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Using Deformable Surfaces to Segment 3-D Images and Infer
Differential Structures
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Tn this paper, we use a 35 deformable model, which evalves in
3-13 images, under the action of internal forces (describing some
elasticity properties of the surface), and external forces atiracting
the surface toward some detected edgels. Our formalism kads o
ihe minimization of an encrgy which i3 expressed as a functional,
We use a variational approach and a conforming finite element
method to actually express the surface in a discrete hasis of contin-
uous functions. This leads to reduced computational complexity
and better numerical stabitity. The power of the approach 1o seg-
menting 313 bmages is demonstrated by a set of experimental
results on various complex medical 313 images. Another contribu-
tion of this approach s the possibility to infer easily the differen-
tial stracture of the segmented surface. As we end up with an
analytical description of class '€ of the surface almost every-
where, this allows us to compute, for instance, its firg and second
fundamental forms. From this, one can extract a curvature primal
sketch of the surface, including some intrinsic features which can
be used a8 landmarks for 3-1 image interpretation, 71992 Acatenis

Preas, {ne

1. INTRODUCTION

~

We propose a deformable 31 shape model which can
be used o extract reliable swrfaces my 3-D imopes and
infer a differential structure on them.

Usually, 3-D images are given as a set of intensity voxe
cls (volume elementsh A 3D edge detector, after o foca!
mmage analvsis 127, 36]. provides a set of 3D edgels tedge
clements), These edgels can be considered
a certain number of surfaces. One is then confronted with
a dual problen:

Lo Select edgels belonging to the same surface trace:
this 15 the segmentation problem,

Recover a continnous and differentiable description
this vields a path between the original
1o compute a differen-
station {1, 19 201

of cach surface:
sparse diserete data and the abihiny
tial structure usefud tor mterpre

Both guestions were analvzed by Sander
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1315, who proposed solving {13 by a connectivity analyvsis
and 43} by the fitting of a set of local i uadratic models.
But ditficultes arise when the connectivity analysis fails
§">gv<:,,stm: edges are oo sparse and also when the model is
oo local 1o reliably describe o complex shape.

Another approach 1o solving a similar problem in 22D
conststs of mtroducing an active deformable model 1221,
which solves the segmentation problem (11 assuming that
an initiad estimate is provided {an initial solution might be
provided by several means, including user interactivity,
which s usually encouraged in medical applications) and
the interpolation problom (23 when the curve is expressed
m a basis of continvous functions [14, 281 Such models
were generalized in 2813 and 3D 7 whoere the
deformable surfuce is evolving under ﬁac forces com-
puted on a 2213 image or a sel of 2-D Images.

In contrast with the methods of reconstruciion based
on a 2-12 shice-by-slice approach [6. 13, 141, we use, in
this paper, a 3-D deformable model, which evolves m 3-D
images, under the action of internal forces (describing
some elasticity properties of the surfacel, and external
forces ;zi! racting the swisce toward some detected
edgels. This formalism feads (o the minimization of an
energy which is cxpressed as a functional, We use a vari-
ational approach and a conforming finite element method
to express the swrface in a discrete basis of continuous
functions. This mcz‘f od allows us to porform an “adap-
tive subdivision” of the parametrization domain without
adding nodal points and conseguently without increasing
the size of the linear system we solve. This leads 1o re-
duced computational complexity and better numerical
stabitity than those of a classical finite difference method.

The power of the approach 1o segment 3-1Y images is
demonsirated by a set of experimental resulis on com-
plex medical 3-1 images (see also |11}

Another conirtbution of this ;;;*;“si‘(vzcl‘} i5 the ability o
ensily iafer the differential structure of the sepmented
surface. As we end up with an analviical description of

class €= of the swriace slmost everywhere (except be-
tween two finite element patches, where the representa-
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LISING DEFORMARBLE SURF

tion is only of class €1 f.e., the tangent plane is continu-
ons), we can compute for instance, its first and second
fundamental forms (171 From this, one can exiract a
curvature primal sketch of the surface [30. 8], including
some intrinsic featores which can be used as landmarks
for 3-D image interpreiation 12, 191

Last but not teast, a careful analysis of our external
forces (those which attract the deformable surface to-
vard the edges) shows some intriguing connections with
the properties of minimal surfaces: if the deformable sur-
face is a minimal surface G.e.. o surface whose mean
curvature is everywhere zerod, then it satisfies also the
definition of an edge surface,

The paper is organized as follows: We first define the 3-
) deformable model (Section 23 and hm give an appro-
priate external force (Section 3) and #s re lationship with
-1 edge points (Section 43, We xi};m ih i how to s0lve
this minimization problem by a conforming finite clement
method (Section §) and give a correct choice of the regu-
larization parameters (Section 6). An algorithmic com-
plexity comparison between the conforming finite dv
ment method and the finite difference method is given i
Section 7. Section 8 indicate how to infer the a,i;.fiuuzmi
structure of the 3-1) images from the obtained surface.
Finally Scction 9 describes a set of cxpc;“mcf‘ami results
on synthetical and complex medical 3 -1} fimages

ers

2. ENERGY-MINIMIZING SURFAUES

A 3D image is given by a set of intensity voxels
a wi of successive 2-D cross sections, In our first work
{13, 14l we ps‘@ccssmi 31> fmages as a set of successives
2- i? images. This is a familiar approach which is also used
i tracking methods [3, 12, 21], but this method 15 not
effective and uzm;mt take into account the spatial homo-
geneity of the data. In the following we consider the 3-D
image data as a set of pixel and the boundaries of a 3-D
imave are described by a set of surfaces.

A deformable surface model allows us to characterize
these surfaces 133, 34}, This characterization consists of
determining the location and the shape of the surface.

