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Abstract

We present a new approach to the stereo-matching problem. Images are individually described by a
neighborhood graph of line segments coming from a polygonal approximation of the contours. The
matching process is defined as the exploration of the largest components of a disparity graph built from
the descriptions of the two images, and is performed by an efficient prediction and propagation technique,
This approach was tested on a variety of man-made environments, and it appears 10 be fast and robust
enough for mobile robot navigation and three-dimensional part-positioning applications,

i Introduction

A way to capture the three-dimensional (3D
geometry of a scene is to process a pair of stereo-
scopic images of this scene. The primary step of
any stereoscopic process is to match homologous
points between fmages. that is, points that are
images of the same physical object point. If the
stereoscopic system was previously calibrated, it
1s then possible to compute for each pair of ho-
mologous image poluts the 3D coordinates of the
corresponding object point in the scene,

o solve the stereo-matching problem, several
approaches  have been proposed. including
{among others), models of human stercovision

refaxation techniques [9-13], correlation tech-
miques [14-20], or structural constraints [21]. For
a good review of existing techniques, one can
refer to Poggio and Poggio [22].

In this study. we propose w solve the stereo-
matching problem by a new method of prediction
and propagation of hypotheses applied to a
graph-based description of images (earlier ver-
sions of this work have been published [23, 24)).
First, both images are reduced to line segment
neighborhood graphs. Sepments come from a
polygonal approximation of the contours in the

images; they are labeled as neighbors when they
meet some distance criterion explained later.
From the description of the two images, we define
a disparity graph whose nodes are pairs of poten-
tial homologous segments (cach node corres-
ponding to a potential 3D segment) and whose
edges connect nodes corresponding to neighbor-
ing 3D segments in space. The connected COMPo-
nents of this graph, which correspond o real or
fictive smooth 3D swrface patches, are explored
using an efficient prediction and propagation
algorithm. A simple validation procedure is then
applied 10 keep real matches and remove fictive
Ofes,

We now describe in detail the successive steps
of this method and present experimental results,
We conclude with a discussion and future exten-
sions of this work.

2 Description of Images

Images are first reduced to their intensity bound-
aries, called edges. Chains of connected edpes are
then approximated by linear segments. Finaily,
neighborhood relations between segments are
determined. The eventual description of an image
is an adjacency graph whose nodes are SC2MENts
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with local geometric and intensity-based proper-
ties and whose edges define neighborbood rela-
tions between segments,

2.1 Extraction of Connected Edge Chains

Chains of edges can be extracted by any suitable
method. We have successfully tried two different
techniques.

The first one is a simplified zero-crossing ex-
traction [25] developed in our laboratory [26] and
already described in another application [27}].
First, the original image is convolved with 1wo
Jow-pass filters, whose impulse responses yealize 7
« 7 and 3 % 3 local averages, Second, the zero
crossings of the image difference are computed
and connected into chains of edges. Third, each
chain is followed by a program that checks the
magnitude of the intensity gradient {vomputed by
4 Sobel operator) at each point. If the gradicnt
magnitude is below a threshold over more than a
given number of connected edge points, these
points are removed from the corresponding con-
tour chain. The result of this process is a set of
connected, one-pixel-wide edge chains,

The second technigue is a slightly improved
version of Canny's edge detector [28] developed
by Deriche [29]. The image is convolved by an
optimal impulse response yielding x and y gra-
dient images, Then local maxima of the gradient
magnitude in the gradient direction are extracted
and connected to form chains of edge points.
During the connection phase, an hysteresis
thresholding is applied to remove spurious edge
points.

2.2 Construction of Segments

Fach chain of edges is approximated by a set of
finear segments. Several techniques can be used.
The simplest one is the polygonal approximation
by successive splits [30]. We are now using a more
sophisticated technique. developed by Berthod,
[31] that combines a corner detector and a linear
least-squares estimate 1o locate linear segments
with higher accuracy. Each segment is stored with
the following list of features:

segment INDEX, X, ¥, LENGTH, ANG]
where:

(NDEX i an integer which identifies the seg-
ment,

x and v are the coordinates of the segment wraidd-
point,

LEnGTH is the segment length, and

AN is the orientation of the segment computed
within the interval [—, 7],

“These features are local and exclusively geometric
measures, escept for the orienfation feature,
which also contains implicitly the sign of the in-
tensity difference {contrast) computed across the
segment. It is possible to include additional local
properties such as a measure of the average in-
tensity or gradient, or a texture measure com-
puted on each side of the segment.

2.3 Neighborhood Relations and Buckets

n addition to the local features computed for
each segment, we define some neighborhood rela-
tions between segments. To do so, we first define
buckets of segments on the image. These buckets
will be used not only to determine the neighbor-
hood of segments at fow cost, but also 1o reduce
drastically the computing time devoted to the pre-
diction and propagation of hypotheses (on the
use of bucketing techniques, see Knuth {321, for
instance}.

