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Maintaining Representations of the Environment of
a Mobile Robot

NICHOLAS AYACHE anp OLIVIER D. FAUGERAS

Abstract—In this paper we describe our current ideas related to the
problem of building and updating 3-D representation of the environment
of a mobile robot that uses passive Vision as its main sensory modality.
Our basic tenet is that we want to represent both geometry and
uncertainty. We first motivate our approach by defining the problems we
are trying to solve and give some simple didactic examples. We then
present the tool that we think is extremely well-adapted to solving most of
these problems: the extended Kalman filter (EKF). We discuss the
notions of minimal geometric representations for 3-D lines, planes, and
rigid motions. We show how the EKF and the representations can be
combined to provide solutions for some of the problems listed at the
beginning of the paper, and give a number of experimental results on real
data.

I. InTRODUCTION

N THE last few years, Computer Vision has gone

extensively into the area of three-dimensional (3-D) analysis
from a variety of sensing modalities such as stereo, motion,
range finders, and sonars. A book that brings together some of
this recent work is [24].

Most of these sensing modalities start from pixels which are
then converted into 3-D structures. A characteristic of this
work as compared to previous work (like in image restoration,
for example) where images were the starting and the ending
point is that noise in the measurements is, of course, still
present but, contrary to what has happened in the past, it has to
be taken into account all the way from pixels to 3-D geometry.

Another aspect of the work on 3-D follows from the
observation that if noise is present, it has to be evaluated, i.e.,
we need models of sensor noise (sensor being taken here in the
broad sense of sensory modality), and reduced. This reduction
can be obtained in many ways. The most important ones are as
follows:

® First, the case of one sensor in a fixed position: it can
repeat its measurements and thus maybe obtain better estima-
tions.

® Second, the case of a sensor that can be moved around:
given its measurements in a given position, what is the best
way to move in order to reduce the uncertainty and increase
the knowledge of the environment in a way that is compatible
with the task at hand.

® Third, is the case of several different sensors that have
to combine their measurements in a meaningful fashion.

Interesting work related to those issues has already emerged
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which is not reported in [24]. In the area of robust estimation
procedures and models of sensors noise, Hager and Mintz [22]
and McKendall and Mintz [27] have started to pave the
ground. Bolle and Cooper {12} have developed maximum
likelihood techniques to combine range data to estimate object
positions. Darmon [16] applies the Kalman filter formalism to
the detection of moving objects in sequences of images.
Durrant-Whyte [18], in his Ph.D. dissertation has conducted a
thorough investigation of the problems posed by multi-sensory
systems. Applications to the navigation of a mobile robot have
been discussed by Crowley [15], Smith and Cheeseman [32],
and Matthies and Shafer {28]. The problem of combining
stereo views has been attacked by Ayache and Faugeras [3].
[4], [19], Porril et al. [30], and Kriegman [25]. It also appears
that the linearization paradigm extensively used in this paper
has been already used in the photogrammetry field [26].

Several problems related to these preliminary studies need
more attention. Modeling sensor noise in general and more
specifically visual sensor noise appears to us an area where
considerable progress can be achieved; relating sensor noise to
geometric uncertainty and the corresponding problem of
representing geometric information with an eye toward de-
scribing not only the geometry but also the uncertainty on this
geometry are key problems to be investigated further as is the
problem of combining uncertain geometric information pro-
duced by different sensors.

II. WHAT ARE THE PROBLEMS THAT WE ARE TRYING TO SOLVE

We have been focusing on a number of problems arising in
connection with a robot moving in an indoor environment and
using passive vision and proprioceptive sensory modalities
such as odometry. Our mid-term goals are to incrementally
build on the robot an increasing set of sensing and reasoning
capabilities such as:

build local 3-D descriptions of the environment,
use the descriptions to update or compute motion
descriptions where the motion is either the robot’s
motion or others,

¢ fuse the local descriptions of neighboring places into
more global, coherent, and accurate ones,

® “‘discover’’ interesting geometric relations in these
descriptions,

e ‘“discover’’ semantic entities and exhibit ‘“‘intelligent’
behavior.

We describe how we understand each of these capabilities
and what are the underlying difficulties.

1042-296X/89/1200-0804$01.00 © 1989 IEEE
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Fig. 1. Effect of pixel noise on 3-D reconstruction.

A. Build Local 3-D Descriptions of the Environment

Up until now, our main source of 3-D information has been
Stereo [5], [9] even though we have made considerable
progress toward the use of structure from motion as well [21].
In any case, the problems are very similar for both sensing
modalities and we concentrate on Stereo. As announced in the
Introduction, our main concern is to track uncertainty all the
way from pixel noise to geometric descriptions. Fig. 1 shows,
for example, that in a Stereo system, if pixels positions are
imperfectly known, then the corresponding 3-D point varies in
an area with a quite anisotropic diamond shape. This is a clear
example of a relation between pixel uncertainty and geometric
(the position of point M) uncertainty. Another source of
uncertainty in Stereo is the calibration uncertainty. In a stereo
rig, intrinsic parameters of the cameras such as focal length,
and extrinsic parameters such as relative position and orienta-
tion of the cameras have to be calculated. Fig. 2 shows the
effect on the reconstruction of a point M of an uncertainty on
the focal lengths of the two cameras. Again, M varies in a
diamond-like shape. Of course, this source of uncertainty adds
to the previous pixel uncertainty.

Another example of the propagation of uncertainty is given
in Fig. 3 where pixels in left and right images are grouped into
line segments: pixel uncertainty is converted into 2-D line
uncertainty. Line segments are then matched and used to
reconstruct 3-D line segments: 2-D line uncertainty and
calibration uncertainty are converted into 3-D uncertainty.

Yet another set of examples of this kind of propagation is
shown in Fig. 4 where coplanar and cocylindrical line
segments are grouped together; again, the question is, what is
the uncertainty on the plane or on the cylinder? (the uncer-
tainty on the position of the lines, plane, and cylinder is
represented on the picture in a symbolic manner by ellipses).

