): In the steady state,

E[
∑
xi∈Φ

f(||xi||)] ≥ E0[
∑

xi∈Φ\{0}

f(||xi||)], (18)

where E0 denotes expectation w.r.t. P0, the Palm probability
[17] w.r.t. the point process Φ.
The proof is given in Appendix XI in the torus case. Theorem
1 says that there are less points (in terms of their f–weight)
in a ball of radius R around a typical peer (i.e. under the Palm
probability) than in a ball of the same radius around a typical
location of the Euclidean plane (i.e. under the stationary
probability P ). This is what we call a repulsion effect.

Corollary 1: M ≥ 1.
Proof of corollary: Theorem 1 is equivalent to saying that
µo ≤ βo2πCR. This, the relation Wo ≥ F/µo (which is
obtained by a direct convexity argument) and Little’s law
βo = λWo imply that βo ≥ λ F

βo2πCR which in turn implies
βo ≥ βf and M ≥ 1.

In other words, repulsion implies that the fluid regime is
actually a lower (resp. upper) bound for the mean latency and
the peer density (resp. the mean rate). Now, the following
theorem tells that the bound is tight.

Theorem 2: When Nf tends to infinity, M tends to 1, and
the law of a typical peer latency converges weakly to an
exponential random variable of parameter Wf .

The sketch of proof is given in Appendix XII, where it is
shown that this regime is such that not only the traffic is high
but the peers also stay long enough to make the fluctuations
slow and weak. By the almost constancy of the rate at any
point, we get the almost exponentiality.

Theorem 2 says that when the number of neighbors pre-
dicted by the fluid limit tends towards infinity, the system
behaves like its fluid limit.

D. Hard–Core Regime

A stationary point process is hard–core with exclusion
radius R if there is no pair of points in the point process
with a distance less than R.

Conjecture 1: When Nf tends to 0, NfM(Nf ) tends to
1, and the stationary peer point process tends to a hard–core
point process with exclusion radius R, with intensity βh and
latency Wh defined as follows:

βh =
1

πR2
, Wh =

1

λπR2
, (19)

Moreover, the cdf of the latency converges weakly to

1− e
− t

2Wh

2
, t > 0. (20)

Conjecture 1 is supported by simulations (cf. Section V), and
by the following insight on the hard–core behavior: when two
peers are at distance r ≤ R, the average time under TCP for
one of them to disappear is less than rF

C ≤
RF
C . If Nf � 1,

(11), (12) and Corollary 1 give RF
C � Wo. In other words,

when two peers are in range, one of them disappears almost
instantly compared to the typical latency of the system, so
when we take a snapshot of the system at a given time and
finite area of space, it is likely that we see only peers out of
range R from each other.

A similar reasoning stands for UDP.
It is worthwhile mentioning that according to (19), the

volume fraction of the associated sphere packing model is
1/4 (since we have a density 1

πR2 of non-intersecting balls
of radius R/2). This volume fraction is hence the same as
that of the Matérn hard–ball model in the so called jamming
regime (see e.g. [19]).

Let us stress that this hard-core regime is hardly desirable
(performance largely below the one predicted by the fluid limit
and extreme unfairness). Moreover, peer data exchanges are
very sparse, so the fluid assumption on the exchange of chunks
fails to hold. Chunk availability becomes probably a bottleneck
as important as bandwidth under these conditions, suggesting
that the performance will be even worse should we take chunk
exchanges explicitly into account.

For all these reasons, the hard–core regime, which we
presented for completing the description of our model, should
be avoided by all means. The discussions on design will hence
be in part focused on the tuning of the system parameters that
avoid this regime.



E. Heuristic

For intermediate values of Nf , where fluid and hard–core
limits do not apply, we propose a first order approximation.

For TCP, it consists in approximating M by M̂ , the unique
solution in [1,∞) of

M̂2

(
1− M̂

2Nf
ln

(
1 +

2Nf

M̂

))
= 1. (21)

In order to derive (21), we use a heuristic factorization of the
factorial moment measure of order 3 [17] which is described in
Appendix XIII. Informally, the method consists in computing
an approximation ûo of the average rate of a peer assuming
that: (i) a neighbor at distance r from that peer “sees” a rate
ûo + C

r ; (ii) in return, the peer “sees” at distance r a density
of neighbors λF

ûo+C
r

(using (10)).
Under this approximation, the fluid equation (8) now be-

comes

µo ≈ λF2πC
∫ R

0
1

µo+C
r

dr

= λF2πC
(
R
µo
− C

µ2
o

ln(1 + µoR
C )
)
,

(22)

which leads to

µ̂2
o = µ2

f

(
1− C

µ̂oR
ln

(
1 +

µ̂oR

C

))
. (23)

Using µ̂0 =
µf

M̂
and noticing that µfR

C = 2Nf , equation
(21) follows.

This heuristic is in line with Theorem 2 and Conjecture 1.
When Nf tends to ∞, it follows from (21) that M̂ ∼ 1. This
is in line with Theorem 2. When Nf tends to 0, expanding the
log in (21) gives M̂ ∼ 1

Nf
, which substantiates Conjecture 1.

In the UDP case, the same heuristic leads to

M̂ =
1

M̂
+

1

Nf
, so that (24)

M̂ =

√
1 +

(
1

2Nf

)2

+
1

2Nf
, (25)

which also supports both Theorem 2 and Conjecture 1.