In the following we restrict ourselves to parameterized
surfaces, since any 3D surface has o local parameteriza-
tion {171

This model is defined by a space of (u%gzmxabh defor-
mations Ad and a functional £ to minimize, This func-
tional E represents the energy of the model, A surface v s
defined by the mapping

AW as

3

(= (0. 1] X 10, 1] = &Y

X

(oL ) b pls, r) = (vl vis, e 2leo

and the associated energy £ is given by

AUES TGO SEGMENT 3.0 IMAGES

13 fes zifq § 3

b Plols, rids dr,

where P is the polential associated with the external
forces, The external forces refer wo the forces which al-
low the surface to focalize the image atiributes, So, ifwe
want the surface 1o be atvacted by 3-1) edge points, the
potential 2 is expressed in terms of a 3-1 gradient onage.
The interaul forces acting on the xhapc of the surface
depend on the coefficients wy such that the clasticity 1Is
determined by (9. worh, the rigidity by Oesg, sl and
the resistance to twist by wyy . Therefore the i;mﬁm::m%;
wy determine the mechanical properties of the surface.
These coefficients are also called regularization parame-
ters. We can also constrain the surface structure by ad-
justing boundary conditions {(for instance, to create a eyl
inder or a torusl.

A local minimun ¢ of £ satisfies the associated Luler-
Lagrange equation

5 boundary conditions,

which represents the necessary condition fora minimum
(B = 0h A solution of Eqg. (1) can be seen as either
reulizing the equilibrium between niernal (or repulariz-
ing) and external forces or reaching a minimum of the
energy £

The boundary conditious constrain the surface struc-
tare by specifying gii flerent 'opé;:riia;:a of the surface at
the boundaries of the parameterization domain £ =
{0, 11 = [0, 1], For examp i@ setling vis, 8y = 1195
[0, 1. or 200, 7 o= o1, 0, ¥ & {00 1] constrams the
surface v 1o have a ﬂ}‘iziidﬁ&’iii structure. The other struc-
tures such torus or sphere can be obtained in a similar
way.

Since the energy function is not convex, there may be
many local minima of £, The Buler-Lagrange eguation

(1) may characterize any such local minimum. But as we
are interested in finding a 3-D contour in a given area, we
assume in fact that we have a rough prior estimation g}aA
the surface. This estimate is used as initial data for the
assaciated evolution cquation in which we add a tempo-
ral purameter £

HEN
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0, vorr o gy, 2 itial ostimation
boundary conditions.

A solution o the
ton off, &,
termy dnds
probiem.

This ovolution equalion can a
descent ajgorithm sfartimeg with the
Section 5.3}

static problem is found when the soly-
infin nyz then the
iding a solution of the static

Floonverges as 7 lends (o4

vanishos, prov

a gradient

ixé) bn It vE 8 B

{ial estimate U sge

3. DEFINING THE POTENTIAL 2

The potential P is such that the force Fio) = VP
mst attract the surface o the image attributes that we
are ooking for. Our mame goal & the
Tedge points {1e, able 1o remove spurious
edge points, while ensuring connecied contoursy, Thus
the suwrface cdge points and mint-
mize the encrgy

Ceood 10 he

must he attracted by

Ploty, riids Jr. {33

P

For this purpose the authors of [22] set the potential 2 =
V37 50 that edge points will minimize B, where ¥ is
the 3.1 immge convolved with a Gaussian function. For
mmerical stability {a complete discussion s given in |13,
14 we normalize the force

Figy =

where £ 1s a parameter which allows us (o tune the altrac
tow force. Now. all the edge points including spurious
ones have the same ability o altract the surface. B
spurious poinds generally form small connected compo-
nents in 3-D images: consequently. when the surface con-
verges toward the real contours, all these points fivst at-
tract  the surface and  then ignored by the
regutarization effect of the algorithm.,

Another way to make the edge points atiract the sur
fuve 1v by using a Chamfer distasce [7] or an Fuclidean
distance 116} image. The distance imuge s ubz;izzm} by
computing at each image point {pisel) the distance to the
nearest edge point (these points are oblained by a local
edge detector). These distances allow us to compute at

Jian

cach image point the sttraction force 1o the nearest
edgels. This force can be computed i different ways.

extraction of

COEN, ANIY AYACHE

sllowing us to test different forces accordimg 1o the rate of
convergence of the algorthm. For instance,

Plofs 51y s o prefiesh

produces a slow convergence whoroas

amd P P el o = 0

ence diels, r denotes the dis-
the n

[R9s)

produces a faster converg
ance between oy, #3oand earest edpe whereus the
smatiest distance between distinet one
pixel]. The use of such attraction potentals 15 detalled
(1al

H

pomnls 15

4. MINIMIZING SURFACES AND LD IMAGE
EDGE POINTS

I the previous section we showed how (o choose cor-
rectly the potential P such that the surface will focalize
accuralely the edge points. Here we comment on the
relationship Emuu,n the surface minimizing the energy
of external fore m Fooand 31 edge points, This 18 &
generalization to 3D surfaces of the result given by Fus
and Leclere [18] for 2D curves. We use the following
definttion of the 313 edges. as proposed by Canny {91

Durinvamon. A 3D edge s a surface F whose points
have g maximal gradient magniiude in the direction nor-
mal to the surface. All points along the surfuce ¥ tealled
Canny's edge points) salisfy

where NOv(s, #1115 the normal o the surface ¥ parame-
terized by the application x(s, rrand 7 denotes the image
fix, v, 23 convoelved with g Gaussian.

As i L&, 1o establish the refation between the energy-
munimizing surfaces and this definition, let us define the
energy associated to the external forces as

VAixis, ridA. {5}

the surface area and 4

({% 1/}
dx dr is the \{&maid Sur

Ly, X,
VEG face ares measure.
In Appendix A we show that a surface ¥ s a local

minimum of £y, with respect 1o infinitesimal deforma-

won, if
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{6}

Vi (ety, mydA

whore Bis, m. Fils, o, s, Fre, yoand gl o
are the coefficients of the first and second fundamental
forms i the basis v, v, . A} tusing the swne notalions as
that in [17]3. A remarkable rosult is that the qzwému {172
oG 2F 5 oY IEG — 17 wvature of
the surface .

