
HAL Id: inria-00615623
https://inria.hal.science/inria-00615623

Submitted on 19 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Generation of Loop Invariants using
Predicate Abstraction

Krishnamani Kalyanasundaram, Claude Marché

To cite this version:
Krishnamani Kalyanasundaram, Claude Marché. Automated Generation of Loop Invariants using
Predicate Abstraction. [Research Report] RR-7714, INRIA. 2011, pp.32. �inria-00615623�

https://inria.hal.science/inria-00615623
https://hal.archives-ouvertes.fr


appor t  




de  r ech er ch e


IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
7

1
4

--
F

R
+

E
N

G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Automated Generation of Loop Invariants using

Predicate Abstraction

Kalyanasundaram K. — Claude Marché

N° 7714

July 2011





Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Automated Generation of Loop Invariants using Predicate

Abstraction

Kalyanasundaram K. ∗† , Claude Marché ∗†

Thème : Programmation, vérification et preuves
Équipe-Projet ProVal

Rapport de recherche n° 7714 — July 2011 — 30 pages

Abstract: Program verification is a challenging task that requires several techniques for addressing
the different issues that arise because of program syntax, semantics and in many cases, the kind
of properties that are to be established. Static analysis is one of the techniques that has anchored
its presence in the verification of industrial scale softwares. However, no one technique is enough
to combat the complexity of today’s software systems. A combination of techniques is the only
way forward in order to achieve the confidence levels that are required in safety-critical softwares.
Frama-C is one such platform that combines various program analyses and verification techniques.
It consists of a bunch of tools that operate on user-annotated C programs and generates verification
conditions that would establish the correctness of the input programs. These verification condi-
tions are automatically discharged by a set of automated provers. The annotations provided by the
user along with the program include function contracts, assertions and loop invariants. Of these
annotations, loop invariants are of special interest as writing a correct and useful loop invariant is
as challenging as verifying the program itself. In this article, we describe the techniques we have
developed for generating these loop invariants automatically to reduce the burden on the user. Our
techniques are based on predicate abstraction, a well known abstract interpretation technique for ab-
stract model-checking. We demonstrate the potential of our technique in a multi-prover verification
of C-programs as implemented in Frama-C platform.

Key-words: Proof of Programs, Formal Specification, Loop Invariants, Predicate Abstraction

This work is partly supported by the U3CAT (ANR-08-SEGI-021, http://frama-c.com/u3cat/) project of the
French national research organization (ANR)

∗ INRIA Saclay - Île-de-France, F-91893
† Lab. de Recherche en Informatique, Univ Paris-Sud, CNRS, Orsay, F-91405

http://frama-c.com/u3cat/


Génération automatique d’invariants de boucle par abstraction

booléenne

Résumé : La vérification de programmes est une tâche difficile qui nécessite plusieurs techniques
pour traiter les différentes questions qui se posent en raison de la syntaxe du programme, la séman-
tique et dans de nombreux cas, le type de propriétés qui doivent être établies. L’analyse statique est
l’une des techniques qui a obtenu quelques succès dans la vérification de logiciels de nature indus-
trielle. Cependant, aucune technique n’est suffisante pour combattre la complexité des systèmes logi-
ciels d’aujourd’hui. Une combinaison de techniques est la seule façon d’avancer en vue d’atteindre
les niveaux de confiance qui sont nécessaires en matière de sécurité des logiciels critiques. Frama-C
est un exemple de plate-forme qui combine plusieurs techniques d’analyse et de vérification. Elle
se compose d’un ensemble d’outils qui fonctionnent sur des programmes C annotés et génère des
conditions de vérification qui établissent la correction des programmes fournis. Ces conditions de
vérification sont automatiquement validées par un ensemble de prouveurs automatiques. Les an-
notations fournies par l’utilisateur avec le programme comprennent les contrats de fonction, les
assertions et les invariants de boucle. Parmi ces annotations, les invariants de boucle sont les plus
ardus à déterminer car le bon choix d’un invariant correct et utile est aussi difficile que de vérifier
le programme lui-même. Dans cet article, nous décrivons les techniques que nous avons développé
pour générer ces invariants de boucles automatiquement pour réduire la tâche de l’utilisateur. Nos
techniques sont basées sur l’abstraction booléenne (Predicate Abstraction en anglais), une technique
bien connue dans le cadre de l’interprétation abstraite et du model-checking. Nous démontrons le
potentiel de notre technique par une mis en œuvre dans l’environnement Frama-C.