F. Toy Example Revisited

We revisit the example of Section II within the more precise
framework considered in the present section (Poisson arrivals,
exponential file size). This toy example can be seen as the
UDP case on the torus, when the range is large enough for all
pairs of peers to be within range. Assume the surface of the
torus to be 1. Then, geometry disappears and we have a birth
and death process for the total population with birth rate λ
and death rate in state i equal to µ(i) = C

F i(i− 1). The state
space is that of positive integers. The local balance equations
read

π(i− 1)λ = π(i)µi(i− 1), i ≥ 2.

The solution is

π(i) = π(1)
1

i!(i− 1)!
ρi−1, i ≥ 2,

where ρ = λF
C . Hence the mean is

β =
1 +

∑
i≥2

1
((i−1)!)2 ρ

i−1

1 +
∑
i≥2

1
i!(i−1)!ρ

i−1
=
√
ρ
B(0, 2

√
ρ)

B(1, 2
√
ρ)
,

with B the BesselI function.
In words, we have

β = βfM(Nf )with


βf = Nf =

√
λF

C
and

M(X) =
B(0, 2X)

B(1, 2X)
.

(26)

We recognize the approximation (2), which implies super-
scalability in 1√

λ
, corrected with an M function like in (17).

We remark that for this toy example, we have the exact value
of M and not an asymptote or a heuristic, and we can verify
that Corollary 1 and Theorem 2 hold.

Notice also that if δ(i) = µi, then π(i) = ρi

i! e
−ρ for all

i ≥ 0 so that N = ρ and W = 1/µ. In this case, which
in essence is that of [2], or equivalently that of the M/M/∞
queue, where we have scalability but no super-scalability.

V. SIMULATION RESULTS

In this section, we validate our results and substantiate our
results by means of simulations. For sake of computability,
we approximate the infinite space by a torus of radius 1. For
concision, we only present here the simulation results for the
TCP case, but UDP results are completely similar.

As stated by the dimensional analysis, all systems can be
described by the function M . The goal of the simulation is then
to sample that function. We just have to fix three independent
parameters and use the fourth one to run through all possible
scenarios.

We decide to choose the following fixed parameter: R = .1,
which gives a good trade-off between the torus as an approxi-
mation of the plan; C = 1 (arbitrary choice); Wf = 100. The
last choice means that remaining free parameters are adjusted
so that (11) values to 100 in each experiment. That way, for
all simulations, the fluid model will predict the same mean
latency, so the measured latencies will give M directly, up to
a constant factor Wf .

We naturally use Nf (defined by (12)) as the variable
parameter. We use Nf instead of ρ as main dimensionless
parameter because it is strictly equivalent from the point of
view of dimensional analysis, yet it gives a direct meaning
to the variable (average number of neighbors in the fluid
model). The remaining input parameters of the system are then
completely defined:

λ =
Nf

πR2Wf
, F =

2NfCWf

R
. (27)

We choose to use a discrete time simulator, with elementary
time step set to τ = 1. With our settings, the resulting
step transitions are empirically small enough for the discrete
model to be a good approximation of the continuous model.
In the end, we get a simulator that achieves the needed trade-
off between speed and accuracy (an event-based simulator,
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Fig. 1. M(Nf ) in the TCP case.

for instance, would give exact rendering of the continuous
model but would require a lot more of computation). For each
considered setting, the simulation runtime was adjusted so that
about 20000 peers could be observed in stationary state. All
results presented are obtained through 10 runs per setting.

A. Properties of the M Function

We propose to start with a global study of the function M .
We made simulations for Nf varying from 1/32 to 64. Results
are displayed Figure 1.

The empirical results are compared with 1) the fluid limit,
1, 2) the hard–core limit, 1

Nf
, and 3) the heuristic formula

(21).
Figure 1 allows us to check almost all results from previous

section in one look:
• the fluid limit is a lower bound of the actual system

(which is equivalent to Theorem 1);
• as Nf goes to ∞, the fluid bound becomes tight (this is

Theorem 2);
• as Nf goes to 0, the system behavior converges towards

the hard–core limit (this is Conjecture 1).
Additionally, one checks that the heuristic (21) gives a good
approximation of M for intermediate values of Nf , while
converging to the hard–core and fluid limits when Nf goes
to 0 and ∞ respectively.

B. Fluid Model

We now propose to focus on the case Nf = 64, in order to
analyze the system in detail when it reaches the fluid limit. The
value M(64) given by simulations is 1.007, which is higher
than 1 yet very close to it, as predicted by Theorem 2.

If one looks at the latency distribution, it is almost in-
distinguishable from an exponential distribution of mean Wf

(Figure 2) as predicted by Theorem 2.
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Fig. 2. Cdf of latency for Nf = 64.

In the fluid model, it is quite difficult to distinguish the sys-
tem from a spatial birth and death process of birth parameter λ
and death parameter 1/Wf , namely a Poisson point process of
intensity βf . Differences can only be spotted if small distances
are involved. More precisely, two peers at distance r have a
mutual latency influence of rF

C , so one can expect Palm effect
to become less visible when rF

C is large enough compared to
Wf . This allows us to show that R

Nf
is the critical distance

below which the Palm effects become difficult to neglect. For
Nf = 64, this gives R

64 ≈ 0.016.
In our case, the best way to differentiate the actual process

from a Poisson process is to consider how far the closest
neighbor of a peer is. While for a Poisson process the distance
should be 1

2
√
λWf

≈ 0.0111 in average, simulation shows

an actual average distance of 0.0115: the nearest neighbor is
slightly farther away by about 4%. If we go into detail by
comparing the two distributions, it appears that the main gap
appears for small distances (cf. Figure 3), which supports the
concept of critical Palm distance: if a peer gets a very close
neighbor, both rates will be higher than usual, so one of them
is likely to leave sooner, lowering the probability of finding
very close neighbors in a random configuration. As Nf tends
towards∞, we expect this difference to become negligible: the
probability to get a neighbor so near that it will significantly
affect the total rate becomes arbitrary low, so the repulsion
effect becomes negligible.