From these examples, we see that the main problem that
needs to be solved in order to build local 3-D descriptions of
the environment is how geometric uncertainty propagates
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Fig. 2. Effect of calibration errors on 3-D reconstruction.
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Fig. 3. From pixel uncertainty to 3-D line uncertainty.

when we build more complex primitives from simpler ones.
This, in turn, generates two questions:

1) How do we represent geometric primitives?
2) How do we represent uncertainty on these primitives?

B. Update Position and Motion Information

Fig. 5 shows a measurement of a physical point made in two
positions 1 and 2 of a mobile vehicle. In position 1, it ‘‘sees’’
M with some uncertainty represented by the ellipse around it.
In position 2, it “‘sees’’ P with another uncertainty. Assuming
that the displacement between 1 and 2 is exactly known, it is
possible to express P and M in the same coordinate system. If
the displacement estimate is wrong, as it is in Fig. 5, the two
zones of uncertainty do not intersect and it is very unlikely that
the observer will realize that the points M and P are instances
of the same physical point. If we now take into account the
uncertainty on the displacement (assuming that we can
estimate it) we have Fig. 6 where the combination of
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Fig. 4. From 3-D line uncertainty to 3-D surface uncertainty.
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Fig. 6. Measuring a point in two positions (displacement and uncertainty
estimation).

Fig. 5.

displacement uncertainty and measurement uncertainty pro-
duces a larger ellipse around P which intersects the one around
M: the observer can now infer that the probability of M and P
being the same physical point is quite high and use the two
measurements to obtain a better estimate of the displacement

[EEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 5, NO. 6, DECEMBER (989

Fig. 7. Improving the estimation of the points position.
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Fig. 8. Fusing n points measured from different positions.

and reduce its uncertainty. We explain how to do this in
Section V. The measurements can also be used to produce
better estimates of the positions (Fig. 7). This is related to
what we call geometric fusion.

C. Fusing Geometric Entities

Fig. 8 shows a slightly more general case than what is
depicted in Fig. 7. The mobile vehicle has measured the
physical point M in 7 positions numbered from 1 and n. Each
measurement yields a point M;, i = 1, -+, n and some
uncertainty in the coordinate system attached to the robot.
Displacement uncertainty is also available. Using the ideas
described in Section V, we can improve the estimates of the
displacements and reduce their uncertainty by discovering that
points M,, - -+, M, are all instanciations of the same point.
We can also use this observation to reduce the uncertainty on,
let us say M;, by combining the # measurements and produce
a point I, fusion of My, ---, M,, as well as its related
uncertainty. The points My, * *+, M, can then be erased from
the representation of the environment, they can be forgotten.
What remains is the point 9 expressed in the coordinate
system attached to position 1, for example, and the displace-
ment from 1to 2, 2 to 3, etc...., which allows us to express M
in the other coordinate systems.

Fusing geometric entities is therefore the key to “‘intelli-
gent”’ forgetting which, in turn, prevents the representation of
the environment from growing too large.

D. Discovering “‘Interesting”’ Geometric Relations

Using this approach also allows us to characterize the
likelihood that a given geometric relation exists between a
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Fig. 9. Discovering that AB and CD are parallel.
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Fig. 10. Hypothesizing walls, windows, and doors.

number of geometric entities and to use this information to
obtain better estimates of these entities and reduce their
uncertainty. For example, as shown in Fig. 9, segments AB
and CD which have uncertainty attached to their endpoints
have a high likelihood to be parallel. Assuming that they are,
we can update their position (they become more parallel) and
reduce the uncertainty of their endpoints. The same reasoning
can be used, for the relation ‘‘to be perpendicular.”’

E. Discovering Semantic Entities

Fig. 10 shows the kind of “‘semantic’’ grouping that is of
interest to us in the context of a mobile robot moving indoors,
to combine geometry and some a priori description of the
environment. The line segments numbered from 1 to 15 are
found, using the ideas described in Section II-D, to be
coplanar with a high probability; the corresponding plane is
found to be vertical with a very high probability which can be
deduced from the geometric uncertainty of the line segments.
This observation can then be used to infer that the plane has a
high probability to be a wall. If we also observe that segments
8to 11 and 12 to 15 form approximately two rectangles this
can be used to infer that they have a high probability to be
parts of a window or a door.

II. WHAT is THE TOOL THAT WE ARE Using

In this section, we introduce the Extended Kalman Filter
(EKF) formalism which is applied in Sections IV and V to
solve the problems we have just listed in Section II.

A. Unifying the Problems

In all of these previously listed problems, we are confronted
with the estimation of an unknown parameter a € R” given a
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set of & possibly nonlinear equations of the form
fixi, a)=0 M

where x; € R™ and Jfiis a function from R” x R" into RP,
The vector x; represents some random parameters of the
function f; in the sense that we only measure an estimate £, of
them, such that

f,—=x,-+v,-

@

where v; is a random error. The only assumption we make on
v; is that its mean is zero, its covariance is known, and that it is
a white noise

E[U,'] =0
Elvv!]=A,20

E[v,-v/’.]=0 Vi),

These assumptions are reasonable. If the estimator is biased, it
is often possible to subtract its mean to get an unbiased one. If
we do not know the covariance of the error (or at least an
upper bound of it), the estimator is meaningless. If two
measurements X; and X; are correlated, we take the concatena-
tion of them %, = (%, %;) and the concatenated vector function
fe =114 f;}’ - The problem is to find the optimal estimate & of
a given the function £; and the measurements X;.

B. Linearizing the Equations

The most powerful tools developed in parameter estimation
are for linear systems. We decided to apply these tools to a
linearized version of our equations. This is the EKF approach
that we now develop.

For each nonlinear equation Silx;, @) = 0 we need to know
an estimate 4;,_, of the sougth parameter a, and again a
measure §; of the confidence we have in this estimate. !
Actually, we model probalistically the current estimate a;_,of
a by assuming that

4_=a+w 3)

where w; is a random error. The only assumptions we make on
w; are the same as for v, i.e.,

E[W,] =0
Elww =58>0
where §; is a given non-negative matrix. Here again, no
assumption of gaussianness is required.