The computation of the buckets is performed
by an algorithm whose complexity is only linear
with respect to the number of segments in the
image. The overall image is partitioned into m?
square  windows W, To each window W, is
attached a bucket by that is a list of segments {5}
intersecting W, For each segment Sy of the 1m-
age, the program computes the Hist of windows
{W} intersected by Sy First, this list is stored and
attached to S, and, second, the segment Sy is
appended to each bucket list b, attached to the
windows W, (these lists are initially empty). When
all segments S have been considered, the process
ends up with:

1. A list of intersected windows {W;} attached to
each segment,
5 A list of intersecting segments {S;} attached to
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Fig. 1. Computation of buckets and neighborhoods.

each window,

"The neighborhood of a segment Sy is defined as
the list of segments that intersect at least one
common window with S In practice, this list of
neighbors is now simply obtained as the union
of the buckets S, attached to the windows W,
attached 1o 5., This Hst of neighboring segments
is actually computed for each segment and added
to its description record. Figure 1 shows an exam-
ple of computation of buckets and line segments
neighborhoods. In this example, we have the fol-
fowing lists:

List of intersected windows:
Sy AWia, Wiahs Sat {Wio, Wa, Wi h!
S«\;Z {’9&"’13, Xfymx %Vgg, ‘%}Vgg‘;} 5 5;4 {?‘f;;; Y ?‘333} .
and 3« {‘W}g B 3@;7 Wg”z}

List of nonempty buckets:
Wiz {Sah Wist {81, Sa)s Waat {50558
Wt {82} Wast {83} Woar {55)2
V‘jgil {Sg@;’. %&ygz i&jx S4. }h}.
W:;,jzi {Sg} s and Wis {%\}

List of neighbors:
Si {83} 82 {84, S} Sat {341
g,;l {S}jﬁx g&,} N 2,1!1{‘1 &3& x{“t*’ g;;

Of course, it is possible 1o use overlapping win-
dows to compute the neighborhoods.

Buckets will also be used to reduce the comput-
ing time devoted fo the genevation and propaga-
tion of hypotheses. As we shall see later, these
processes are required to match a segment within
a given disparity window. By first computing the
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buckets that do intersect this window, one can
substantially reduce the set of potential matching
candidates to the union of these buckets. Con-
cerming the window size, it has to be adapted w
the disparity window, to generate hypotheses, we
use the relatively large (30 X 30 pixels?) square-
window-based buckets used to compute the line
segment neighborhoods. To propagate hypoth-
eses, the disparity window is much narrower, and
we have to compute another set of buckets based
on vertical rectangular narrow windows. In these
last buckets, the segments are sorted accordingly
to their orientation, which is done at the expense
of a nnigue global sorting of the whole set of
segments. This sorting of buckets 15 also used
to speed up the propagation process again, as
explained later,

3 Sterso-matching Constraints

In this section, we express the constraints of the
stereo-matching problem. When the primitives
to be matched are single points, the inbal con-
straints are that homologous points must lie on
corresponding epipolar lines and satisfy some
local similarity constraints {(intensity, gradient}.
To help solve the correspondence problem, glob-
al constraints are usually used: the unigueness
and the continuity constraints [1].

The uniqueness constraint states that a point in
one image has at most one correct match in the
other image. The contipuity constraint expresses
the fact that a correct match i3 generally sur-
rounded by matches having similar disparities
{disparity is defined as the difference in position
between a pair of matched poings).

We pow extend those constraings to the case of
line segment primitives.

3.7 Local Constrainis

We define pofential homologous segments s
being a pair {L, R) of segments of the left and
right images verifying: (1) the epipolar constraint
and {2} geometric similarity constraints,

3.1.1 The Epipolar Constraini, Given a point 1y
one image, its howologous point 1, is constrained
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Fig. 2. Geometry of the epipotar lises In the dght fmage:
andd Oy are the apticad conters of the cameras,

to lie within a line in the other image called the
epipolar line of I, (see figure 2}, Many authors
make the assumption that the optical axes of the
cameras are parallel in a plane orthogonal to the
image planes, which constrains the search for
fomologous points along parallel image scan-
tines. This constraint can be hard to achieve in
practice. Also it can be desirable to make the
optical axes to converge to increase the intersec-
tion of the ficlds of view of the cameras and/or
improve the accuracy of the stereo reconsiruc-
tion. Moreover, when the image planes are verti-
cal, because roughly half of the edges in indoor
scenes are close 1o horizontal lines, it is highly de-
sirable nof to have epipolar lines parallel to the
image scan-lines. Therefore we prefer 1o take into
account the actual geometry of the stereoscopic
system. It can be done by a very simple and
efficient off-line calibration procedure described
in appendix A. [33].