Fguation (6) shows that

ng speci

iy, rh,

Dis the mean @
there oxists two very inferest-

cial cases:

{ minimal surfaces (Lo, surfaces with a mean curva-
tve which is evervwhere 20rol mzd

3 gurfaces whose trace s made of edgels with con

stant gradient magnitude {then the e within parenthe-
sos 40 B, (63 vanishes),
the second member of Lg. 6

that Canny’s cdge
of a deforma-

tndeed, i both cascs,
varshes o rero, which moeans
coincide with the minbmal external energy
bie model.

In practice these are interesting but exceptional acas
demic situations, and the deformable model simply con-
verges toward a solution which s an syuilibrium between
the applied external forces {corresponding (o the enerny
o) ;;mi the internad forces. parameterized by the elastic

points

5 NUMERICAL SOLUTION BY A CONFORMING PN
FLEMENT METHOD

T

We consider the same evolution ition as that i

Section 22

&4t

3 initial estimation

hogndury conditons,

train the
1o consider the o

The boundary conditions allow us 1o cons
oey of the surface {forinstance,

Ei‘%pa}iu
Ology

of a ovlinder. w torus, or a sphered. In the follow ing,
simplify the notation, we consider Lg. (7) with zero-
boundary conditions (more general cases cun be hapdled

£4,
change of variablesy In ooy case, we cunsider
maodels of fixed wopology.

¥ . p .
g m;‘%asimv—'

by g shmple
drém‘t}‘;;z? o
24, 28] 1o hnd varyin

The solution of Eqg.

Cine could refer 1o
modieis.

3 is performed in bwo steps. First

SURFAC
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we solve the static problem (1) with a conform i
Plement Mothod (FEM) 110] and then solve the evolution
probien: with 3 finite dhifference z;;vf%xm Thiscan iéc dong
# and the temporad variable 2

H
ion
& riahles {s,

H
sines the space va
are indepondent,

A Static Problenn

arictional Problem

Solution of the
The V
The solution of By, (1) s performed thyow

tiomal method, This consists of defiming o bili

alir. vy andd @ linear form L) '

b f

such that solby

equivadent to solving the assocated va riational problem:
Find @ function ¢ in the Soboley space A48 such that
gty uy o= Loy, Va & i, {5}

where 77400 is the space of functions such that jo i mer
o for oo 00107 where 2770 15 the mitdeord )
tive of function v
Qe can afzmifg
problem (8) is equiva

the varationad

the funciional

remark that solving
font (o mintmizing

JGy =

S PTETIN TS S R 73 )

Thus. by

T asar

ymark 1 (i, 01 i defined only for
IORET DO P udy dr

solving (8) 1s equivalent the bBuler-Lagn
gguation (1),
has o unigue selution as long
5 symmetric and posifive deft

ramelory Wy at

o solving

We can further show th at the ‘<3§%§"‘z‘2 {

citi, h

w5 the bilines ¢ forn
i Provi § i that
g5 ;“ML?’\;I'Z Ve,

oEy

[iscretizing the Variation o Probien

Conforming FEM

S far, we have deadt with the contmuo
variational problem 1o show the
pnigueness of the selution of (81
define an approximmtie problem of
variational problem. This
bin

S P

disgrel
an approxinale solution ¢, of {
RO (the solution ¥

- {3 furthernmore. f’m‘
wing the order of convergence ofie

{8
1l

owi s 1o seareh

dunensinnal

a finte

e’\ R §&§ . §
the FEM used m the
5/ 2 1% {3 55‘3'3\5,

space ¥

—» {} as A

foilo
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pwo conditions ensure good nurmenical propertics
are :i%“fs: basis of th

These

of the disore

T

tization schemes and

conforming FEM IO This is difforent frons the FEM
meavoned by Terzopoulos 32 231 or Pentland and
Sclaroft 1291, who refer in general 10 @ mnwmmmmg

§mzuz“zz o schome w? a set of differenticd cquations

as that of Bathe (47 for instance.
A well-known ztg‘?ﬂif(ixii L approxi
fems s Galerkin®s method {101 which egumixéa<_>§’a;§<:§'§fs£§'z;;
a similar diserete problem, over 44 sih
of the Sobolev space 7/ ated
am for (8) 1s

sy

nuting such prob-

yte-dimensional

space 1, 3. The assogd

prosii

EYNTIE LTS B O TP

the space V.

element method provides an effi
the space Vi, I is characterized by

fo sobviig o linear system over
finite

which feads
The conforming
cient ool for defining
three aspects:

A tessellation is established over the parameteriza-

ton set £ o= [0, 1) 2 [0, 1L

= The funciions 1, & V. are piecewise polvnominls.

» There exists a busis in the space V, whose funciions

have small support.

This fast feature 1s very important since it defines the
structure of the Hinear system that we splve, {hoosing
functions with small support induces a very sparse linear
system and leads to a reduced computationa! comple Xity,

Details on the tessellation of the domain Q and the
< sistruction of the s Immw Vi with the Bogner—Fox-

Schmit (BES) clements [3] are given in Appendix B,

£y ot
Expressing o, @V, in the BES basis leads 1o the iden.
1ty
Yo i, f
i \»( i
S 2

where «, = Gh . jy are the nodal points. Eguation (103
gives us 08 analvtic miu won over the se 0,

Finally the solution of the discrete problent associated
with (h s eguivalent 1o a solution of the lincar SV 5

em

.