Having an estimate d;_; of the solution, the equations are
linearized by a first-order Taylor expansion around (%, 4;,_))

3/\:‘ afi
Jilxi, a)=0=f(%,, difl)‘*'*f (xi—-fi)'*'_j (a-d;,_)) 4
ox da

. - 'Y’ N, . A
where the derivatives df;/dx and df;/da are estimated at (%,
G;_y).

"In practice, we shall see that only an initial estimate (4o, S) of a is

required prior to the first measurement X, while the next ones (@, S;) are
provided automatically by the Kalman filter itself.
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Equation (4) can be rewritten as

yi=Ma+u; )

where
af
yi= —fil%;, ﬁi41)+£ a;_
da

K
" da
if;

u=— xi—f,» .
ax( )

Equation (5) is now a linear measurement equation, where
y; is the new measurement, M; is the linear transformation, u;
is the random measurement error. Both y; and M; are readily
computed from the actual measurement £;, the estimate d;_; of
a, the function f;, and its first derivative. The second-order
statistics of u; are derived easily from those of v;

Elu;]1=0

i . of
W,‘ é E[u,'lllv]z—f‘— A,i .
©o9x o ox

C. Recursive Kalman Filter

When no gaussianness is assumed on the previous random
errors u;, v;, and w;, the Kalman filter equations provide the
best (minimum variance) linear unbiased estimate of a. This
means that among the estimators which seek a; as a linear
combination of the measurements {y;}, it is the one which
minimizes the expected error norm squared

E[(dc—a)'(dc—a)}
while verifying
E[ﬁk] =da.

The recursive equations of the Kalman filter which provide
a new estimate (d;, S;) of a from (& 1, Si- 1) are as follows
[23}:

4;=d;,+ Ki(yi— Midi-1) (6)
Ki=Si MW+ MS;i_ M)~ Q)
8=~ KM)S; - (3)
or equivalently
S1=S\+ MW M. ©)

One can see that the previously estimated parameter d;_11s
corrected by an amount proportional to the current error y; —
M;d;_, called the innovation. The proportionality factor K;is
called the Kalman gain. At the end of the process, dy is the
final estimate and S represents the covariance of the
estimation error

Si=E[(d—a)(d—a)].

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 5, NO. 6. DECEMBER 1989

The recursive process is initialized by dy, an initial estimate
of a, and Sp, its error covariance matrix. Actually, the
criterion minimized by the final estimate dy is

k
C=(a—dy)'S;'(a—do)+ Y, (vi—Ma) W ' (y,~Ma).

i=1

{10)

It is interesting to note that the first term of ( 10) measures
the squared distance of a from an initial estimate, weighted by
its covariance matrix, while the second term is nothing else but
the classical least square criterion, i.e., the sum of the squared
measurement errors weighted by the covariance matrices.
Indeed, initializing the process with an arbitrary dpand S ' =
0, criterion (10) provides the classical least square estimate a
obtained from the measurements only, while the initial
estimate does not play any role.

The enormous advantage of such a recursive solution is that
if we decide, after a set of X measurements {%}, to stop the
measures, we only have to keep 4, and S, as the whole
memory of the measurement process. If we decide later to take
into account additional measurements, we simple have to
initialize d, ~ d; and S; ~ S and to process the new
measurements to obtain exactly the same solution as if we had
processed all the measurements together.

D. Gaussian Assumption

Up to now, we did not introduce any Gaussian assumptions
on the random measurement errors v; = X; — X;0f (2) and on
the prior estimate error wo = @ — d, of (3). However, in
practice, these errors usually come from a sum of independent
random processes, which tend toward a Gaussian process
(Central Limit theorem). If we actually identify v; and w, with
Gaussian processes, i.e.,

v;~ N0, A)
wo~N(0, So)

then, it follows that the noise #; in (5) is also Gaussian, i.e.,
u~N@O, W)

and that all the successive estimates provided by the recursive
Kalman filter are also Gaussian, with mean @ and covariance
Sk

dk-N(a, S/()

Moreover, in this case, the Kalman filter provides the best
(minimum variance) unbiased estimate d, among all, even
nonlinear, filters. This estimate & is also the maximum
likelihood estimator of a. This comes from the fact that in the
Gaussian case, the solution is the conditional mean d; =
Ela/y;, *-+, yxl which both minimizes the variance and
maximizes the likelihood while being expressed as 2 linear
combination of the measurements ;. Therefore, in this case,
the minimum variance and minimum variance linear estimates
are the same; namely, the estimate dx provided by the Kalman
filter [23].
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In conclusion, in the Gaussian case, the Kalman filter
provides the best estimate with the advantage of preserving
gaussianness of all the implied random variables, which means
that no information on the probability density functions of the
parameters is lost while keeping only their mean and covari-
ance matrix.

E. Rejecting Outlier Measurements

At iteration /, we have an estimate 4; , and an attached
covariance matrix S;_; for parameter a. We also have a noisy
measurement (£;, A;) of x; and we want to test the plausibility
of this measurement with respect to the equation f;(x;, a) = 0.

If we consider again a first-order expansion of fi(x;, a)
around (%, d;_,) (4), considering that (£; — x;) and (;-, — @)
are independent centered Gaussian processes, we see that
Jfi(%;, d;_,) is also (up to a linear approximation) a centered
Gaussian process whose mean and covariance are given by

E[fi(%, 4;_)]=0
of  off

Qi=E[ﬁ(fi, di—l)fi(fi, éiAl)t] =& A a 2a

afi
_I aa .

i

Therefore, if the rank of Q; is g, the generalized Mahalanobis
distance

d(%;, i-)=[fi(%;, di-)1' Q' [fil %, di-))]

has a x? distribution with g degrees of freedom.?

Looking at a x? distribution table, it is therefore possible to
reject an outlier measurement £; at a 95-percent confidence
rate by setting an appropriate threshold e on the Mahalanobis
distance, and by keeping only those measurements £; which

verify

amn

d(%;, 4;_))<e. (12)

We shall see in the experimental section at the end of this
paper how this formalism can be used in practice, and how
well it fits with reality.