To extend the epipolar constraint from points
to segments, we require that homologous seg-
ments contain at least a pair of homologous
points. To simplify, we only require that the mid-
point of L have an homologous point on R o that

Laft nmage Haght fnags

W,MWW,W.,M%WW

Leit ppipolur Lz

& CRYEeE.
ting to the
:

widgoint of -3
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Fig. 3. Left segments Ly, Ly and L ave matched o R while
right sepment B s matehed 0 Ly,

the midpoint of R have an homologous point on

i.

This definition is nof symmetric, and different-
ates lefe-to-right (L, R} and right-to-left (R, L)
matches. The advantages of such a definition are
twirfold:

1. A given segment 5 bas at most one corredt
match i we assume that the unigueness con-
straint is satisfied for points {as there is only
one homologous point corresponding 1o the
mdpoint of 5}

. Homologous chains of edges that are approxi-
mated by a different number of segments in the
two images can nevertheless be matched glo-
bally by the union of left-to-right and right-to-
left matches as is shown in figure 30 here, for
instance, we could find the left-to-right match-
es (L. R), (Lo, R), and (Ls. R} and the right-
to-left mateh (R,1.).

£

Disparity between potential homologous seg-
ments. Although the epipolar constraint is pot
symmetric, we define a symmetric measure of dis-
parity pisp atiached to a pair (L, R) of homolo-
gous segments belonging respectively to the left
and right images. First, the program computes the
common intersection of the segments with epi-
polar planes. This is done by computing the two
epipolar lines in the right image corresponding to

“the endpoints of the left segment L. These lines

intersect the line supporting the right segment R,
vielding a segment R'. The intersection R” of R
and R’ is the set of points of R having potential
homologous points on L. The corresponding set

L7 in L can also be computed. The midpoint I of

17 and its homologous point Ig on R” are com-
puted (I is usually not the midpoint of R), and
the disparity pise is defined by (cf. figure 4):

sy = Bolp - Byl

Fig. 4. Definition of disparity between Loand R pisy = By
= By




where Halp (resp. Byl ) i the distance between
In and the right epipole center {vesp. I; and the
feft epipole venter),

3.0.2 Geomerric Similarity Constraings. The sim-
tlarity measyres consists in computing an €101 me-
asure between the features pLEnoty and anc
attached to L and R, and 1o reject the potential
match{L, Rywhenever one of these error measures
s above a threshold. ,

These thresholds are set relatively tight during
the prediction steps and are ioosened during the
propagationstep. They are computed in the follow.
ing manner:

~Length is a relatively unstable feature. This is
mainly due to the poor robustness of the poly-
gonal approximation scheme. Typically a
length ratio between homologous segments of
1.5 in the prediction step or 3 in the propaga-
tion step is tolerated.

—Angle 15 a robust feature with respect to the
polygonal approximation scheme. Therefore
the angular disparity between two homologous
segments primarily comes from the viewpoint
difference. A statistical study performed by
Arnold and Binford [34] showed that, with nar-
row angle stereo—i.c., when the viewpoints
are relatively close—the statistical distribution
of the angular disparity between homologous
segments (images of randomly oriented 3D seg-
ments}) is sharply centered close to zero. There-
fore we set a tight threshold for the angular
disparity (typically 15 degress during the pre-
diction and propagation steps).

3.2 Global Consiraints

3.2.1 The Continuity Constraint. Up to now, we
have only applied local geometric constraints to
define potential homologous segments, We intro-
duce now a global constraint known as the con-
tinuity constraint {ef. Marr and Poggio {111 The
observed scene is made of physical ohjects whose
surfaces vary smoothly in general, Therefore, dis
parity between homologous points in the images
should also vary smoothly in general, except at a
few depth discontinuities, Hence, if a match (L,
B, pise) s correct, it is very likely that most of
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the neighbors L7 of L (resp. R" or R) can find a
match R’ {resp. L") with a disparity close to pisy,
which should not be the case when the initial
match is incorrect, In other words, applying the
continuity constraint to a given match will vield a
large number of likely correct matches within the
neighborhoods of L and R if the intial match is
correct, and a small number of likely incorrect
matches otherwise. If this process is applied re-
peatedly to all the new matches oblained, 1t
should end up with a much larger final number of
matches when the initial hypothesis is correct than
when it is incorrect. This fact can be expressed in
terms of large or small connected components of
the disparity graph defined below.

Diefination of the disparity graph. The disparity
graph is defined as follows: (1) nodes are pairs
(L., R} of potential matches between left and right
mmages; and (2} edges connect pairs of nodes
{L. R}, (1", R") such that L” and R’ are respective
neighbors of L and R in the image descriptions,
and such that the disparity gradient between
(L. R) and (L, R} {computed as the difference
between the disparities attached to each match) is
fower than a locally computed hmit, called the
dispariey gradient fimif.

The disparity gradient limit s compufed as a
Junction of the position of the reconstructed corre-
sponding 3D point, and it is adapted to correspond
o 8 constant tolerated variation of depth £ in space
between two neighboring reconstructed segments
{this definition differs from the one of Mavhew
and Frisby [12] and Pollard et al. [13]). Computa-
tion details are in appendix B,

A connecied component of the disparity graph
gorresponds 1o a subset of 3D points that belong
to what we call a smooth surface paich.