Mots-clés : Preuve de programmes, Spécification formelle, Invariants de boucle, Abstraction
booléenne



Automated Generation of Loop Invariants using Predicate Abstraction 3

1 Introduction

Softwares are the most ubiquitous things on this planet today. They have become indispensable for
carrying out our day-to-day activities. Their omnipresence has also made it a necessity to ensure
their correctness and has hence opened up many challenging research opportunities. Traditionally
the correctness of most industrial-size software is ensured through testing wherein a set of input
test patterns is fed to the software or system under test and the output is observed to check if it is
the desired one. Exhaustive testing is infeasible given the complexity of today’s software. Further
testing can identify the presence of bugs, but can not ensure the absence of them. A recent set
of techniques, under the umbrella term formal methods has become prominent in industry. These
techniques combine the clarity and rigour of mathematical modelling and reasoning, with efficient
computer algorithms, thereby automating the process, for reasoning about the correctness of soft-
ware and hardware systems. The advances in research in satisfiability (SAT) solvers [MMZ+01]
and Binary Decision Diagrams (BDDs) [Bry86] and more recently, SMT solvers [DNS05] greatly
aided the task of modelling systems and tools for the automated analysis of such models. Despite the
development of such tools, there are numerous challenges due the growing complexity of software
and systems they reside on.

Safety critical software systems that are being used in nuclear power plants, avionics or auto-
mobile systems require a high level of confidence. This level of confidence can not be assured by
non-exhaustive testing. Formal methods, though expensive and difficult than testing is a reliable
approach for verifying the correctness of such safety critical systems. There are a bunch of formal
verification techniques which are applicable for different systems (like hardware designs, program-
ming languages, etc.) and offer different degrees of automation. One of the most widely used
technique in industry is model checking due to its high degree of automation. Model checking tech-
niques involve traversing the finite state transition system of the input system to check if every state
or a set of states satisfy a required property. Other techniques like theorem proving are effective
and efficient but the degree of automation offered by theorem provers is not comparable with model
checking techniques.

However, given the complexity of industrial software, even with the use of state-of-the-art SAT
solvers model checking techniques do not scale up. In order to overcome the state space explosion
problems, the models are usually abstracted — by considering parts of the model that are relevant
for verification thereby making the model simpler, and the model checking techniques were applied
to the simplified abstract model. The original model is referred to as concrete model. Abstractions
were hand-crafted, and the success of the technique heavily relied on coming up with ‘good’ ab-
stractions. Predicate abstraction is one of the abstraction techniques that enabled computation of
abstractions automatically, given a concrete model and a set of predicates (information about the
concrete model). This process is usually embedded within an abstraction refinement framework,
wherein a conservative abstraction of the original design, amenable to verification techniques like
model checking, is constructed to begin with. This abstraction is iteratively refined till the property
of interest about the system is proved correct or a real bug is discovered. The most popular ab-
straction refinement frameworks use a propositional SAT solver or a theorem prover for constructing
abstractions. Both approaches have their advantages as well as disadvantages.