C. Hard–Core Model

We conduct the same type of detailed study for Nf = 1/32.
For these parameters, the value M(1/32) is now 31.6, to
compare with the hard–core model prediction Mh = 32; so
the accuracy of the model is pretty good.

Figure 4 displays the latency distribution, using for compar-
ison the hard–core distribution and the exponential distribution
of parameter Wo. One observes a close fit to the one proposed
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Fig. 3. Cdf of nearest neighbor distance for Nf = 64.

by the distribution function (20) of Conjecture 1: when a
peer arrives, with probability one half, it disappears instantly;
otherwise it follows an exponential distribution of average
2Wh. In other words, not only the mean latency is much larger
than in the fluid model (by a ratio 1

Nf
), but half of the peers

will get a service time arbitrary larger compared to the other
half (as Nf goes towards 0).

The distribution of the closest neighbor is also of interest (cf.
Figure 5); the distribution has been truncated to the maximal
distance R, as a peer does not “see” beyond R.

We see here the repulsion effect at its paroxysm: there are
many orders of magnitude between the empirical distribution
and the equivalent Poisson distribution. For instance, Poisson
says that the probability to have at least one neighbor in range
is 1 − e−λπWR2 ≈ 62.6%. In the stationary regime, this
probability is only 0.078%, whereas the hard–core conjecture
tells us that it will continue to decrease as Nf goes to 0.

D. Intermediate Values

We have no good formal description of the actual laws
observed for intermediate values of Nf , these distributions
show a compromise between the equivalent fluid and hard–
core distributions.

In order to compare with the fluid and hard-core limits, we
give the latency distribution (Figure 6) and the closest neighbor
distribution (Figure 7) for Nf = 1. One can see that these
distributions show a compromise between the equivalent fluid
and hard–core distributions.

E. Summary of Simulations

For both the fluid and hard–core limits, simulations validate
that we have a good description of the average system perfor-
mance defined by M , but also of the latency distribution. For
intermediate states, although the bounds still hold, it is better
to rely on the heuristic, which gives quite accurate results on
M , but with no details on the distribution.
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Fig. 4. Cdf of latency for Nf = 1/32.
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Fig. 5. Cdf of nearest neighbor for Nf = 1/32.

VI. NETWORK CAPACITY CONSTRAINTS

The aim of this section is to determine the capacity required
for the network elements in order to achieve the super-scalable
regime identified above.

More precisely, so far, the only assumptions on the network
were that 1) the access is not a limitation anymore (or not the
only bottleneck); 2) the network is a bottleneck, resulting into
a rate between peers that depends on their distance and some
range or degree constraints.

This section introduces an abstract network model on which
the P2P traffic will be mapped through some natural shortest
path routing mechanism. We then determine the mean flow
that traverses a typical network element. This flow of course
depends on the protocols used in the network which in turn
determine the bit rate function.

For simplicity, we limit the study to the fluid limit of the
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Fig. 6. CDF of latency for Nf = 1.
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Fig. 7. CDF of closest neighbor for Nf = 1.

system.

A. Network Capacity Model

We consider an underlying network made of routers and
links between them. A simple example is that where
(i) routers form a Poisson point process of intensity θ in the

plane;
(ii) links are the Delaunay edges (see e.g. [19], Chapt. 4) on

this point process;
(iii) each peer is directly connected to the closest router and

the path between two routers is the shortest path (with
minimal hop count) on the Delaunay graph.

In this case, the number of links between two peers is
asymptotically proportional to the distance between them [19].

For all straight lines of the plane, the point process of
intersections of this line with the edges forms a stationary

point process of intensity µe := 2
√
θ on the line. Denoting by

K the capacity of an edge, we get a total capacity per unit
distance of Ξ := µeK.

Now, in order to simplify the evaluation of the P2P load
on the underlying network, we will assume that (a) θ is
large enough so that the hop-count between two peers can be
seen as proportional to their distance and the flow between
them as a straight line; (b) Any rate smaller than Ξl can be
transported through a segment of length l.

Remark In order to further justify the formula f(r) = C
r 1r≤R

for the rate of two peers at distance r within the refined
network model presented above, one can use the bandwidth
sharing formalism of [20]. A connection of Euclidean length
r uses approximately γ rL links where L = 2

3
√
θ

is the mean
length of a Delaunay edge of a Poisson point process of
intensity θ (see [21] p. 477) and where γ is the (stretch)
constant of the shortest path algorithm (see [19], Vol 2, Prop
20.7). We assume that each link is of capacity K. We consider
the network as an open bandwidth sharing network [20]
with connections of various classes arriving to the network,
transferring a file of mean size F and leaving the network.
We write the bandwidth optimization problem in any given
state in this network as

max
∑
i

log(νi)

under the constraints∑
i∈Cj

νi ≤ K,

where νi is the rate of connection i and Cj is the collection of
connections that traverse link j in this state. Denoting by αj
the Lagrange multiplier associated with constraint j, we get
that at the optimum point, for all i

1

νi
−
∑
j:i∈Cj

αj = 0.

In the steady state regime (in both time and space), the
sequence αj should be stationary and ergodic. So, when
denoting by α its mean, when θ is large, card{j : i ∈ Cj} is
large too and we get from spatial ergodicity that if connection
i is of length r, namely uses γr/ερ links, then νi ≈ 1

α
1

l(νi)
,

with l(νi) = card{j : i ∈ Cj} ≈ γ rL . Hence νi ≈ L 1
αγ

1
r for

r ≤ R.