5,
T
. y :
i ,/f“v' E/ i %5
g ! f ; 5 |
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Fig. 3. The left and right mages of a trangle Iving in front of
twa rectanglos.




112 Ayache and Faverjon

Fig. 7. Dhsparity graph

As an illustration of this definition, let us con-
sider the example shown in figure 5. There s a
trigngle lying below and in front of two rectan-
gles. Figure 6 shows the neighboring graph pro-
duced in the two images, Figure 7 shows the dis-
parity graph obtained for a given value of ¢
‘There are four connected components.

The first one corresponds to the matching of
the two rectangles against their respective ho-
mologues. The second one corresponds to the
matching of the triangle. There is no connection
between (3, 3') and (9, 97) or between (7, 7y and
(10, 107} becanse the discontinuity in depth be-
tween the triangle and the rectangles is such that
the corresponding 3D points are at a distance
greater than &

The third and fourth components of the dispar-
ity graph correspond to “phantom’ images of the
rectangles obtained by matching cach of them
with its opposite homologue.

3.2.2 The Uniqueness Constraint, Vo enforce the
uniqueness constraint, we must keep only one
match per left or right segment. In case of con-
flict, the correct matches will usually correspond
to the larger connected component. This gives us a
criterion to choose between conflicting matches.

I the following sections, we describe the prac-
tical algorithm used to achieve the stereo match-
ing of Hne segments.

4 Prediction and Propagation Algorithm

To compute the conpected components of the dis-
parity graph, we use a prediction and propagation
algorithm. The idea is to generate some potential
pairs of homologous segments based on a strong
focal similarity of contours, and then to explore
the attached connected components by a recur-
sive propagation.

4.1 Prediction of Hypotheses

initially, the potential disparity range within the
image is relatively large. and depends on the
geometry of the imaging system and of the
observed scene. (Typically the disparity range is
about one-third of the image width.) When this
interval has been estimated. the role of the pre-
diction program is to establish a list of tentative
matches (R, L) with associated disparities pisp
Iving within this interval and verifying the local
constraints defined in the previous section.

In order to reduce the number of false matches,
only segments that are neither too small (poor
estimation of the orientation) nor too long (likely
to be broken in the other image ) and with orienta-
tions not too close to the orientation of the epi-
polar lines are considered.

The hypotheses are generated with some
degree of uniformity over the whole image by
randomly selecting the right segment K, and by
stopping the prediction process when the num-
ber of matches is large enough. Also, the search
for a left candidate L is substantially accelerated
by the use of the squared buckets previously de-
fined: given a right segment R, the program com-
putes in the left image, the epipolar line corre-
sponding to the midpoint of R, and on this line,




the segment Sy, associated fo the interval of
potential disparities. The matching candidates L
are then sclected among the union of the left
buckels intersected by the segment Sy

4.2 Propagation Algorithm

At the end of the prediction stage, there are a
certain number of potential matches. Each match
corresponds to a single node in the disparity
graph. The idea is to use the disparity graph to
propagate these matches within their neighbor-
hood 1o recover subsets of 3D segments lyingon a
same smooth surface patch (that is, matches that
belong to the same connected subgraph of the
disparity graph). _

A conflict is defined as a pair of matches (1, R),
(L., R") such that R # R or (1, Ry (L7, R) such
that L # L'. Conflicts occurring during the prop-
agation stage are immediately solved to avoid
multiple matches within the same connected sub-
graph. Conflicts occurring between two distinet
connected subgraphs are solved after the prop-
agation of each connected component by analyz-
ing their respective size (power of prediction).

4.2.1 Exploration of Connected Components. The
propagation alogrithm starts from a prediction,
that is, a given node of the disparity graph. All
the nodes connected to this node in the disparity
graph are then recussively considered. In prac-
tice, the disparity graph is constructed during this
exploration by alternatively and recursively look-
ing for a match for the neighbors of the left or
right segments in the left or right images. The
propagation process is achieved by the two fol-
lowing very simple recursive procedures, called
PROPAGATE.. LEFT and PROPAGATERIGHT!

Recursive procedure PROPAGATE.LEFT (segment.
left, predicted.. disparity)
@ if ALREADY.VISITED (segment. left] then re~
furn.
® (segment.right, actual_disparity): =
MATCH.LEFT (segment.left, predicted..
disparity):
e if (segment.right = nil) then retum.
® For each neighbor neighbor_right of
segment.right do
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pROPAGATE.RIGHT {neighbor.right, actual..
disparity}; end for:
end procedure PROPAGATE.LEFT.

Recursive procedure PROPAGATE..RIGHT {segment..
right, predicted. disparity)

& if ALREADY_VISITED (segment.right) then re-
turn;

& (segment.Jeft, actual _disparity): =
MATCH..RIGHT (segment..right, predicted.
disparity );

@ if (segment_right = pil) then return.