IV. GEOMETRIC REPRESENTATIONS

In this section, we give the details of the geometric
representations that we have found useful at various stages of
our work. It is first important to note that we have been dealing
so far only with points, lines, and planes, i.e., with affine
geometric entities. This may appear to be quite a restriction on
the type of environments that we can cope with. This is indeed
the case but there are a number of reasons why we think that
our approach is quite reasonable.

1) The obvious one is that for the kind of environment that
our mobile robot moves into, these primitives are very likely
to cover most of the geometric features of importance.

2) A second reason is that more complicated curved
features can be first approximated with affine primitives which
are then grouped into more complicated nonaffine primitives.

3) A third reason is that we believe that the techniques we
have developed for representing and combining uncertainty of

2If ¢ < p = the size of the measurement vector f;, Q! is the pseudo-
inverse of Q,.
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Fig. 11. A possible 3-D line representation.
affine primitives are generic and directly applicable to
nonaffine primitives.

Let us now discuss specifically lines, planes, and rigid
displacements.

A. Line Segments

The 3-D segments that we deal with are usually constructed
from stereo [4], [9]. Their endpoints may be quite unreliable,
even though they can be of some use from time to time, and we
largely depend on the infinite lines supporting those line
segments.

We concentrate here on how to represent 3-D lines. The
obvious representation we mention here only for pedagogical
reasons, is by two points; this representation is six-dimen-
sional and, as we will see next, not minimal. Another way to
represent a line is to choose a point on it (three parameters),
and a unit vector defining its direction (two parameters). The
corresponding representation is five-dimensional and, again,
not minimal. In fact, the set of affine 3-D lines is a manifold of
dimension 4 for which we will exhibit later an atlas of class
C=.3 This implies that a minimal representation of a straight
line has four parameters.

One such representation can be obtained by considering the
normal to the line from the origin (if the line goes through the
origin it is the same as a vector line and can be defined by two
parameters only). The point of intersection between the
normal and the line is represented by three parameters. If we
now consider (see Fig. 11) the plane normal at P to OP, the
line is in that plane and can be defined by one more parameter,
its angle with an arbitrary direction, for example, the line
defined by P, and one of the axis of coordinates (in Fig. 11, the
z axis). Of course, when the line is parallel to the xy plane this
direction is not defined and we must use either the x or the y
axis. This brings up an interesting point, namely, that a global
minimal representation for affine lines, i.e., one which can be
used for all such lines, does not exist. We must choose the
representation as a function of the line orientation. Mathemati-
cally, this means that the manifold of the affine straight lines
cannot be defined with only one map. This is quite common
and is also true for affine planes and rotations of R3, as will be
shown next.

The previous representation for a line is not in fact the one

3 Grossly speaking, a manifold of dimension d is a set that can be defined
locally by d parameters. When the functions that transform one set of
parameters into another are p times differentiable, the manifold is said to be of
class CP. For more details, see [14].
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Fig. 12. A better 3-D line representation.

we have been using. In effect, the parameters involved in the
previous representation are usually combined in a highly
nonlinear manner in the measurement equations expressing
geometric relationships between geometric entities (cf. next
section), which is not good for the extended Kalman filtering
approach. Also, the angular parameter must be assigned some
fixed bounds (for instance 10, «[), which might cause some
problems during a recursive evaluation with the Kalman filter.
This latter constraint also appears in the representation
recently proposed by Roberts [31].

Therefore, we prefer the following representation in which
the retained parameters are usually combined linearly in the
measurement equations, and are not constrained to any
bounded interval. This representation considers a line (not
perpendicular to the z axis) as the intersection of a plane
parallel to the y axis, and a plane parallel to the x axis

{x=az+p (13)
y=bz+gq.

The intersection is represented by the four-dimensional vector
L = [a, b, p, q]7 which has the following geometric
interpretation (see Fig. 12): The direction of the line is that of
the vector [a, b, 1]7, and the point of intersection of the line
with the xy plane has coordinates p and g. Since the last
coordinate of the direction vector is equal to 1, the line cannot
be perpendicular to the z axis or parallel to the xy plane. If we
want, and we do in practice, represent such lines, we must
choose another representation, for example

(14)

y=ax+p
z=bx+gq

which cannot represent lines parallel to the yz plane, or
perpendicular to the x axis, or

Z=ay+p

{x =by+gq as)

which excludes lines parallel to the zx plane.

Each representation defines a one-to-one mapping between
R* and a subset (in fact an open subset) of the set of affine 3-D
lines and it can be shown that these three mappings define on
this set a structure of C* manifold for which they form an
atlas. In practice, this means the representation is not exactly
four-dimensional, but is made of the four numbers a, b, p, and
¢ and an integer 7 taking the values 1, 2, and 3 to indicate
which map 13, 14, or 15 we are currently using.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 5. NO. 6. DECEMBER 1980
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Fig. 13. Reconstruction of 3-D lines.

The fact that the set of affine 3-D lines has been given a
structure of C* manifold implies that the ¢’, ", p’, ¢" of a
given representation are C* functions of the a, b, p, q of
another representation for all lines for which the two represen-
tations are well defined (for example, all lines not parallel to
the xy and yz planes). The representation of a line also
includes a 4 X 4 covariance matrix A; on the vector L.

It is interesting at this stage to trace the computation of this
covariance matrix all the way from pixel to 3-D. In order to do
this, we must briefly explain how 3-D lines are computed in
our current Stereo system [9]. We use three cameras as
indicated in Fig. 13. In theory, the three planes defined by the
2-D lines /;, />, and /5 and the optical centers Cy, C;, and C
belong to the same pencil and intersect along the 3-D line L. In
practice they do not because of noise, and we have to find the
“‘best’’ line satisfying the measurements, i.e., /|, /z, and /;.
This can be done by using the idea of pencil of planes,
described more fully in [21]. We assume that in the coordinate
system attached to camera 1, for example, the equation of the
ith plane P;, i = 1, 2, 3, is given by

ux+uvy+wz+r=0

where the three four-vectors P; = [u;, v;, w;, r;]7 are known,
as well as their covariance matrix Ap, (we show later how to
compute them). If we use representation (13) for the 3-D line,
it is represented as the intersection of the two planes P of the
equation X = az + p and Q of the equation y = bz + gq.
Writing that the five planes 2, Q, and P, i = 1, 2, 3, form a
pencil allows us to write six equations

{W,+aui+bu;:0, i:1, 2,3

ri+pui+qu;=0,

in the four unknowns a, b, p, and q.