B. Flow Equations

For the sake of easy exposition, we start with the model on
the line. The flow through the origin is

ψ = 2E
∑

Xi,Xj∈Φ

f(|Xi −Xj |)1Xi<01Xj>0.

In the fluid model, we can use the fact that the second moment
measure of Φ is β2 times the Lebesgue measure on R2 and
Campbell’s formula to get that

ψ = 2

∫
x<0

∫
y>0

f(y − x)βdxβdy = 2β2

∫
r>0

rf(r)dr.



The last expression comes from the change of variables r :=
y − x, x := x. Consider now the model on the plane. Let
Xi = (x1

i , x
2
i ).

We make here the assumption that the bit flow between any
two peers follows a straight line in the plane, and that the
network capacity is defined by some constant Ξ, expressed in
bits.s−1.m − 1, such that the maximal flow rate that can go
through a segment.

Let Ψ(ε) be the rate that goes through a segment S of length
ε. We can choose for instance S = [(0,− ε2 ), (0, ε2 )]. Let H−

denote the left half-plane and H+ the right half plane. Then
Ψ(ε) is

Ψ(ε) = 2E
∑

Xi ∈ Φ ∩H−,
Xj ∈ Φ ∩H+

f(|Xi −Xj |)1[Xi,Xj ]∩S 6=∅

= 2

∫∫
X ∈ H−,
Y ∈ H+

f(|X − Y |)1[X,Y ]∩S 6=∅βdXβdY

= 2β2

∫∫
X ∈ H−,
Z ∈ H+

f(|Z|)1[X,Z+X]∩S 6=∅dXdZ

= 4β2

∫∫
r > 0,

θ ∈ [0, π2 ]

f(r)r sin(θ)εrdrdθ

= 4β2ε

∫
r>0

r2f(r)dr

where the third line comes from the change of variables Z :=
Y − X , X := X . So, by isotropy, the flow per unit length
through any line of the plane is

Ψ = Ψ(1) = 4β2

∫
r>0

r2f(r)dr.

Using the fluid expression of the density

β = βf =

√
λF

2π
∫
r>0

rf(r)dr

we get the following key relation

Ψ = Ψ(1) =
2

π
λF

∫
r>0

r2f(r)dr∫
r>0

rf(r)dr
. (28)

In the TCP case (f(r) = C
r 1r≤R), we get

ΨTCP = 2Cβ2εR2 =
1

π
λFR. (29)

In the UDP case (f(r) = C1r≤R), we get

ΨUDP =
4

3
Cβ2εR3 =

4

3π
λFR. (30)

For the network to sustain the rate generated by our model,
it is required that

Ψ ≤ Ξ. (31)

If one can assume, under some joint fluid limit, that both
the flow and the number of links going through a segment
are asymptotically deterministic, then Condition (31) is also
sufficient for stability. Studying the validity conditions of this
hypothesis is, however, beyond the scope of this paper.

Note that for both TCP and UDP, the condition (31) does
not depend on C. This surprising result means that in the
fluid limit, we can arbitrarily scale the individual rate of
connections (thus decreasing the latency) without changing
the burden on the underlying network. Of course, there is a
flaw in that reasoning, which is that increasing C eventually
impairs the validity of the fluid limit. In details, as C increases,
Nf gets smaller so we tend to the hard-core limit where (i)
there is unfairness as half of the peers get almost instant
service compared to the other half; (ii) the average latency
reaches an asymptotic value 1

λπR2 , so further increase of C is
meaningless.

VII. MORE GENERAL RATE FUNCTIONS

While we focused on TCP-like (3) and UDP-like (6) func-
tions, all our results can easily be generalized in the fluid limit
to any rate function f such that

∫
r>0

rf(r)dr < ∞. Even if
f has no maximal range R, we just have to replace CR in (8)
by
∫
r>0

rf(r)dr and proceed. This gives

µf = βfγ, with γ = 2π

∫
r>0

rf(r)dr. (32)

Once γ is known, we can generalize (11) by

βf =

√
λF

γ
, µf =

√
λFγ, Wf =

√
F

λγ
. (33)

Notice that the scaling in 1√
λ

still holds.
Without a range R, Nf , which is πR2βf , is not properly

defined, which impairs a direct introduction of M . However,
if we have

∫
r>0

r2f(r)dr <∞, we can use

R̃ :=

∫
r>0

r2f(r)dr∫
r>0

rf(r)dr
o (34)

instead of R and extend the dimensional analysis accordingly
(R̃ being interpreted as the typical range of f ).

Let us illustrate this method with a few concrete examples
of type f(r) = g(r)1r≤R.

A. Affine RTT

If g is given by (4), then then the mean bit rate of a typical
location of space is

µf = β2π

∫ R

r=0

C

r + q
rdr = βf2πC

(
R− q ln

(
1 +

R

q

))
,

so that we have

γ = 2π

∫ R

r=0

C

r + q
rdr = 2πC

(
R− q ln

(
1 +

R

q

))
. (35)

B. Overhead

For g as in (5), after noticing the necessary condition R ≤ C
c

(each connection needs to use a minimal bandwidth c for the
overhead), we get

µf = βf2π

∫ R∧Cc

r=0

(
C

r
− c
)
rdr



so that

γ = 2π

∫ R

r=0

(
C

r
− c
)
rdr = 2π

(
RC − R2c

2

)
. (36)

The best value for R is R = C
c , which gives γ = πC2/c.