® For each neighbor neighbor_left of segment..
left do
PROPAGATE. LEFT (neighbor_left, actual.
disparity); end for;

end procedure PROPAGATE.RIGHT.

To propagate a right-to-left hypothesis (R, L.

vurt (L, misp); this procedure first checks whether
this segment has been visited already. If yes, it
stops, in order to prevent an infinite loop. Other-
wise the procedure MATCH.LERT is called. maTCH_
LEFT is a procedure very similar 1o the one used 1o
generate hypotheses. It takes as input a left seg-
ment 1. oand a predicted disparity PREDICTED..
pigparrry, and returns a match {L. R’} with actual
disparity actuar.pisearity. To do so, this pro-
gram selects, among the right segments, those
whose disparity with L is within the interval
PREDICTED . DISPARITY + Al, PREDICTED DISPARITY
+ A2 where A1 and A2 are computed as a function
of the position in space of the reconstructed 3D
segment {sec appendix B).

Here again, the use of precomputed narrow
vertical buckets drastically reduces the number of
candidates as potential matches in the right im-
age. Also, the initial sorting of the buckets with
respect to the segment orientations allows for a
fast binary search within each bucket of the candi-
dates whose orientations are compatible with the
oriertation of the left segment.

1f several candidates remain, only the one with
the disparity cJosest 10 PREDICTED. DISPARITY IS 1e-
tained. By doing this. we privilege segments be-
longing to the surface whose distance from the
ahserver has the smallest variation {frontoparallel
surfaces). Alternative criteria could be used at
this point, for instance, choosing the match yield-
ing the 3D segment closest in the scene to the pre-
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vious one. Anvhow, the current criterion, which
yields good results in our experiments, has the
merit of being simple and computationally cheap.

If no maich is found, the program MATCH.
CEFr returns NiL. In this case, the procedure
FROPAGATE. LEFT stops, which means that it cannot
propagate matches any further with the predicted
disparity PREDICTEDR DISPARITY and the tolerances
Al and A2 applied to left segment L.

When MATCH_LEFT returns a match R and an
getual disparity ACTUALLDISPARITY, the procedure
PROVAGATE. LEFT calls the symmetric procedure
PROPAGATE. RIGHT for each neighbor of R and
with an updated predicted disparity ACTUAL..
DISPARITY.

The result of this propagation process is, for
each hypothesis, aset of matches (1., R. pisp} cor-
responding to what we alled a smooth surface
patch. In the example of figure 5, the hypothesis
(1, 5y would propagate within the third con-
nected component of the dispanty graph of figure
7, vielding the matches (2, 6, (3, 7). (4, 8,
while the hypothesis (1, 1) would propagate
within the first component, yielding the miatches
(2,27, (3,37, (4,47, (5,5, (6, 60, (7.7, (8,
83

4.2.2 Pruning of Hypotheses. Because the tech-
nique used to select a match between conflicting
matches during the propagation process is a best
first choice technique, the result of the propaga-
tion process might depend on the starting node
chosen within cach connected component.

Nevertheless, in practical experiments, it ap-
peared that this dependency was minor, due o
the computation of the disparity gradient limit as
a function of the distance. As 2 CONSCHUENCC, it
order to substantially reduce the computing time
of the algorithm, it is desirable to propagate only
one hypothesis by connected component of the
disparity graph. This is achieved by removing
after the propagation of an hypothesis, all the
forthcoming  hypotheses corresponding o a
match already propagated.

In the example of figure 5, if the hypotheses
(2,27, (4, 4). (6, &), (8. 8') are made by the
prediction algorithm, then, after the propagation
of any one of these hypotheses, the others will
belong to the propagated matches and therefore
he discarded.

4.2.3 Conflicts Between Connected Componenis.
When a new hypothesis is propagated, the same
algorithm applies, without considering the matches
obtained by previous hypotheses. When the
propagation is over, conflicts between distinet
connecied components are solved by discarding
the conflicting matches attached to the concerned
hypothesis having the smaller power of prediction
(number of matches). In the example of figure 5.
if a given hypothesis vields the matches {1, 1),
(2,270, (3, 37, (4,4, (5, 5). {6, 6y, (7,77, (8,
)}, and if a new hypothesis yields the matches
{3, 1), (6,20, (7,37, (8, 43}, then all the con-
flicting matches of the second iypothesis (in this
case the four of them) will be discarded because
they belong to a smalier con nected component of
the disparity graph (of size 4 instead of 8). Asone
can see, this is an efficient procedure to distine
guish between real objects and “phantoms” n
case of repetitive structures.

Due to the potential deletions occurring after
each new propagation, the size of an hypothesis
can change after the propagation of another
hypothesis; nevertheless, the algorithm uses only
the initial size of each hypothesis to compare con-
flicting matches. By doing this. the final result
does not depend on the order in which the
hypotheses are compared.