AV o= L (i
where the
lsiaiz‘ax i

variational

dix B,

matex A s symmetrie, definite positive, and
per bloc, The reader can find all details on the
problem and lincar system (11 in Appen-

COREN, COREM. A

NEI2 AY AUHE

The FEM described above
ﬁ(?wi' aumerical methods Tor solving :
ditferential equations are oflen used: Fintte [nifer-
enee ?X:Eg.zi hod (FDMy and the noncostforming FEM. The
FDM is casy o implement but hus some drawbacks:

FEM. Some
Ezix Kind of payg

s a conform

and

+ the solution is known only at the nodal PN

» the apphed forces are taken into account oy ut
nodal points. and consequently, one must have a large
nmber of nodal points 10 compute accurately the appihiod

forces. This feads © a larger numerical complexiry (see
Section 7).
I the nonconforming FEM. the fintte-dimensional SPACD

Vs aim:»» not belong to the space HH(): this me ay alier the
smeothness of the sofution. Thase methods do not propa-
gate the stress and the strain corvectly 1357 and do not
provide a decomposition of the selution in a discrete bu-
sis of continuaous functions.

53, Solution of the Evolurion Problem

In the previous section we showed that sols “sig L, (1)

can be done by solving a lineur system A - V LComse-

quently the discrete form of the evolution of {(71is
al’ ,,
4V = L
This equation is solved by an implicit scheme,
\) . H
: {12
VO py initial estimation,
where 7 s the time step,
This scheme is difficult o solve since {hé} term L
complex. Thus we have chosen an implicit scheme for ‘y’f'
and an explicit scheme for the forces . This Eusa is 10 the

solution of the linear system

{Id + +4y - sy K
Finalty 1o find & solution to Eq. (7) we must solve the
lingar system M - Vo= N at cach time step. for which the
matrix M o= td + +A) is bunded, symmetric, and positive

defindte, This Hnear system is solved with a (,ﬁ‘imiugziis
Gradient (CG) method. in which the solution VO ' is taken
as an it guess at time 7. AL each time step, m Co

method converges ina few lterations (3 to 10 iterations),
This approach appears 1o have a convergence faster than
that of'a Cholesky factorization and take le
SEOTHEe.

58 moemory for
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S.4. Compuration of the Yecior 1.

The vector L, where

A5, regls, sds dr

(e, = b ..M, and & are the basis
functions of the BFS elem cnn w;n*cwﬁis the contribu-
tion of the external forces (which altract the surface 10
ward the edges) in the linear system that we solve at each
iteration. Thus. the more we weight the potential 77 the
more accurate the result and the faster the convergence.
Since the potential 2 is known only at integer vahues
(discrete image data) we must compute the Lufe,) with a
numerical integr mma Consequently we compute V/ at
any point (v, v. 2) € R by a trilincar interpolation of its
;; ht neighbors,

I'o take inlo account

all the contributions of the exter-
nal forces. we modified the numerical integration formula
such that every image point in the set i/ BTN
(s Dk X G~ Dy, G+ i is taken into account in

the compmzm’mn of each term Luley Let Fls, n) o=
VP%{ iz s and for cach rectangle Ky = i, G+ 1Ay
X { jh, = 1L

- Supldiv(ih, . gy, eld + Diy, ghon
dotihe, 1 v Dy,

arnd

Supldtviih, .

vlih, 0+ UL,

Vb (G F

.

Al + Dk jh), el » IR1BIIN

whoere 40, ) denotes the 3D Euchdean distance. Thus

ryds dr o+ Fis. rids dr

Fis,

This method allows us to perform an adaptive subdivi-
sion of the rectangle K, without adding nodal points and
without E%k%i,;{?«i{igi the size of %%m Hnear
This method significantly reduces

consequently
system that we solve.

algorithmic complexity while incre g accuracy and
convergence speed.
4. REGULARIZATION PARAMETERS

The elasticity and rigidity coefficients wy, play an ine

portant role in the convergence process of the surface

247
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toward the image cdges [ 115, These coefficients must be
chosen in a correct way such that the internal forces
generated by the

CNErgy

Wy T PR

ds or

bitag v
ayt

have the same magnitude as the external forces Frod In
this case a1 minimum of the energy £ will be a trade-olf
beiween the internal and external energy. and the ob-
jained surface will fit the edge points while being smooth
and regular, It the internal energy is preponderant. the
surface will tend to collapse on itself without detecting
image edges, whereas if the external energy predomi-
nates, the surface will converge along the image edges
with any degree of smoothing,

To ensure that both internal and exiernal energy have
the same order of magnitude we have found it sufficient
to choose the coefficients uy; such that the linear system
of Eq. {7y is well conditioned. This leads o

oy = fodhr and wg oy o owe m fky

where b, and A, are the discretization step of {1
We sel wia = g and wy since the 3-D

image data were sotropc and xmzwagmn ty all divections
have the same weight.

7. NUMERICAL COMPLEXITY

In the following we compare the algarithmic complex-
ity of the conforming FEM and the FDM. lo both cases
the discretization of the evolution equation (2) lends 10
the solution of the linear system (13, but the number of
unkpowns is different. az zhg conforming FEM at cuch
nadal point g, (= - fandj=0- - N — D, we
mmz mm;;mix EAVIR bolagh, (o 3, and

3 conseyquently the matrix . dis 4 < N
and it Ez 1s 4 mdwrmmi per bloc structure (it

1?1

by {md’wi&ii h

s 2N, - 1see Appendix B3

fnthe FDM, the n'm{f‘ix; Ahasa ;x‘t’i?:uiizmo nal per bloc
structure {118 bandwidth s 4N, ~ fw wd s size s NV, XY,

nee at each nodal pointa, G0 Ny Tandj =0
N, - 1) we must determine vl

The linear system is solved by a CG method. This
method 15 an iterative method. At each CG iteration we
must pertorm (44 additions + 42 multiplicarions + 1 divi-
siony » 4 % N, x N, for the conforming FEM and (18
additions + 16 multiplications & | division) X N, X N,

for the FIIM.
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Consequently, if we consider the same number of
nodal points gx and that the neocessary number of C6G
erations is the sume for both matrices, the numerical
complexity of the conforming FEM s approximatively 12
firnes farger than that of the FIDM, In procaoe, i