C. Per Flow Rate Limitation

The protocol or some physical constraints may limit the
individual rates. If one assumes a maximal rate U for each
flow, we have g(x) = (C/x) ∧ U . This gives

γ = 2π

∫ R

r=0

(
C

r
∧ U

)
rdr =

{
πUR2 if C ≥ UR
π
(

2CR− C2

U

)
otherwise.

(37)
We find back (11) and (13) as special cases of (33) for U ≡ ∞
and U ≤ C

R (up to notation for the latter).

D. SNR Wireless Model

The setting is that where the bit rate function is

f(r) =
1

2
log

(
1 +

C

rα

)
1r≤R (38)

with α > 2 the path loss exponent, C the Signal to Noise
Ratio at distance 1 and R the transmission range.

In the case when R is finite, we will limit ourselves to the
fluid case and to the special case where α = 4 (the reason
for the las assumption being that the relevant integral, namely∫ R

0
log
(
1 + C

rα

)
rdr, can be then explicitly computed). In this

case, direct computations give that

γ = π

(
R2 log(1 +

C

R4
) +
√
C arctan(

R2

√
C

)

)
. (39)

The evaluation of the mean number of neighbors of a typical
node, namely Nf = πR2βf , allows one to identify the mean
number of orthogonal channels per unit space required to cope
with the P2P load, namely

βfNf = πR2λF

γ
. (40)

In an infinite plane, this would require an infinite number of
orthogonal channels, which is of course not feasible. However,
it then makes sense to reuse spectrum in this case, to the cost
of an decrease of C (resulting from an increase of the noise
power due to the presence of distant interference).

In this sense, this scheme makes sense under appropriate
spectrum bandwidth assumptions, in the same way as the
TCP scheme makes sense under appropriate network capacity
assumptions.

Notice that the integral
∫∞

0
log
(
1 + C

rα

)
rdr is finite. This

allows us to consider the wireless SNR model with an infinite
range. In this case, the result is much simpler: for all α > 2,

γ =
π2C

2
α

2 sin
(

2π
α

) . (41)

VIII. EXTENSIONS OF THE BASIC MODEL

The aim of this section is to show that our analysis can
be extended in several ways and take important practical phe-
nomena into account. Unless otherwise stated, we will place
ourselves in the fluid regime, but the dimensional analysis
approach can be used with all extensions to relate the fluid
limit to the real system through some function M . The only
caveat is that if an extension introduces new parameters, M
can be a function of several dimensionless variables instead
of Nf only. This is illustrated by our first extension.

A. Permanent Servers

Assume that there exists some servers, or eternal seeders3.
The motivation for considering this is for instance: (i) per-
manent servers can solve the issue of chunk availability by
being able to provide any asked chunk; (ii) this allows one
to consider hybrid systems which combine classical server
solutions and a P2P approach; (iii) with our model, the latency
goes to∞ when λ goes to 0 (cf. (19)), which is not a desirable
effect; servers or permanent seeders seem a perfect solution
to prevent this.

We focus on the TCP case.
The servers are characterized by their density of bitrate UC ,

expressed in bit.s−1.m−2, so that if βf is the peer density, a
typical peer gets UC

βf
from the servers.

To describe the system, we need another dimensionless pa-
rameter in addition to Nf . We conveniently choose χC := UC

λF .
χC expresses the ratio between the density of rate needed by
the system and the density of rate provided by the servers. If
χC ≥ 1, then the permanent rate from servers is sufficient to
serve the peers, otherwise P2P is needed for stability.

Let us consider two limiting cases: the system is mainly
client/server (χC � 1), or the system is mainly P2P with a
small server-assistance (χC � 1). The case χC � 1 can be
seen as a scenario where servers are here mainly for insuring
chunk availability.

If χC � 1, then almost all resources come from the servers.
We can deduce that the point process is hard–core (even
if Nf is large, if it is fixed and if χC grows, the servers
can make newcomers leave before they have the occasion to
reach another peer), so if a peer can collect all the available
bandwidth in its range, the average latency will be

WC ≈
F

πR2UC
. (42)

For χC � 1, we focus on the fluid limit (Nf � 1).
Adapting (8), the rate of a peer is then

µf,C = 2πRCβf,C +
UC
βf,C

, (43)

from which we deduce

Wf,C =

√
F − UC

λ

λ2πCR
= Wf

√
1− χC ≈Wf . (44)

3This is distinct from the case where leechers can seed for some time after
they complete their download, which is addressed in VIII-D



Let us point out that the behavior of (44) for χC close
to 1 is not expected to be realistic, as the impact of the
client/server behavior becomes prominent. For the hard–core
process, one could also express Wh,C as something that tends
to Wh if χC tends to 0, which suggests that MC(Nf , χC)
admits a limit MC(Nf , 0) = M(Nf ) when χC tends to 0.
In words, the results presented in previous sections still hold
if one assumes the existence of servers with relatively small
bandwidth introduced to inject chunks into the system.

B. Abandonment
Here we consider the case where all leechers have some

abandonment rate. Let a denote this rate. In the stationary
state, we have λ = (

µf
F + a)βf . From (8), we deduce µ2

f +
µfaF = 2πRCλF . The positive solution of this equation is

µf =

√
2πRCλF +

(
aF

2

)2

− aF

2
. (45)

The analysis can hence be extended without difficulties. For
instance, the abandonment ratio is given by aF

µf+aF .

C. Per Peer Rate Limitation
Due to the asymmetric nature of certain access networks

(e.g. ADSL), the uplink rate is often the most important
access rate limitation. Let U denote (here) the average upload
capacity of a peer; then the average rate in the fluid limit
should be such that

µf =
√
λF2πCR ≤ U. (46)

A natural dimensioning rule would then be to choose R =
U2

λF2πC in order to use all the available capacity.