-

£ Final Validation

When all the hypotheses have been propagated.
some of the connected components have been
totally or partially erased by better ones. How-
ever, some false matches not conflicting with
others (in the sense of the uniqueness constraint)
may remain. in our experiments, such matches
represent 5%—10% of the final matches. They
usually correspond to isolated 3D segments. Thus,
they can be easily removed by keeping only
matches that are connected 1o a minimum num-
ber of nodes in the disparity graph. This mini-
mum number is set depending on the nature of
the observed scenes. In Our expermnents, we re-
jected connected components of size smalier
than four. In this case, the remaining false
matches represent less than 2% of the matched

segments.




& Experimental Resulls

The stereo-matching program has been tested on
several scenes including outdoor and indoor
scenes-as well as scenes with indusinal parts. We
present here the results of the matching process
applied to four typical scenes, which are called (1)
roon, (2) office, (3) corridor, and (4) industrial
part, and which are shown in figures 8, 14, 20, and
26, respectively.

6.1 Preprocessing

Pairs of 512 % 512 images are taken by a pair of
standard cameras, Contours on each image are
then extracted and approximated by lincar seg-
ments. For the first three scenes, the edge extrac-
tion is performed by the gradient maxima tech-
nigue while, in the fourth scene, the zero-crossing
technique is used (see section 2.1). All this pre-
processing is independent of the stereo-matching
program and could be done in a fraction of a
second on specialized hardware. In its current im-
plementation, the preprocessing requires an aver-
age of 120 s of CPU time per image on a Sun 3
work station for the gradient magima technique
and 20 s for the zero-crossing technique,

6.2 Sterev Matching

We first present the results concerning the indoor
scenes shown in figures &, 14, and 20. In these
indoor scenes, the epipolar lines are tilted and
make an angle with the horizontal plane of about
45 degrees. This is obtained by placing the sceond
camera on the right of and below the first one.
This is very interesting because it allows for the
accurate reconstruction of both vertical and hori-
zontal segments, which represent the majority of
the image segments. For each scene, we show re-
spectively in figures 9, 15, and 21 the initial edge
segments, Only the segments of length greater
than 12 pixels are selected by the stereo-matching
program: these segments are shown in figures 10,
16, and 22,

[n figures 11, 17, and 23, we show the pairs of
segments matched by the stereo-maiching algo-
rithm. Homologous segments are labeled with the
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same pumber,

In figures 12, 18, and 24, we show, superim-
posed on the right image segments, the horizontal
distance (computed from the optical center of the
camera and projected on the horizontal plane)
and, in figures 13, 19, and 25, the elevation (com-
puted from the floor) of the midpoints of the re-
constructed 3D segments. These measures agree
very well with the direct measures we can make
on the environment.

A careful examination of the matching results
showed the following errors: segment 127 in the
room and segments 78 and 22 in the corridor.
These mistakes come from the absence of an edge
in one of the images, vielding a falseé match that
still agrees with its neighborhood (a node in the
disparity graph connected to a sufficient number
of other nodes). Of course, one could use the re-
sults obtained from several viewpoints W correct
some of these errors. We are currently working
on this improvement. Also, some of the matches
correspord 1o specularities, which vield virtual
3D segments that can appear above the ceiling,
below the ground, or bevond a wall, For instance,
segments 17, 18, 19, 21, and 32 of the corridor are
virtual images of ceiling lights that appear at the
height of the ceiling on the right of the vight wall.
Additional semantic knowledge could be ncor-
porated in the system 1o remove these segments.
Notice, however, that segments 53 and 54 in the
corridor example are measured at the correct
negative elevation, due to a slope one can notice
in the image. Notice also the fact that, in the six
scenes, horizontal segments on windows, on the

Fig. 8 Swreo view of a room.
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Fig. 14. Sterco view of an office roony,
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ground, and on ceiling usually form clusters of
segments having the same elevation, and that the
computed horizontal distance is sound with the
observed scene and allows for an casy detection
of the closest obstacles.

The position of the reconstructed 3D segments
was used by a geometric matcher developed in
our laboratory {35] to compute the actual motion
of the vehicle for translations of about half a
meter and rotations of about 10 degrees with a
good accuracy. These results are detailed in two
other reports [36, 37].

In figures 26-29, we show the results obtained
on an industrial part. The geometry of the cam-
eras was totally different (larger angle stereo,
almost horizontal epipolar lines, teleobjectives in-
stead of large angle lenses). After an avtomatic
calibration of this new system, the same sterco-
matching program was used. The results for
another position of the object are shown in figures
3033, In the vertical view of the reconstructed
segments (figures 29 and 33), it is interesting to

camers 2

notice the linear clusters corresponding to points
that are in a vertical plane, and to observe a hori-
sontal rotation of about 40 degrees of this plane,
This qualitative observation was confirmed by a
quantitative experiment. The 3D segments were
processed by the above-mentioned geometric
matcher [35] and most of the midpoint segments
present in the fwo scenes were maiched between
these two scenes by a solid displacement corre-
sponding to the correct one. The average error
between 3D-matched points is 4.5 mm, while the
diameter of the object is about 25 cm, which gives
a good idea of the quality of the reconstruction.