LA, B that for 2-D deformable curves the number
points i the FDM must be at least equal 1o the lengih
pixels. of the mitial guess. 1o compule acguraiely
attraction force. With the FEM. the number of poinis can
typically be reduced 1o the order ol #/

this rosult s sull valid for the deformable surfaces (we
have not implomented the FDM for deformable sue-
faces), we must consider, for the | {

O we assume that

DML a number of dise
cretizalions pomts 36 tmes larger than that of the con-
forming FEM. In this case, the numerncal complexity i
G612 0 3iimes greater thon the comploxity of the con
formung FEM,

This advantage s duc 1o the computation of the vecior
Fooooin (131 and the nature of the method, In the classical
FDM, we follow the evolution of a st of pomts. In the
contorm FEM. we actually detorm the surtuce which is
betweon the points of the grid, and the mmage forces be-
tween the grid points are also considered sinee the nue

moerical mtegrsdion v mude at the pixel size 50 that no
information 1s jost {see Section 545

i v eie Friperier :
P funeuons ¢, 4

AR AY ACHE

& INPERRING THE DIFFERENTIAL STRUCTURE FROM
D IMAGES

8.1

Previousy Aciive Meodel

Witk the

s osections we showed how 1o use the

deformuble surface 1o scgment and 1 some D image
edge points. I the following we asswme that the surlace
has focalzed accurately the 300 image odges, which

means that we have reached a muinimum of B, Wo now

use this surface 1o compute the differential characters-
tios of the 31 imuge surface boundary, This computation

can be dune analviically at euch point of the surtuce »ince

the use of conform FEM gives an analytc representation
of the surface cts. 9,

whore

are the basis functions and the
; ax) G, v aey (ag, and (070
Asary oy are computed by solving the hnear system (123
{Fig. 11, Anothor mugor contrnbution of the analviic repre-

coethoients

-, > “‘v .

W AW

7 N Sy A
F; LA Ay
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sentation is that at each point of the surfuce, the tangent
plane is given by the vectors v, = ¢ and ¢ spidrun
the following the subsoripts o 7, sso0r, and 37 denote the
first zma} second de “xr:uévm This aliows us o compute

all the differential characteristics i local coordinates and
aﬂﬂw{;u@ ntly handle more s‘:cnc:‘:ai siiuations,

Let us consider the basis {o., v N}, “‘%}c‘i’c N o= Ap,
i, < e, and let FL00) denote the tangent plane to U at
the point p € RS Stnce Noand N, §x§s:n§; to 1,(01 we can
wrlle ‘

N, SN CEEE A A L £

N, i1 PRSI ENN
and therefore dN,, which denotes the differental of &
;:m‘ai;mtui al ;ﬁumi ;u s given by the matix {agh o0 18
the basis {v.. o, This malrix can be oxpressed in

torms of the first and second fundamental forms of 7 as
1171

\ay ) G~y g ey B

where £, F. G e, £, and g are the coefficients of the first
and second Tundamental forms in the busis o v, N}
defined by

o~

This gives the relations

I -G

as the equarions of Weingarien. Thus the Gaus

known
sian curvalure K and the mean curvature H of o st p are

K o=odet{dN,g = dellag =
i {eds
H < {ay o o

The principal curvatures are the opposites of the eigen-
values of dA,: they satisfy the eguation

dettdN, + &Iy = & = 2HI 2 K= 0

and therefore A = H

TREACES 1t

249

The principal curvature field can be tused to extract t the
;z;zzxin‘;az as%‘ the larger curvature in the divection of tm
fareer curvalire (261 This vields the ndges of the sur-
face. xséf fyoare very uselul for matching. Inl ig. 16, one
can visualize the value of the jarger principal curvature.
The result appears 1o be qualitatively corred and can be
compared 1o those obtained 1 [26] by another method,
fiting locally a quadratic surface model.
Our results are a littde more noisy, but the advantage s
ihiut the segmentation and curvature are compuied sinul-
Alsa, our approach appears (o be computs-

";’

consisting of

sm“;mua} /
dounally much less expensive.

8.2 Using the
the Maoded

Suricce Normals (o huprove

in the previous example, the computation of the curva-
tures was hased only on the fogation of the surface (re.,
the sole data given were the 3D points (X, Y. Z), which
are the 31 image edge potntsy and the obtained curva-
tres are qualitatively correct, but the Cm‘mzm** does not
vary smoothlv, We helieve thal the ¢ Caddinonal in-
formation such as the normals of the surface improves
the result of the compuiation of the curvatures, Monga
¢t ol already used this property in [26] to fit local quad-
ries models 10 32D edgels. Lee [231 used positions and
normals 1o it surfaces fusing binocular stereo and pholo-
mietric informations. Terzopoulos 1321 also used the nor
mal information for surface fiting.

Indeed. if we assurme that the sought surfaces are noisy

1se of

isointensity surfaces as is muzzI%' the case in medical
images), then the image gradient (estimated by « 3-D edge
detector 1271 is colinear 0 mu surface normal X and

provides this information,

Hwe use a paramelenized surlace vls, rd o= {als, 1l
£, taking into account the normals leads
nontinear minimizalion problem {313, To avoid this,
gse a property of regular surfaces which states that for

each surface pont there exists a neighborhood such that

IEN
LR s}
W

vy, oods.

the surface can be expressed in the form vly, 7} = L5, 7,
iy, 8y 7, ¥, i?j@? This 15 done %3},5 ua\&’wnh\\ focs ?i fi

2
frame such that the fivsl two vectors of 1
hasis belong to the tangent plane, We call thus reference
frame the tangent plane reforence rame.

e ois o surface of the form (s, 0,
colinear 1o the unit normal has the simple Torm Ny,
{-ve, v b To constram the surface v o fit the
points (Y. Y. Z) (oblained by a previous application of a
simple deformable modeD and the normals .V
by o &1 edge detector 127D, we transform locally
data in the tangent plane reference frame of the surface,
Once this is done. we divide the first two coordinates of
the normal vector by the third one. obtaining a measured
normal of the form (N,

referonue

vls, oA vegior

dals

{estimated

these

1y this 13 alwavs possible
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11 the

posurface pomt

within a neighborbood of a regula
wngent plane reference framel
We oun

define a given by 2

, where

HOwW ST

SHOTEY

{ the gmwwxu%
OO

where ¢ represent the third component o
of the data point {4, ¥, 77 in the tangent plane refe
frame.