D. Leechers and Seeders
When a leecher has obtained all its chunks, it can become

a seeder and remains such for a duration TS . In this setting,
there is a density of seeders λTS in the stationary regime.

In the fluid limit with seeders, (8) becomes

µf,S = (βf,S + λTS)2πCR. (47)

Using (10) and F = Wf,Sµf,S , we get

W 2
f,S +Wf,STS = W 2

f . (48)

The positive solution of this equation is

Wf,S =

√
W 2
f +

(
TS
2

)2

− TS
2
. (49)

In particular, we have Wf,S ≈Wf for TS �Wf and Wf,S ≈
W 2
f

TS
for Ts �Wf .

By comparing (49) and (45), one can interpret seeding as the
exact opposite of abandonment: seeders, which improve the
system, impact the latency the same way that abandonment,
which degrades the system, impacts the rate.

We also remark that in a fluid model where rates are only
determined by the upload access, we have (see [11] for details)

Wf,S + TS = Wf . (50)

We can see (48) as the extension of (50) to the network-limited
model.

At last, we propose to study the hard–core limit. Without
seeder, a leecher can leave only if it finds a peer within range,
and instant service happens with probability one half. With
seeders, a leecher is certain to complete its download if there
is another peer in its neighborhood, as the latter will not leave
the system before the former finishes. We can then notice that
the configuration of peers (leechers and seeders) includes a
spatial Poisson distribution of density λTS . In particular, the
probability for a newcomer to find a peer within range R is at
least 1−e−λTSπR2

. Therefore, for any ε > 0, if TS ≥ − log(ε)
λπR2 ,

then leechers will get instant service with a probability greater
than 1− ε.

This suggests that seeders may be a good antidote for
systems where a hard–core behavior cannot be avoided: a
seeding time of the same order of magnitude than the average
latency in absence of seeders is enough to guarantee that most
of the peers get instant download.

E. Adaptive Range

Consider the constant number of nearest peers model of
Section III. In the fluid limit, which can be reached by
increasing L until it identifies to Nf , an approximate version
of this model is obtained by considering a range model with
radius R such that R, the density β and the target number of
neighbors L verify

πR2β = L. (51)

In this case, µ(x,Φ) is as in (7) but with R =
√

L
πβ .

In this section, we consider a general model with R = κβ−α

with α a real parameter. The constant radius ball corresponds
to the case α = 0 and the L nearest neighbor case to α = 1

2 .
Note that as β depends on R, R = κβ−α has to be seen as a
fixed point equation for α > 0.

By dimensional analysis, one gets that for all α 6= 1
2 , all

properties of the system only depend on the parameter

ρ =
λF

C
κ

3
1−2α . (52)

For α = 1
2 (nearest peers), the parameter is ρ = κ (or

equivalently L).
The fluid analysis gives µf = 2πCκβ1−α, so that

βf =

(
λF

2πCκ

) 1
2−α

Wf = λ−
1−α
2−αF

1
2−α (2πCκ)−

1
2−α

µf = (2πCκ)
1

2−α (λF )
1−α
2−α . (53)

Notice that the algorithm which leads to this hence consists in
choosing a radius of the form R = κ

(
λF

2πCκ

) α
α−2 . For instance

in the constant number of nearest peers TCP case, we get

WTCP =

(
F

2C

) 2
3
(

1

πλL

) 1
3

. (54)



This is an interesting result: it means that in the fluid limit,
TCP can achieve super–scalability even if each peer has a
limited number of neighbors.

This is not the case for UDP, where the latency is WUDP =
F
LC (we still have scalability though).

We conclude this subsection by an asymptotic analysis
where all parameters are fixed but for λ which tends to infinity.
We assume we are in the fluid regime (which will lead to some
restrictions on the set of parameters).

In view of (53), we will call d = 1
2−α the density exponent,

l = α−1
2−α the latency exponent and r = α/(α − 2) the radius

exponent. We have the conservation rule d − l = 1, which
is just a rephrasing of Little’s law. Similarly Nf = Kλ

1−2α
2−α ,

with K a constant. So, for λ tending to ∞, the fluid regime
requires that either α > 2 or α < 1

2 .
Hence, there are 2 regimes when λ→∞:
• For α > 2, (which corresponds to 1 < r < ∞) one gets

at the same time d < 0 and l < 0, which means a peer
density and a latency which both tend to 0 when λ tends
to ∞. This is a rather surprising regime: the load per
unit time and space tends to infinity; the density tends
to 0 (there are no peers around for delivering service);
nevertheless, latency tends to 0 (i.e. when a peer arrives,
it is instantly served by invisible peers located at infinity).
We will call this regime Heaven’s–flash.

• For α < 1
2 (which corresponds to −1/3 < r < 1), one

gets d > 0 and l < 0, which means a peer density that
tends to infinity and a latency which tends to zero when
λ tends to ∞. This is the swarm–flash regime.

Notice the possible existence of a critical–flash regime, with
r = 1, α = ∞, d = 0 and l = −1, where the density
is a constant and the latency tends to 0. Another interesting
though critical case is that where α = 1/2, where the structural
properties of the system do not depend on λ anymore as shown
by dimensional analysis.

F. Mixed Extensions

The proposed extensions, presented separately for sake of
clarity, can easily be interleaved, at least in the fluid limit. For
instance, combining (33) and (49), the average latency of a
system with seeders and a rate function parameter γ (cf VII)
is

Wf =

√
F

λγ
+

(
TS
2

)2

− TS
2

, (55)

In order to illustrate the fact that the above extensions are
compatible, we analyze this case in the setting where the
uplink limitation is taken into account.