We can apply directly the Kalman formalism to these
measurement equations and choose a = {a, b, p, ¢]7. and x,
as the four-vector P;,. We can therefore simply compute an
estimate 4 of a and its covariance matrix A; from the P;’s and
Ap‘-’S.

Let us now show how we can compute the P;’s and Aps.
Eachline /;, i = 1, 2, 3, is obtained by fitting a straight line to
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Fig. 14. 2-D line approximation.

a set of edge pixels which have been detected using a modified
version of the Canny edge detector [13], [17]. Looking at Fig.
14, let x cos @ + y sin & — p = 0 be the equation of the
line / which is fit to the edge pixels m; of coordinates x;, y;,
(0 = 8 < 27, p =2 0). We assume that the measured edge
pixels are independent and corrupted by a gaussian isotropic
noise and take the parameter a equal to [f, p]7 and the measure-
ment x as the vector [x, y]7. The measurement equation is
therefore

Sf(x, a)=xcos 6+y sin §—p.

Applying the EKF formalism to the #n-edge pixels forming
the line provides the best estimate 4 of the line parameters and
its covariance matrix. Having done this for all three cameras,
it is easy to deduce the equations of the three planes P; and the
covariance matrices on their coefficients.

B. Planes

Planes can receive pretty much the same treatment as lines.
A plane is defined by three parameters, and this is minimal. A
possible representation is the representation by the normal 7 (a
unit norm vector), and the distance d to the origin. The
problem with this representation is that it is not unique since
(—n, ~d) represents the same plane. It is possible to fix that
problem by assuming that one component of n, say n., is
positive, i.e., we consider planes not parallel to the z axis. For
these planes we must choose another convention, for example,
that n, is positive. Again, this works well for planes not
parallel to the x axis. The third possible representation is to
assume n, positive which excludes planes parallel to the y axis.

So, we have three one-to-one mappings of open subsets of
the product S, X R, where S, is the usual Gaussian sphere into
open subsets of the set of planes

(n, d), n,>0—planes not parallel to Oz
(n, d), n,>0—planes not parallel to Ox
(n, d), n,>0—planes not parallel to Oy.

[tis easy to show that these three mappings define on the set
of 3-D planes a structure of C* manifold of dimension 3.

One practical disadvantage of the previous representations
is that the normal # is constrained to lie on the unit sphere S5,
i.e., it must satisfy the constraint ||n|| = 1. A possibly simpler
representation is obtained by considering the mapping from R?
to the set of 3-D planes defined by

pr:i(a, b, c)ymax+by+z+c=0. (16)
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This can represent all planes except those parallel of Oz and it
is a one-to-one continuous mapping from R to the open subset
of the set of 3-D planes constituted of the planes not parallel to
the z axis. In order to obtain all possible planes, we must also
consider the mappings

p2i(a, b, c)>x+ay+bz+c=0 a7

D3 (a, b, c)>bx+y+az+c=0. (18)

D> (respectively, ps;) excludes planes to the x axis (respec-
tively, the y axis). It is easy to show that p,, p,, p; also define
on the set of 3-D planes a structure of C* manifold of
dimension 3.

C. Rigid Displacements

In a previous paper [4], [6] we have proposed the use of the
exponential representation of rotations. This is the same as
saying that a rotation is defined by its axis # (a unit vector) and
its angle 6. The vector r = fu can be used to represent the
rotation and we have

R=eH

where H is an antisymmetric matrix representing the cross
product with the vector r (i.e., Hx = r X x, for all x). In this
case, the rotation is represented by the three coordinates of r,
i.e., by three independent numbers. There are several other
possible representations for rotations, the most widely known
being the one with orthogonal matrices or quaternions. Their
main disadvantage is that an orthogonal matrix is defined by
nine numbers subject to six quadratic constraints, whereas a
quaternion is defined by four numbers subject to one quadratic
constraint. These constraints are not easy to deal with in the
EKF formalism and, moreover, these two representations are
more costly than the exponential one.

Let us see how we can define a structure of manifold on the
set of rotations using this representation. If we allow 8 to vary
over the semi-open interval [0, 27[, the vector r can vary in
the open ball B(0, 27) of R? of radius 2. But the mapping f:
B(0, 2) into the set of rotations is not one to one because (u,
w) and (—u, w) represent the same rotation. To enforce
uniqueness we can assume that one of the coordinates, for
example u,, of the rotation axis u is positive. We can then
represent uniquely the open subset of the set of rotations for
which the axis is not perpendicular to the z axis, and has a
positive component along the axis, and the mapping is
continuous. If we consider the open set of rotations defined by
(u, 0), u; < 0, we have another one-to-one continuous
mapping. With these two mappings, we cannot represent
rotations with an axis perpendicular to the z axis. In order to
obtain all possible rotations, we have to introduce the other
four mappings defined by (u, ) and u, > O (respectively, u,
< 0, u, > 0, u, < 0) which represent rotations with an axis
not perpendicular to the x axis (respectively, the y axis). We
are sill missing the null vector, i.e., we have no representation
for the null rotation, the identity matrix. In order to include it,
we have to add a seventh map by considering for example the
rotations defined by the ‘‘small’’ open ball B(0, ¢) where ¢
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must be smaller than . These seven mappings define on the
set of rotations a structure of C* manifold of dimension 3.4

It is interesting that in all three cases (3-D lines, planes, and
rotations), unique global representation does not exist and that
we must deal with at least three local mappings.

It is now instructive to study how the group of rigid
displacements operates on the representations for lines and
planes.