Herve, once again, the cuergy £
face to be smooth the B .
between the datu and the surface.
s allow us to weigh differently
normals. This allows us to choose the coctlic
¢ depending on the reliability of the data points or the

constrains the sur-
susures the diserepancy
The coelficients € and
the data points md the
, and

wents O

normals (up to now we set €
of £ is obtained by

A minhnum solving the equation

{16
e = oy o N Nod
+ houndary conditions.
This cquation is solved with a conforming Bl EM as de

seribed in Section 8

FiG. 2,

5¢ime suoeess

9, EXPERIMENTAL RESULTS
We now give results of the algorithms presented s
Using a 3D d ciws;rzz,zkizic mode! 10 segment a 3 23 ag

;;ppiw;zzmn e;si
dve 2D oross sections

o ogapsin 3

prmxaim betier results than the bverated
2-1 'f deformable model to suec
{141 fndeed, the 3-D maodel casiy bridges ¢
P, Lo, nod only within g oross section, but also between
ersuring that the result is g%wia:ii}ﬂ; a
smooth siface and not only o collection of smooth pla-
nar curves, This significastly improves the robustness of
the segmentation: for mstance, it is oven possible 10 e
move all the edees of a single gross ws:izoaa Cassuming
that the edges are correctly detected in the m%m ones?
without degrading the Hnal vresalt too much.

We present in Fig. 2 oan example with artificial data
This i;; e represents overiavs wi some horizonial cross
sections of the nitial sirface with the orgmal data, The
30 image hore s oa oviinder v;h{fz"c we have removed
some edges in three successive eross seclions 1o compary
the results obtatned by a 2.1 model applicd 1o successive
cross sections with those of a Full 3-D deformable model
With the deformable surface we can restore the im?
odges and obtain a perfect reconstruction of the cvhndes
(Fig. 35 whereas a 2-D model [14] cannot restore the foss
pdges even if we use the same atvacton foree as that for
the 3-1 model.

The deformable model can also handle nosy datad In
Fig. 4. we have added Gaussian noise (o7 = 0.8) to the

edne focations of a cylinder with an elliptic base. This
figure shows some a:nwv'wc?is}m of the obtamed surface
with the data and s representation of the surface. We
have also co;tdmiui some experiments on the accuracy
of the model and its ability to handle noisy data, We have
considered a set of data points (a surface plot 1s given in
Fig. 17y obtained by sampling the analytcal function (s,

VG - s e S0 ‘,”’%{} Oy and corrupting by oo

3

Cross sections,

by the user




FIG. 3.
203 medel cannot recanstraot s

Here we show how the deft

{i.i}i( o LA

. and

nodd values, al six

Giaussian noise of variance o
oo 001, Table | represcats the obla
different points, of the surface ;ag@;‘az*im'ﬁ‘mmz the func-
tion ». The mean error and the varmnce ervor are ¢om-
puted over the whole data set (these datu vary between §
and 13,

Figure 3 shows a set of cross sections of a vertebra tout
of a total of 50 cross sections), obta sm:.d with an X-ray
scanner and the intial segmentation provided by the user
(the external curves show the mig.nwiiw of the given
surface with the corresponding

Figure 6 shows the resu Im’w surface obtaned after 40
iterations, in the same sot iwm s interest
ing (o note the remarkable accuracy of the segmentation
although the detected contours were often ‘ncmng fete
{due to noise effect). Figure 7 shows a wire-frame yepres
sentation of the resulting surface.

Figure ¥ represents some cross sections of

CrOmE SECTIONS T,

£ 0of Cross se

{ the ?&}

edge image of a human heart (obtained with Magnen
naging (MHE

Resonance b 1y with the initiad surface {'ix‘z

ST SEGMENT

LD IMAGES 251

iyes while baving w 213 bomogeneity, In this example. a

g;%zy} Figure 9 shows some ©ross sections of the surface,

once it has reached the minimum of £, We can note the

wostd liigﬁ;%%i'f.éiii{)i} of the surface on the 3.1 edge points.

Froure 10 gives o 30 representation of the tnside cavity
af the left ventricle.

Figure 11 represems some cross sections of a human
head (out of 70) obiained with MRIL Figure 12 shows
game cross sections of the surface with the 2-Dimages, A
representation of the surface is given in Fig. 13, Figure 14
shows the oross sections of the surface obtained on an-
other set of MRI images and Fig, 15 a rendered reprosen-
tation of the surface.

We now present the results of the computation of cur-
vature on the face surface, Figure 16 shows the computa-
ton of the larger value of the two principal curvatures
withoul wusing the nonmal information (the black
correspond (o high-curvature regions and the hight gray
arcas 1o low-curvature regions). We can casily remark
that the black arcas tend 1o Q??ESisi&flﬁ(‘i?Q the structures of

the swrtace. These characterisiios could be used 1o recog-

ATy

FIGL 4
oylinde:

cation of o

sE poive ford o LR 1 (he o«

the image plane and the complete surfs




252 COH COMEN, AND AYACHE

FIG. 5. Some cross sections of the intad swiface given by the user.