The abstraction generated by predicate abstraction techniques are usually much simpler than the
concrete model and can be readily subject to model checking. Since the abstract model is composed
of Boolean variables and transitions over them, model checking is much more effective over the
abstract model. If a property is true of the abstract model, it is also true of the concrete model. If

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 4

a property does not hold, the model checker generates a counterexample. A counterexample is a
sequence of transitions from an initial abstract state and ending in an abstract state that violates the
property. Note that because of loss of some information due to abstraction, this counterexample may
not be a real counterexample, but just an artifact of abstraction process. The counterexample is an-
alyzed to check if it is real, by simulating it on the concrete model. This phase is called Simulation.
This is performed by mapping back the states in the abstract counterexample trace to the concrete
model, to see if the behaviour represented by the abstract counterexample is feasible in the actual
concrete model. If simulation succeeds, then the counterexample is real, and the concrete model has
a corresponding path leading to an error state. If simulation fails, then the counterexample is said to
be a spurious counterexample. The abstraction has to be refined in order to eliminate the spurious
behaviour of the model. The refinement phase consists of analyzing the spurious counterexample
in order to figure out more details in order to refine the abstract model. This iterative process of
abstraction, model checking, simulation and refinement are carried out till the property is proved or
a real counterexample encountered. This process is referred to as Counterexample Guided Abstrac-
tion Refinement [CGJ+03], more commonly dubbed as CEGAR. The promise of this approach saw
instant and reasonable success in industry [BMMR01] and is a widely adopted formal verification
technique today. However, the technique still suffers from scalability issues when applied over a
wide range of verification problems.

Deductive verification of programs, although has been around for more than four decades, is
gaining interest among academic researchers [FM07] and industry [BCD+05, FLL+02]. The ap-
proach mainly involves three ingredients. (1) the program as well as the desired properties about it
are expressed as logical formulas which when proven valid proves the program correct, with respect
to the set of properties (2) the validity of the formulas itself is proven by deduction in a logical
calculus and (3) the most desired ingredient is to automate the process as much as possible. One
major advantage is the ability to precisely model the semantics of the program. Most widely used
frameworks handle a subset of the underlying programming language and treat programs annotated
with pre and post-conditions, assertions, etc. These are written in a general purpose specification
language. The program statements are transformed into logical expressions using logic formalisms
like Hoare’s logic, Dijkstra’s weakest pre-condition computation or computation of strongest post-
condition. The result is a set of formulas, the verification conditions which are discharged by a bunch
of provers.

Although the verification conditions generated above could be discharged automatically by the
state-of-the-art provers, annotating the program itself has to be done manually. These annotations
include function contracts, pre and post-conditions, assertions, loop invariants, etc. Of these, asser-
tions and function contracts could be written by the developer who knows the intended behaviour of
the program. However, writing loop invariants is a challenging and more involved task. In particular
we want to be able to write loop invariants that are useful in proving the post-condition. As writing a
loop invariant itself is involved, writing those that are useful in proving the post-condition is a Her-
culean task. There is a tremendous amount of research in loop invariant generation some of which
could be employed to ease the process of writing loop invariants for deductive program verification.
This is exactly the motivation of our research.

In this report we propose techniques based on predicate abstraction for automatically generating
complex loop invariants, that would aid in proving the correctness of post-conditions. We advocate
predicate abstraction techniques because (1) it has been studied extensively by the model checking
community and has been highly successful in CEGAR frameworks, (2) choosing predicates is much
easier and less involved than writing loop invariants, although choosing the best set of predicates is

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 5

going to be challenging and (3) it could benefit from the information derived from other comple-
mentary techniques like using numerical abstract domains or program analysis engines. We have
implemented the proposed techniques as plugins in the Frama-C [Fra08] framework for deductive
verification of C programs. The preliminary experimental results are promising and they demon-
strate the potential of this approach. The current implementation along with the examples of this
report are available at URL http://proval.lri.fr/agen/.

The report is organized as follows: In Section 2, we describe the research work that are related
to loop invariant generation techniques as well as the framework we use. In Section 3, we describe
our underlying verification framework for C programs, namely Frama-C. Predicate abstraction tech-
niques forms the core of our approach and we introduce it in Section 4. Our approach is discussed in
detail in Section 5. We illustrate the use of our approach for complex C data-structures in Section 6.
Section 7 provides heuristics for choosing predicates. We illustrate our approach with a set of tricky
examples in Section 8 and conclude the report mentioning possible directions of future research in
Section 9.