To conclude this experimental report, we pre-
sent in table 1 the computing time devoted to the
stereo-matching process. Note that the number of
matched points is about 20 times the number of
matched segments (as the average length of a seg-
ment is about 20 pixels). The program is written
in a highly recursive style in C and runs on a Sun 3
workstation.
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Fig. 20, Stereo view of g corridor,
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Room Otfice | Corridor Industriel
: part
Number of left gegments 385 362 1?7 334
Number of right segments 401 370 188 374
Number of genersted hypotheses 75 75 75 32
Number oigg;;;;;ﬁ matched 202 523 86 50
CPU time, construction of the
adjacency graph {5+# 1.5¢ 0.5¢ 1.08
CPU time, generstion of
typotheses 0.2s8 0.2¢8 0.tsg 0.28
CPU time, propagation snd 3
vslidetion of hypotheges > 8 > # 28 ¥

Table 1. Computing time of the stereo matching process.
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7 Conclusion and Discussion

We have presented a new approach to solve the
stereo-matching problem using a graph-based de-
scription of images and a technigue of prediction
and propagation of hypotheses within a disparity
graph. The method appears to be particularly fast
and robust.

The use of a neighborhood graph of line seg-
ments provides a drastic size reduction of the im-
age representations. As it was shown in the first
examples, it is very well adapted to indoor scenes
where there are a lot of straight lines, but also to
other scenes where most of the contours are
curved, as in the industrial-part examples. Also,
the fitting of straight lines is done with subpixel
accuracy, providing more accurate reconstruc-
tiomn,

The use of the disparity graph defining the con-
nectivity between two nodes (L. R) and (L7, R")
each time the distance between the reconstructed
3D segments is smaller than a preset constant ¢
yields smooth surface patches that are inrinsic en-
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tities of the 3D scene, remaining unchanged if the
point of view or the geometry of the Steroscopic
system is modified. This is of crucial importance
in navigation and recognition applications, where
it is necessary (o compare visual descriptions
obtained from different viewpoints. From a prac-
tical point of view, the precomputation of a dis-
parity gradient as a function of the position of
points in 3D space enables very efficient computa-
tions.

In our implementation, we have almost exclu-
sively used the geometric properties of the line
segments in the images. It is interésting 10 note
that they are sufficient for the registration of
stereo images. Of course, itis possible to ncorpo-
cate some additional information to the descrip-
tion of each segment such as intensity-based local
features {e.g., average intensity on each side of a
segment, average contrast across a segment). The
comparison of these additional features could re-
duce the number of hypotheses and also the num-
ber of errors, given that they are stable with re-
spect to the variation of the point of view.

The stereo matcher presented in this report has
already been used to demonstrate fast recognition
and positioning of 3D objects as well as to com-
plete some navigation tasks for an aulonomous
vehicle developed in our laboratory. The results
are presented elsewhere [35-37].

To conclude, we think that the methodology
developed in this application——that is, the use of a
symbolic geometric description of the images and
of a graph exploration based on a prediction and
propagation of hypotheses strategy——is quite
general and could probably be applied, by relax-
ing the epipolar constraint, to achieve fast reg-
istration between a time sequence of monocular
moving images. Also, the prediction and prop-
agation scheme i$ very well suited to include this
kind of registration process within a closed loop,

. results obtained at previous stages being used 1o

guide the prediction at the current stage. We are
currently working on these problems.

§ Appendix A: Calibration of the Stereoscopic
System

8.1 Computation of the Perspective
Transformations

Each camera can be modeled by a perspective
transformation T. This transformation is linear in
homogeneous coordinates and can be represented
by a 3 % 4 matrix that maps scene points to image
points:

X
Si N
svl=T]" ()
< A

1

The perspective transformations Ty and T3 of
the cameras are automatically estimated by the
following procedure. A planar grid of precisely
located orthogonal straight lines is placed in front
of the two cameras in {at least two) different
known positions. lmages of these lines are ex-
tracted, and their equations are accurately com-
puted by a least-squares estimator. Then, the in-
tersection points of the grid are computed. As
soon as six different non-coplanar grid points have
been registered between the scene and an image,
the corresponding perspective transformation T 18
estimated by a least-squares estimate.

In effect, each transformation T constrains 11
unknowns (and not 12, as T is defined up to 2
scale factor), and each registration yields two
linear equations by elmination of s in system 1. In
practice, more than 80 registrations are computed
1o obtain an accurate estimate of T.