FIG. 6. The corresponding cross sections of the solution,

) ‘“‘Q
PACER i
o ki

FIG. 7. & wire-frame representation of the veriebra.




USING DEFORMABLE SURFACES TO SEGMENT 3-D IMAG 253

FIGL 9. Here we give a further example where we use n deformable surface constrained by boundary conditions (wylinder type} to segment the
s5 sections of the surface Un gray) are shown with the contour image to show the acourate

fnside ¢

3

ity of the left ventricle. Overluys of some oros
salization of the sorface.

FiG, 13
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TABLE {
Results Obtained on Some Points of the Computed Surface on Noisy Data for Three Different Values of o

ot 100 e (RN

Theoretical Compued

Relative Computed Relative Computed Relapive
value value Erroy vaiue FTOT value erray
Poinis P Ze i » - e

(3.375. 0.5) {.9682 (3.8R70 G812 0.8609 03,8333 3.1349
(6.5, 0.3 1.0000 0.5183 G,0817 (,8973 B (8513 . 1487
0,75, 0.5 (.8664 {.8090 0.0570 {7690 .4 {.6805
(.75, 0.5) (1.9682 {8796 0.0880 .1 3.76803
(0.5, 0.25; 1.0000 09.9077 4.0922 {31355 {17398 (.2402
{1175, .75 0.8660 (.4243 (1.0417 09.0347 3, 7981 $.0679
Mepan ¢rror 13,0658 3.0878 01409
Vartanoe emor 00173 $.0316 §.0820

nize anatomical structures from the 3-D images. Never- series of experiments on synthetic data. In Fig. 17 aren-
theless, as discussed before, the results are qualitatively  dered representation of the data and the theoretical value
correct, but noisy. of the larger value of the two principal curvatures are

To validate the use of the normal, we conducted 2 shown., We have added Gaussian notse (o? = 0.01) o

FIG. 11, Overlays of some cross sections of the iniiial surface given by the user with the original data.
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FIG. 12, Overlavs of some horizonta

these data (Fig. 18). Figure 19 (fleft) shows the result of
approximating the surface to the noisy data and the com-
putation of the curvature information (Fig. 19, right
without the use of the normals. Figure 20 (right) shows
the same quantities computed with the information of the
surface normals and demonstiates the importance of this
information for regularizing the result. This visual quali-
tative improvement is confirmed by a qualitative compar-
ison of the computed second-order derivatives at differ-
ent points on the surtace. Typically, a gain of 10% in the
accuracy of the second-order derivatives is provided by
the normal information. Table 2 shows the larger value of
the principal curvatures at three distinel points.

£S TO SEGMENT 3D IMAGES

Tond
3
£

1 and verticnl ovoss sections of the surface obtained by the algorithm with the origioal data.

{9, CONCLUSION AND FUTURE RESEARCH

We have shown how a deformable surface can be used
to segment 3-D images by minimizing an appropriate cn-
ergy. The minimization process is done by a variational
method with a conforming finite element. Our method,
including the use of an adaptive subdivision for force
computation. has the following advantages:

[. it requires less discretization points and conse-
guently produces a smaller linear system 1o be solved,
thus reducing significantly the algorithmic complexity.
and



Fify. 13,

2. it provides an analytical representation of the sur-
face.

This last feature is the most important one for inferring
differential structures of the surface, and we showed how
to compute the first and second fundamental forms of the
deformable model, These characteristics provide a help-
ful tool for recognizing 3-I objects. They will be used
soon to match the deformable surface to an anatomical
atlas 21

APPENDIX A: SURFACE AND 3-I3 EDGE POINTS
In this first appendix we give a necessary and sufficient

condition for a surface to produce a local extremum of
the encrgy

COMHEN, COHEN.AND AYACHE

A 3D rvepresentation of the swtace.

FplF)

where | Iia Fidsdr
is the standard surface area measure. A necessary and
sufficient condition for the surfuce ¥ to produce a local
extremum of Ep with respect to infinitesimal deforma-
tions is

dV I, )
AN )

{ Fv(s. )| i‘ﬁi f 5«, VI (xls. ) c]sdri}c {17y

TABLE 2
The Comparison between the Larger Value of the Pripcipal Curvature Computed on Noisy Data with and
without the Use of Normals

Perfect

data

Noisy data

Computed Withou With
Points Theoretical «, curvalire «, normal «, normals «, -
028, 4.5 2658 2.414 {846 (.812 £.924 0.734
(5.5, 0.75) §.609 {687 627 0.018 1,603 (35,004
.65, 0.5 PR L 1.276 1,740 4.409 L.RO2 {1,340
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FI16. 14, Another example of the segmentation of the human face froma MR imoges, Overjays of some vertical cross sections of the surface

abiained by the algorithm with the original data.

where E{s. r) Flso ), GG, rd,efs, ), fisoe), and gls, #)
are the coefficients of the Hirst and second fundamental
form in the basis {x, . x,, N} (see [17] for details about the
notations), = [0 LT X [0, M} and £ §

Let us consider ., a small deformation of the surface

& such that the parametrization of ¥, is

{18)



FIG. 15, A 3D representation of the sivface.

where als, ), S5, ). and (s, ) are arbitrary continuous
and differentiable functions and x,. x,, and N are the
derivatives of x and the normal 1o the swface.

¥ is a local extremum of Ep if and only if

dEp(F)

{19}

for all o, 8. and y.
We show that (19) holds if and only if (17) is satisfied.
By definition

To PGAMs, mdA
f«k} ({/:g

COHEN, COHEN, A

DAYACHE
wheve F. F. and G are the coefficients of the first funda-
mental form of F,.