1) Applying Rigid Displacement to Lines: The easiest
way to derive how representation (13) changes under rotation
and translation is by considering that the line is defined by two
points M| and M, of coordinates (x;, y1, 2;) and (X, ¥2, 22). It
is then easy to verify that

X2— X Y2—N
= b=
—2 =2
_RBXi—axn Vi)
22—3 L2 )

Introducing the vector MM, = [A, B, C]7, we have ¢ =
A/C, and b = B/C. a and b are therefore only sensitive to
rotation

MlMp_“’R M1M2
Al
B’ | =R
C’

A
B
C
a’ A'/C’
- =
b’ B'/C" |~

r-m , nm
a’ = b=
nem rm

This yields

where m = [a, b, 1]7, and the r;’s are the row vectors of
matrix R. This is true only if r;-m # 0; if r;-m = 0, the
transformed line is perpendicular to the z axis and representa-
tion (14) or (15) must be used.

To treat the case of p and g, let us introduce P = p(z, —
z21) = pCand Q = q(z; — 71) = gC. It is easy to show that

[g} - [‘1) “01 g] OM, x OM, = H(OM, x OM5).

This allows us to study how P and Q change under rotation

and translation
OM,—R OM,+t¢ OM,—R OM, +t.

Therefore

[S] - [gl/] =H(R(OM; X OM)) + tX R M, M>).

Using the previous notations, MM, = [A, B, C]’, and
OM; x OM, = [Q, —P, X]* where X is unknown. But

4 In [10] and [11] one can find an atlas of rotations with only four maps.
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noticing that MM, (OM, x OM,) = 0 we have

AQ—-BP+CX=0

and therefore

BP-A
x40

—bP-aQ.
C Q0

C is not equal to O since by definition, the line is not

perpendicular to the z axis. Putting everything together

p’ q
[ ,]:CH R -p |+txXRm |.
© bp—aq
Finally
e C q
[P/C ]_ alr{ 2

M] |
’ = ’ 7 = +tXRm
[q g/C C bp_aq> )

and we know from the previous derivation that C/C’
1/ry- M, therefore

/ 1
[p,}= H(Rp +tx Rm)
q rom

where we have taken p = [gq, —p, bp — aq]’.

2) Applying Rigid Displacements to Planes: Given a
plane represented by its normal # and its distance to the origin
d, if we apply to it a rotation along an axis going through the
origin represented by a matrix R followed by a translation
represented by a vector ¢, the new plane is represented by Rn
and d — ¢-Rn [20].

This allows us to compute how the representation (16), for
example, is transformed by the rigid displacement. From the
previous observation:

a a a’
b|2R| b and c¢—c-t-R| b ).
1 1 1

Introducing the three row vectors 7|, r,, r; of matrix R, we
have, assuming that r;-m # O.

rom rhm , ¢—t" Rm
a’ = b’ = =
- m - m ryom
if r;;m = 0, this means that we cannot use the same

representation for the transformed plane since it is parallel to
the z axis, therefore, we must choose the representation (17)
or (18).

V. REGISTRATION, MOTION, AND FuUSION OF VIsuAL MaPps

In this section we show how to solve the problems listed in
Section II within the formalism and the representations
detailed in Sections III and IV.

A. Initial Assumptions

We are given two visual maps V¥ and V', each of them
attached to a coordinate reference frame F and ¥ (see Fig.
15).
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D
Fig. 15. The general registration motion fusion problem.
TABLE I
RELATIONS BETWEEN THE PRIMITIVES

Relations Points Lines Planes

Points = C C
Lines =L clit
Planes =L

Each visual map V is composed of primitives ®, described
by a parameter vector P. We have an estimate P, of P and an
error covariance matrix Wp,.

The coordinate frames § and § ' are related by a rigid
displacement D such that each point M’ of F ' is related to a
point M of § by the relation

O'M'=R OM +t

where R is the rotation matrix and ¢ the translation vector of
the displacement . We also have an estimate ﬁo of D, with
an error covariance matrix Wp,.

B. Defining Geometric Relations

We define a set of geometric relations between the primitive
® and @’ of two visual maps V and V. These relations are
given in Table 1.

The list of relations/primitives is not exhaustive but only
demonstrative. The relation ‘‘identical’” expresses the fact that
the primitives @ and @’ represented in V and V' actually
describe the same physical primitive. The relation ‘‘included”’
expresses that @ describes a physical primitive which is part of
the physical primitive described by ® ’. The relations *‘paral-
lel”” and ‘‘orthogonal’’ are interpreted in a similar fashion.

Each geometric relation can be expressed by a vector
equation of the form

Ji(P, P, D)=0. 19

C. Expressing Geometric Relations

We rewrite (19) for the geometric relations of Table 1. We
denote by P the parameters of the primitive @ = D(®), the
image of @ by the rigid displacement D. The computation of P
from P is, in the case of points, OM = R OM + t. The case
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of lines and planes was detailed in the previous section. The
measurement equations are as follows:
Point-Point:

relation =: O'M’' —OM=0.
Point-Line: assuming the line is not orthogonal to the z axis:

X—a'z-p’ =0

relation C: {y-—b'f—tf =0.

Point-Plane: assuming the plane is not parallel to the z axis:
relation C: a’X+b’y+Z+c¢c’ =0.

Line-Line: assuming the two lines are not orthogonal to the z
axis:

relation =: (a’, b’, ¢’, d’)'—(a, b, ¢, d)'=0
relation ||: (a’, b’)'—(a, b)'=0
relation L: a’d+b’b+1=0.

Line-Plane: assuming the line is not orthogonal and the plane
not parallel to the z axis:

relation C: @'d+b'b+1=0
‘la'p+b'g+c’' =0

relation ||: a’d+b’b+1=0
relation L: (a’, b’)'—(a, b)'=0.
Plane-Plane: assuming the plane is not parallel to the z axis:
relation =: (a’, b’, ¢’)'~(a, b, ¢)'=0

relation |: (a’, b’)'—(a, b)'=0

relation L:a’a+b’b+1=0.
This approach should be compared to that of [29].

D. Registration

1) Principle: The registration (or matching) of two primi-
tives @ and @’ consists in detecting that their parameters P
and P’ verify (19) for one of the above listed geometric
relations, with respect to the current noisy estimates (P,,
Wry), (P}, Wp¢), and (Do, Wp,) of P, P’, and D.