8.2 Computation of Epipolar Lines

Given a point I; in one image, its homologous
point L is constrained to lie within a line in the
second image called the epipolar line of Iy (see
figure 34). This line is simply the image by the
second camera of the line i, C,. the inverse image
by camera 1 of I;. 1t can also be seen as the in-
tersection of the epipolar plane 1,C,C, with the
image plane of the second camera.

For the sake of efficiency, it is important to be
able to compute easily the epipolar line attached
to any image point. First, it is obvious that any
epipolar line in image 2 will go through a common
point E, called the epipole 2. Ep is simply the im-
age by the second camera of the optical center of
the first camera. Knowing the perspective trans-
formation T, of camera 1. the coordinates Xy, ¥
z,, 1} of C are obtained by resolving!
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Then the image coordinates [, ve] of By are
obtained by applying T, to Gy

ey X1

Sy ,

v | =T, 1 (3)
3 %1

; |

Given the position of the epipole, to determing
the equation of an epipolar line, it is sufficient to
compute the coordinates of a supporting vector Az
(see figure 35).

The remarkable point is that there is a constant
linear relationship between the coordinates {14,
vy, 1) of an image point 1, and the coordinates
(a5, B,) of the supporting vector A of the corre-
sponding epipolar line:

] i
("‘3} =Mu| ¥ “)
\ﬁz, 1

where My, is a 2 X 3 matrix dependent on Ty and
T, exclusively and independent of the position of
I, (see Faugeras and Toscani [33] for details).
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Of course the same formalism applies when in-
verting the roles of cameras 1 and 2. The 2 X 6
coefficients determining matrices My; and My
and the 2 X 2 coordinates of the epipoles E; and
E, are computed once for all and stored at the end
of the calibration procedure. During the matching
procedure, these coefficients are used to compute
in a straightforward manner the epipolar line
attached to any point either in camera 1 or n
camera 2.

8.3 Reconstruction of 3D Segments

When two segments $; and S, have been matched
between the left and right images, it is possible to
reconstruct a 3D scene segment S of maximum
length whose images 5; and S4 are strictly in-
cluded within §, and S, (see figure 36). This 18
done by first computing the epipolar lines
attached to the vertices of each segment and by
computing the corresponding intersection with
the other segment, If there is an intersection, the
vertex and the intersection point are kept as being
the homologous images of a vertex of S. When
two such pairs of homologous image points have
been found, the three coordinates (x, y, z) of the
vertices of § are computed as follows. For a given
pair (I, I} of homologous points, the following
relations hold:

SHy

&

e B B

Fig. 36. Reconstruction of 4 scene segment from s two im-
ages.
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Py X 3

& iy v

sve 1= T, S {6)
5

' i

By eliminating s and ¢’ in equations 5 and 6, one
ends up with four linear equations of the three
unknowns (x, v, z). In fact only three of these
equations are linearly independent, because I
and I, have been chosen within a common epipo-
lar plane. Therefore this system has an gxact solu-
tion (x, y, 2) straightforwardly computed.

9 Appendix B: Computation of the Drisparity-
gradient Limit

9.1 Definttion

This definition is given for left-to-right matches.
A symmetric definition is used for right-to-left
matches. Given a lefi-to-right match (L, R, pisp)
corresponding to a 3D point ¥ (see figure 37}, we
want to relate the variation of depth of P with the
variation of disparity between L and R, To do
this, depth is computed along the line of sight of
the left camera. A maximum variation of depth of
¢ around P corresponds to the points Py and Py
whose images in the right image are R, and R,

respectively, having disparities pise + Al and pisy
4 A2 with L. The idea is to connect a neighboring

match (L', R, pise’) to (L. R, pise) in the dispar-
ity graph if and only if the disparity gradient

pisp’—pisp lies within the interval [41, 42].

Fig. 37, Computation of the disparity gradient limitasa fune-
tion of the point position.

9.2 Practical Computation

Given (L, R}, we compute the coordinates of P
by the technique described in section 8.3, Then,
having the coordinates of C. we compulte

= C;%’/ﬂ{f;?{%
Op, = OP + ep

Finally the images of Py and P, are obtained by
applying the perspective tranformation of the
right camera to Py and Py ,

To speed up the computation of 41 and A2 dur-
ing the propagation process, we build a lookup
table during a preliminary off-line process. We
choose a point L located in the middle of each
bucket in the left image: then for each such point
we determine # regularly spaced potential right
matches on the corresponding right epipolar line
lying within the a prion potential disparity range.
For each pair (L. Ri, pisp;) the values of Al and
A2 are computed and stored, During the magch-
ing process and given a current match {L. R,
pisp), the program selects the bucket correspond-
ing to L, and selects the disparities pisp; and
pisy; closest to pise. The tolerance values 4l
and A2 are obtained by a simple linear interpola-
tion. In the experiments with the indoor scenes,
the values of Al and A2 vary from a fraction of a
pixel at a distance of 10 m to 5 or 6 pixels at a
distance of 1.5 m (the value of ¢ was set equal to
20 em).
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