To compute the derivative (dp¢ F O AN . we need
10 compute the derivatives of the vectors X, X, and A,
For this purpose we use the equations {17, Secl. 4.3,
p. 231

where the coefficients I'L are the Chyistoftel symbols of
in the parametrization v, and ¢, f, g are the coefficients of
the second fundamental Torm of . In the following the
Christoffel symbols '} have been replaced in terms of the
coefficients of the first fundamental form E. F, & and

thewr derivatives.
Thus computing dF (40 dh and evaluating itat A = 0
leads to

QP e P T z;{ dsdr
| TR P~ PLdsdr

Integrating by parts the integral (except the last one)
vields (17) as a necessary and sufficient condition for (19)
1o be satisfied for all o, 8, and .

APPENDIX 8: DETAILS ON THE NUMERICAL SOLUTION

B.1. Variational Formualaiion
Let ¢ € HHQ) be a smooth function. If v is a solution

of Eqg. (7). we have
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FIG. 16, A representstion of the larger value of the principal curvatures, The high vaiues are in black and the fow values are in light gray. ]
values characlerize some structures of the human face suoh as the evebrows and the nose.

that the variables (s, ) and 1 are independent; we can
separate them (for more details sce [10]). Green's {or-
mula vields

Is

{ i
4+ 2 } B 1
Jo odsdr s

f T (yedsdr,

where the function v depends on 7. s, and . We remark  Let us set

FIG. 17, A rendered representation of the theoretical duta tlefty and the value of the Jarger of the two principal curvature
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find v € HHO) such that
atv. w) = L), Yu € Hi). (2

where L, is not supposed to depend on v (we remind the
reader that there cxists a unigue solution to this equation.
since the bilinear form e{x. v} is svmmetric and positive
definite as long as wy > 0), and then solve the evolution
equation (21). This vields Eq. (13).

B2, Tesseltarion of ) and the Basis Functions

Given the numbers of {E;au:,umium points in the two
¥IG. 18, A rendered reprosentation of the noisy data o7 = 0011 axes (){ P‘irdmufif’ ation V. - 1owe set /1, = HIN,

{3, b, = /N, yand consider a uniform subdivision of
az of stup size i, and !z,, wm sosed oi the nodes a; ;= (x;.
Yoe= hy, i) 0 =0 s Sl s N~ 1 Thus
aluy, v) =
O =10, 11 % 0. 1] = K.,
U
and Newd Mot . . . . .
U {ihe, 0+ DI X L, G+ DAL
L) = = | VP dsdr. B

Since the higher derivatives appearing in Eq. (1) are of
tourth order, the conform finite element space ¥, must
satisfy V, C €N HHO) or details see [10]). For this
purpose the space Hi) s approximated with the
Bogner—Fox-Schmit elements 5, 10] defined by

“Phis leads 1o a new formulation of the problem given vy €
LAY and VP € L0, T, LY. find a function v € L0,
T, HHO) 06N, T L) satisfying

o o
7 W, 0+ aln. w) = Lotw). Y & Hildd), s+ The rectangles K. defined by the vertices ¢, 1=
‘ v ko= 4,
o) = vl 1) zh + The set Py, of polynomials containing the basis func-
wy € L7 and wpls) = oa > 0 tions
Since t«he »ax:zz;xhie& SRR dﬁd ¢ are independent, we can Py = OxRY = } Cpls, )= > y}i‘,:g%;-s’%’
solve Eq. (21 in two steps, First solve the static equation e i3 L

Fit 19, A rendered representation of the surface fitted to the noisy data (o7 = 0.01) without normals tlefty and the value of e larger of the two
principal curvatures (vight).
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FIG. 20, A rendered representation of the surface filted to the noisy dala (o = 0,01 with taking into account the norouls ttefts and the value of

the targer of the two principal curvatures {right).

« The set Sy, = {pleeh aplelas, aplcgdiar, alpley)
asar, 1= k = 4}, which allows us 1o define in a unique
way the basis functions over each rectangles Ky,

The subspace Vj is then defined by
V}z == }\3,7 € (’;E(i}e}ﬁ U;K:; & {:}1{1\,,)‘(

where (1) is the vector space of the restrictions fo an
interval I ¢ £° of the polynomials whose degree is less
than k for each variable, and vy is the restriction of the
function v to the subset 1. The basis functions of the finite
clement subspace Vi are ¢y . Uy, 1. and Ly aml they are
defined in a unigue way over each rectangle K; by

Jgy

Sl e any
[th}

ety

] {;((i i}

where

3o 0_ Lo s 1\;8 -

providing a countinuous representation of the solution
over the space (.

Fquation (23} gives the expressions of the basis func-
Hons @y, by, . and L This leads to analytical expres-
sions which are too fong to be reported here. Instead, we
give a graphical representation of the four basis functions
(Fig. 11

B3, Discrete Problem and Linear System

Rewriting the discrete problem associated with Eq.

(22 with the basis functions gives us the equations ¥4,
i LN, - 1,

U{Z_J';-! . i;f}ij} = |
{24)
ff{(iizw ?}{;} e 1”\{7}”)

{t‘{rl"ji, én} = {fg“‘)

S A

fagputleen . byl

{quale

(aa{nu. il

'2‘ {aating. &
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Ny | ]
> vawally. ¢i) + ot @alu, U
fi=g
. P a* {’;, N . .
- {awyeliy. my) + —aally, L} = L0
’ Asdr ) v
(25}

Fguation (25) is a linear system where the unknowns are
viplau), (Fuilar) {ay), (Buiias) luy), and (8 v, /6508 (a)

Finally the solution of the discrete problem ";.nsoua.mi
with (22) leads 1o the solution of the hinear system A
Vo= L, where A = {A;.). \ e 18 @ tri-
diagonal bloc array.

[aley, pu) aleg i) aley, mu) aley, Ll

. ally, oi) aGy, b athy, me) ally. L)

alny, e aly alny, iy alny. L)

Wy, oy ally, by ally, nw) ally. L)/

the A, 4 array elements depending on the elasticity and
vigidity coefficients.
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