µf = (βf+λTS)2π

∫ R

r=0

(C/r)∧Urdr = (βf+λTS)ξ(C,R,U).

(56)
From Little’s law applied to the leechers, βf = λF/µf .

Hence
βf (βf + λTS) =

λF

ξ(C,R,U)
.

The positive solution of this equation is

βf =
λTS

2

(√
1 +

4F

λT 2
Sξ(C,R,U)

− 1

)
, (57)

which is an increasing function of λ. Since Wf = βf/λ,

Wf =
TS
2

(√
1 +

4F

λT 2
Sξ(C,R,U)

− 1

)
. (58)

One can then mary this with the various ways of defining R
as a function of λ.

IX. CONCLUSION

The following general law quantifying P2P super-scalability
was identified: in a P2P system with rate function g and range
R, according to our model, the stationary latency is of the
form

Wo = M

(√
π2R4λF

γ

)√
F

λγ
, (59)

with γ = 2π
∫ R

0
g(r)dr and with M(x) a function which is

larger than 1 and tends to 1 when x tends to infinity (if there
is no range, (59) can still be used with the typical range R̃
defined in VII).

Both in the TCP case, i.e. for g(r) = C
r , and in the UDP

case, i.e. for g(r) = C, the function x→M(x) is decreasing
(and has an explicit approximation).

With a decreasing M , Equation (59) exhibits two causes
of super-scalability. First, there is the 1√

λ
super–scalability

that comes from the fluid term Wf =
√

F
λγ . This is the same

type of super–scalability that was observed in the toy example.
But there is also a super-scalability that comes from M ,
which expresses the surprising fact that increasing the arrival
rate reduces the slow-down due to the repulsion phenomenon
identified in the paper. For Nf large enough, the main cause
of scalability is Wf , but otherwise, the effect of M on super–
scalability is not to be neglected.

The conditions for the super-scalability formula (59) to
hold were also identified: First, the network should have the
capacity to cope with the P2P traffic. This translates into the
requirement

K
√
θ >

2λF

γ

∫ R

0

r2g(r)dr, (60)

where θ is the spatial intensity of routers and K the typical link
capacity. In words, the linear capacity of the network should
scale like λ if other parameters are unchanged. Secondly the
access should not be the bottleneck, which translates into the
requirement

U >
√
λFγ, (61)

where U the (total) upload capacity of each peer. In words,
the latter should scale like the square root of λ.

We remark that the link capacity requirement is larger than
the access requirement, which intuitively supports our initial



motivation, which was that in future (wired) networks, the
bottleneck should not be the access anymore.

Note that we are fully aware of the fact that, in the the hard-
core regime, our model might fail due to the lack of adequate
representation of the chunk level. We expect chunk availability
to become a crucial bottleneck in hard–core. So, if Nf :=
R4λF
γ � 1, our conclusions are probably overestimating the

actual performance.
One of the future challenges in the research started by this

paper is the extension to chunk-level modeling. Considering
chunks leads to the issue of data availability, and a chunk-
based system may be, in some scenarios, less stable that the
models considered in this paper. For instance, a missing piece
syndrome may be encountered in the form of growing spatial
subpopulations missing at least one chunk. Parameters like
the degree of altruism and the spatial intensity of permanent
seeders can be expected to appear in the characterization of a
stable regime.

X. APPENDIX: PROOF OF PROPOSITION 1 (SKETCH)

Choose a number z0 > 0 such that f(z0) > 0 and split
D into cells with diameters at most z0. Then all peers in
a cell with population higher than one receive service at
least at rate f(z0). It follows that the population of each
cell is stochastically dominated by an M/M/∞ queue that
is modified so that a lone customer cannot leave. Since such
queues are stable with any input rate, the distribution of
(|Φt| : t ≥ 0) is tight, whatever the initial state Φ0. The
ergodicity can now be shown by a standard coupling argument:
two realizations with different initial states but same arrival
process couple in finite time. �

XI. APPENDIX: PROOF OF THEOREM 1

We work here on the torus T of area D. Let d denote the
distance on T and m the Haar measure. Let f : (0,∞) →
(0,∞) be a positive function, and let Φt be the state of the
SBD at time t. For x0 ∈ T , let

a =

∫
T

f(‖x− x0‖)m( dx).

By translation invariance, a is independent of the choice of
x0. Further, the left hand side of the claim can be expressed
as

E[
∑
xi∈Φ

f(||xi||)] = E(N0)
a

D
. (62)

Consider now the P2P dynamics on T in steady state. For all
X ∈ Φt, let

At(X) =
∑

Y ∈Φt,Y 6=X

f(‖X − Y ‖) (63)

At =
∑
X∈Φt

At(X), (64)

where At(X) is the death rate of point X and At is the total
death rate of the SBD (here we assume that the mean file size

F is equal to 1). The right hand side of the claim can be
written as

E0[
∑

xi∈φ\{0}

f(||xi||)] = E0(A0(0)). (65)

By the rate conservation principle (e.g., [22], 1.3.3), applied
to the stochastic process Nt = Φt(T ), we get

λD = E(A0) = E(N0)E0(A0(0)), (66)

with E0 the (spatial) Palm probability of Φ0. This relation
says that the birth rate r↑ = λD should balance the death rate
r↓ = E(A). The relation E(A0) = E(N0)E0(A0(0)) follows
from the definition of the Palm probability.