This “‘detection’ is done by computing between each pair of
primitive the generalized Mahalanohis distance given by (11),
and by matching a pair of primitives each time the x?
acceptance test given by inequality (12) is verified, i.e., when

d(Po, Wy, B}, Wpg, Do, Wp)<e. (20)

2) Reliability: The above-described registration procedure
detects what would be called plausible matches between
geometric primitives. When the uncertainty attached to the
primitives parameters is large, it may happen that a plausible
match is false. In order to improve the reliability of the
procedure, one can use a strategy (inspired by [16]) which
starts by registrating primitives whose parameters have a small
covariance matrix, or primitives which can be matched
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unambiguously. Such a strategy is exemplified in the experi-
mental results section of this paper and also in another paper
[81.

3) Efficiency: In order to avoid a O(n?) complexity
algorithm, it is of course possible to use additional control
structures to select a subset of candidate primitives for each
test. For instance, to test the relation ‘="’ between points or
lines, bucketing techniques can be used with efficiency (see for
instance [1], (7).

E. Motion

Having registered two primitives ® and @ ', the motion
problem consists in reducing the uncertainty on the motion
parameters D while taking into account the uncertainty on the
parameters P, P’, and D.

This is done by setting @ = D and x = (P, P’)’, and by
using the relation equation (19) as a measurement equation (1)

fix, a) = f;((P, P"), D)=0.

Starting from the initial estimate d, = Dy, S, = Whpe, and
using the measurement £, = (P, P)*) with

_ WPo 0
W"( 0 WP6>

one applies the EKF formalism to obtain a new estimate d, of
the motion with a reduced covariance matrix §; < Sp. (In the
sense Sy — ) is nonnegative).

This process is recursively repeated: at iteration i, if a new
pair of primitives can be registered with the new motion
estimate (d;_,, S;_1), the additional measurement equations
they bring lead to a new better estimate d; of the motion with a
still reduced covariance matrix S;. This process ends after the
matching of k primitives with a final estimate (d, S) of the
motion parameter D.

F. Fusion

1) General Fusion: The fusion problem is exactly the dual
of the motion problem, as it consists, after the registration of
two primitives, in reducing the uncertainty on the primitive
parameters P and P’ while taking into account the uncertainty
on the parameters P, P’, and D.

This is done by *‘switching the attention,”” i.e., by choosing
a = (P, P') and x = D while using again the relation
equation (19) as a measurement equation (1)

filx, a) = f(D, (P, P"))=0.

The initial estimate is taken as d, = (P, 130’ ) and

_ WPo 0
S°“( 0 Wpé)

and one uses the measurement £, = 130 with W, = Wp, to
apply the EKF formalism and obtain a new estimate d, of the
primitive parameters with a reduced covariance matrix §; <
SO.

If additional relations hold between these primitives and
other ones, the same treatment allows for a further reduction in

their parameters uncertainty, and therefore a more accurate
estimation of the primitive parameters.

2) Forgetting Primitives: After the treatment of a con-
straint, the parameters P, and P, of the primitives are usually
correlated, which means that the covariance matrix

5 pn_( Wrn Weri
cov (P, P)) (WP[’I’I W, )
contains Wp{ p, = W;:l pl # 0.

Therefore, it is no longer possible to treat independently &
and @’ in successive measurement equations. One has to
consider them as a new primitive, either by keeping only one
of them, or the union of them.

For instance if one updates the parameters of & * with those
of an ‘“identical’’ primitive ® observed in a previous visual
map, one keeps only the updated parameters of @  in the new
map, with their covariance matrix W, forgetting the previous
parameters @ after having used them.

On the other hand, if one updates the parameters of two
lines by detecting that they are orthogonal, one keeps the new
primitive formed by the union of the updated two lines, with
the corresponding covariance matrix. One must use this kind
of relation carefully, in order to control the size of the state
parameter 4.

3) Autofusion: In the special case where V = V', all
primitives come from the same visual map, and the motion
parameters vanish as they correspond to the identity transform
and are perfectly known. ’

Nevertheless, one can still detect the previous geometric
relations between pairs of primitives ® and @ ’, and use them
to reduce the uncertainty on the primitives parameters.

VI. EXPERIMENTAL RESULTS

The basic principles presented in this paper were tested on a
variety of synthetic and real data. The interested reader can
find registration and motion results with real points and lines
in [3], registration and fusion results with synthetic and real
points and lines in [2], and results on the building of global 3-
D maps from passive stereovision in [9]. In this paper we only
present results of the motion estimation from two 3-D maps
from passive stereovision in [9]. In this paper we only present
results of the motion estimation from two 3-D maps, the fusion
of several inaccurate 3-D maps, and the detection of colinear-
ity within a single 3-D map (what we called *‘autofusion’”). In
each of these examples, the 3-D map is made of 3-D lines.

A. Registration and Motion

Fig. 16 shows the edges of a triplet of images taken by the
mobile robot in a first position. From these edges, the
trinocular stereovision system computes a set of 3-D seg-
ments. Each 3-D segment is represented by the parameters (a,
b, p, q) of the 3-D line supporting it and by the error
covariance computed—as explained in Section IV-B—from the
uncertainty on the edge points in the three images (we took an
isotropic Gaussian density function of covariance 1 pixel
around each edge point). Each 3-D line is bounded by two
endpoints obtained from the endpoints measured in the three
images which are projected on the reconstructed 3-D line.
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Fig. 16.

Fig. 17.  Front view of reconstructed 3-D lines.

We show in Figs. 17 and 18, respectively, the horizontal
and vertical projections of the reconstructed 3-D segments.
We also show the uncertainty attached to the reconstructed 3-
D lines by showing the uncertainty it produces on the
coordinates of their endpoints. The 95-percent confidence
regions of the endpoints positions are ellipsoids whose
projections are the ellipses shown in Figs. 17 and 18. One can
see the anisotropic distribution of the uncertainty on the three
coordinates of the points and its variation as a function of their
position relative to the cameras (the projections of the three
optical centers of the cameras correspond to the vertices of the
triangle located grossly in the middle of the front view and at
the bottom of the top view. Also, the circles around these
vertices have been given an arbitrary radius of 20 ¢cm to allow
the reader to estimate the uncertainty attached to the other
primitives).