Let E↑ denote the (time) Palm probability of the SBD at
birth epochs and E↓ that at death epochs. The rate conservation
principle applied to the stochastic process (total rate) At, that
we assume cadlag, gives

r↑E↑(I) = r↓E↓(D)

with I = A0+−A0 the total rate increase and D = A0−A0+

the (absolute value of the) total rate decrease. Since r↑ = r↓,
we get that

E↑(I) = E↓(D).

From the PASTA property [22], and the fact that births are
uniform on T ,

E↑(I) = 2E(N0)
a

D
.

The (total) death point process admits a stochastic intensity
w.r.t. the filtration Ft = σ(Φs, s ≤ t) equal to At. Hence, it
follows from Papangelou’s theorem (e.g., [22], Theorem 1.9.2)
that

dP↓

dP
|F0−=

A0

E(A0)
.

Since the decrease (in state Φ0−) is of magnitude A0(X) (w.r.t.
Φ0−) with probability A0(X)

A0
(w.r.t. Φ0−), we get

E↓(D) = 2E

(
A0

E(A0)

∑
X∈Φ0

A0(X)

A0
A0(X)

)

= 2

E

( ∑
X∈Φ0

(A0(X))2

)

E

( ∑
X∈Φ0

A0(X)

) .

Hence, when using the fact that

E

( ∑
X∈Φ0

(A0(X))2

)

E

( ∑
X∈Φ0

A0(X)

) =
E0

(
(A0(0))2

)
E0 (A0(0))

,

the rate conservation principle for total rate gives:

E(N0)
a

D
=

E0

(
(A0(0))2

)
E0 (A0(0))

. (67)

Recalling (62) and (65), we now note that Theorem 1
follows from the fact that E0

(
(A0(0))2

)
≥ E0 (A0(0))

2
.



XII. APPENDIX: SKETCH OF PROOF OF THEOREM 2

Assume for simplicity that f is bounded. We proceed as
in the fluid limit of a queue, by scaling the arrival and
service rates appropriately, and consider a sequence of systems
indexed by n, where n is a parameter that tends to infinity.
Our assumption is that the arrival rate in system n is λn = λn,
and the mean file size in system n is Fn = Fn.

We tessellate the plane with a grid made of squares of side
δ, and time with a grid of width η. Hence, the mean number
of arrivals in a typical square and a typical time interval is
λnδ2η for all n. In addition, the strong law of large numbers
(SLLN) shows that the random number of arrivals Atn in a
typical square in the time interval (t, t+ η) is such that Atn/n
tends a.s. to the constant ληδ2 when n tends to infinity.

The next task is to show that the number of peers N t
n(k, l)

present at time t in the square with coordinates (kδ, lδ) is
such that N t

n(k, l)/n converges a.s. to some deterministic limit
βt(k, l)δ2. We then get that the number of deaths in this square
in the time interval (t, t+ η), denoted by Dt

n(k, l), satisfies

lim
n→∞

1

n
Dt
n(k, l)

=
1

F
βt(k, l)

∑
p,q

f [(pδ, qδ), (kδ, lδ)]βt(p, q)δ4η.

This follows from the fact that the probability that a typical
peer in the square (kδ, lδ) dies approximately with probability

η

Fn

∑
p,q

f [(pδ, qδ), (kδ, lδ)]N t
n(p, q) that tends to

1

F

∑
p,q

f [(pδ, qδ), (kδ, lδ)]βt(p, q)δ2η,

so that the number of deaths tends to the announced limit.
(Notice however that this discretization does not make sense
for, e.g., f(x, y) = C/|x− y|, as f [(kδ, lδ), (kδ, lδ)] =∞.)

Hence, by letting δ and η tend to 0, we get that the function
βt(x) which is the value of the density at x ∈ R2 at time t in
the fluid regime satisfies the differential equation

d

dt
βt(x) = λ− βt(x)

F

∫
R2

f(x, y)βt(y)dy. (68)

The steady state of this is

λ

β(x)
=

1

F

∫
R2

f(x, y)β(y)dy.

A translation invariant solution of this is

β2 =
λF∫

R2 f(x, y)dy
,

which is the “fluid solution”.

XIII. APPENDIX: JUSTIFICATION OF THE HEURISTIC

In order to derive the heuristic of Section IV-E, we use
the balance equation for the second order factorial moment
density, which reads

2βoλ = 2m[2](x, y)
C

F

1||x−y||≤R

||x− y||
(69)

+
C

F

∫
D

m[3](x, y, z)

(
1||x−z||≤R

||x− z||
+

1||y−z||≤R

||y − z||

)
dz,

for all x and y. We then use the following approximations:

m[3](x, y, z) ≈
m[2](x, y)m[2](x, z)

βo

m[3](x, y, z) ≈
m[2](x, y)m[2](y, z)

βo
.

Then, we get from (69) that

βoλ ≈ m[2](x, y)
C

F

1||x−y||≤R

||x− y||

+m[2](x, y)
C

F

1

2

∫
D

1||x−z||≤R

||x− z||
m[2](x, z)

βo
dz

+m[2](x, y)
C

F

1

2

∫
D

1||y−z||≤R

||y − z||
m[2](y, z)

βo
dz,

that is
m[2](x, y) ≈ λF βo

C1||x−y||≤R
||x−y|| + µo

. (70)

with µo =: C
∫
B(0,R)

m[2](0,z)

βo
1
||z||dz. So

µo ≈ λF2πC
∫ R

0
1

µo+C
r

dr

= λF2πC
(
R
µo
− C

µ2
o

ln(1 + µoR
C )
)
,

(71)

which is our departure point in Section IV-E.
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