The robot now moves a little, a new triplet of images is
taken (Fig. 19) and another set of 3-D lines is computed.
Initially, the robot is given a very crude estimate of its motion
between the two views. Applying this crude estimate to the 3-
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Top view of reconstructed 3-D lines.

Fig. 18.

Pt
Fig. 19. Triplet of images taken in position 2.

D lines obtained in position 1, and projecting them in one of
the images obtained in position 2 (the image of camera 3), one
obtains the crude superimposition observed in Fig. 20. Solid
lines are the transformed 3-D segments computed in position
1, while the dotted lines are the 2-D segments observed in
position 2.

We now ask the system to discover the relation ‘‘="’
between the 3-D lines (see Section V-C) reconstructed in
position 1 and 2, given the initial crude motion estimate and its
uncertainty. The program takes each 3-D line in position 1,
applies the noisy current motion estimate to place it in the 3-D
map obtained in position 2 with a new covariance matrix
(combining the initial uncertainty with the motion uncer-
tainty), and computes its Mahalanobis distance (11) to all the
other lines of position 2 (see Section V-D).

The program detects a match each time a pair of lines passes
the x? test of (12). If a line in position 1 can be matched to
several lines in position 2, this is an ambiguous match, and
nothing is done. On the other hand, each time an unambigu-
ous match is found, the parameters of the motion are updated
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Fig. 20. Superimposition of 3-D segments of position 1 with 2-D edges of
position 2 (crude initial motion estimate).

Fig. 21. Superimposition of 3-D segments of position 1 with 2-D edges of

position 2 (final motion estimate).

as it is explained in Section V-E. As the uncertainty on motion
decreases after each new match, some previously ambiguous
matches can now become unambiguous. Therefore, the entire
matching process is repeated until no more lines can be
matched (three iterations in this example). The final estimate
of the motion is very accurate as can be seen in Fig. 21 where
the obtained superimposition is now almost perfect.
Applying exactly the same technique to a set of six triplets
of views taken during the motion of the robot (Figs. 22-27),
the system was able to build a global 3-D map of the room
shown in Fig. 28 where rotating segments at the bottom right
are the computed successive robot positions. Fig. 29 gives a
hand sketched semantic interpretation of this global map.

B. Registration, Motion, and Fusion

In this experiment, the robot is looking from four different
positions at a regular pattern (Figs. 30 and 31) formed by
vertical lines floating in front of horizontal lines, and builds in
each position a local 3-D map. Exactly the same technique as
in the previous example was used to register each successive
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Fig. 22. First triplet of laboratory images.

Fig. 24. Third triplet of laboratory images.
local 3-D map, and put all of them in a single absolute
reference frame. Fig. 32 shows the resulting 3-D map before
fusion. Fusion is achieved by discovering the relation **=""
computed between lines in the global 3-D map. and taking into
account the uncertainty on the 3-D lines due to their
reconstruction and to the successive motion estimations.
Fusion yields a reduction from 1808 to 650 segments and
improves accuracy, as can be seen by looking at the front and
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Fig. 25. Fourth triplet of laboratory images.

Fig. 26. Fifth triplet of laboratory images.

Fig. 27. Sixth triplet of laboratory images.

top view of the reconstructed 3-D pattern after fusion (Fig.
33).

C. Detecting Colinearity in Space

In this experiment, the robot is looking at the regular pattern
only once. We show in Fig. 34 the vertical and horizontal
projections of the initially reconstructed 3-D segments. We
also show in Fig. 35 the uncertainty attached to reconstructed
3-D lines by showing the uncertainty it produces on the
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Fig. 28.

Fig. 29.

Top view of a global 3-D map of the room computed from six local

3-D maps.

Corridor
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Cabinet
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Robot

Semantic interpretation of the previous global 3-D map.

Fig. 30. A regular grid observed from position 1 and 2.
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Fig. 31.

A regular grid observed from positions 3 and 4.
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coordinates of their endpoints (in the same way as in the first
experiment).

We now ask the system to discover the relation ‘="’
between the 3-D lines (see Section V-C). The program takes a
first 3-D line, computes its Mahalanobis distance (11) to all the
other lines of the scene, and accepts the first line which passes
the x? test of (12) (see Section V-D). The two lines are fused
using the technique of Section V-F and one keeps only the
parameters of the optimal line representing both of them with
an updated covariance matrix. The remaining lines are now
compared to this new virtual line still with the Mahalanobis
distance of (11) but with the new updated covariance matrix,
while the x? test of (12) remains unchanged. This process is
repeated until no more lines can be matched with the first one,
and then repeated with all the remaining unmatched lines.

The result is a reduced set of virtual lines on which the
endpoints of the original segments have been projected, as
shown in Fig. 36. The uncertainty on the line parameters has
been greatly reduced: Fig. 37 shows the resulting uncertainty
on the lines endpoints, which agrees very well with the reality.
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Fig. 36. Front and top view of 3-D lines when colinearity is discovered and

enforced.
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Fig. 37. Uncertainty attached to 3-D lines endpoints after the fusion of

colinear segments.

VII. CONCLUSION

In this paper we have proposed a methodology for building
and maintaining a geometric representation of the environment
of a mobile robot. This methodology has the following salient
features:

Representation: 1) We use geometric primitives to describe
the environment and rigid displacements to describe the
motion. These entities are described with a minimal number of
parameters. 2) Uncertainty is modeled by a probability density
function of these parameters. 3) Relationships between geo-
metric entities are represented by algebraic equations on their
parameters.

Algorithms: detecting geometric relationships, computing or
updating the parameters of geometric entities (both for
primitives and displacements) is done by recursive prediction-
and-verification algorithms including the Extended Kalman
Filter. These algorithms, better detailed in [8], [10], and [11].
take into account prior knowledge to compute and propagate
uncertainties.
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Finally, the experimental results showed that the major
approximations we made (linearization of the algebraic equa-
tions, second-order approximation of the probability density
functions) were valid in a number of practical cases. Of
course, a lot of theoritical and experimental work is still
necessary to extend the approach to a wider class of problems
for which such approximations cannot be made. This might be
a good direction for future research.
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