2 Related Work

Interest in automating the generation of loop invariants is more than a decade old. As with program
verification, the problem is undecidable. There are several techniques that range from the use of
numerical abstract domains [Jea], constraint solving based approaches [Gul09] and also template-
based techniques for invariant generation [Mic03, GR09]. A more recent approach [SDDA11]
advocates transformation of the input program loop in order to use the earlier approaches more
effectively. More popular techniques [BCD+05, Lei08, Wei11] that work within the deductive
verification framework which is also similar to our setting use SMT solvers or theorem provers
incrementally in order to generate loop invariants.

In this section, we describe the work that are closest to our approach, in order to com-
pare the relative strengths and weaknesses so that the comparisons remain meaningful and ef-
fective. In particular, we describe the approaches which use predicate abstraction based tech-
niques [BCD+05,FQ02, Wei11] as well as approaches [Jea,GR09,SDDA11] that could be orthogo-
nal to predicate abstraction based approaches. Approaches [FQ02, BCD+05, Lei08] follow similar
techniques as in [FM07, FM04] where in the annotated program is transformed into an interme-
diate language and verification conditions are generated for the program in this intermediate lan-
guage. [FQ02] uses strongest post-condition semantics for the intermediate language where as the
other tools use weakest pre-condition semantics. [FQ02, BCD+05, Lei08, Wei11] use predicate ab-
straction techniques for automatically inferring some of the annotations given a set of predicates,
whereas [FM07, FM04] do not offer any automation. INTERPROC [Jea] employs numerical ab-
stract domains, while [GR09] uses template based invariant generation techniques. We describe the
approaches closest to our approach in detail and briefly describe the other approaches to an under-
standable extent. We begin with the description of Extended Static Checker for Java and Boogie.

ESC Java: The Extended Static Checker for Java, more commonly known as ESC Java, is a tech-
nique based on predicate abstraction for verification of Java programs. The input Java program
is annotated with function contracts, pre and post-conditions and assertions. The basic technique

RR n° 7714

http://proval.lri.fr/agen/


Automated Generation of Loop Invariants using Predicate Abstraction 6

A,B ∈ Stmt :== assert e

| assume e

| x := e

| A;B

| A 8 B

| {P, I}while e do B end

x ∈ V ar (variables)

e ∈ Expr (expressions)

I ∈ Formula (logical formula)

P ⊆ I (loop predicates)

Figure 1: ESC Java: Guarded Command Language

S Norm(Q, S) Wrong(Q, S)

x := e ∃x′.x = e(x← x′) ∧Q(x← x′) false
assert P Q ∧ P Q ∧ ¬P
assume P Q =⇒ P false

A 8 B Norm(Q,A) ∨Norm(Q,B) Wrong(Q,A) ∨Wrong(Q,B)
A ; B Norm(Norm(Q,A), B) Wrong(Q,A) ∨Wrong(Norm(Q,A), B)
{P, I}while e do B end Norm(Q, desugar(S)) Wrong(Q, desugar(S))

Figure 2: ESC Java — Guarded Command Language — Formal Semantics

behind this approach [FQ02] is to translate each method and associated specifications of a Java pro-
gram into a simple intermediate language — a guarded command language, as shown in Figure 1.

This guarded command language is used to generate verification conditions (VC). The formal
semantics of the guarded command language is that of strongest post-condition. For an execution of
statement S from an initial state satisfying formula Q, Norm(Q,S) denotes all post-states in which
execution would terminate normally and Wrong(Q,S) denotes the states in which execution would
fail with an assert. The strongest post-condition semantics for the above guarded command language
is shown in Figure 2.
where desugar(S) is

desugar ({P, I} while e do B end ) =

assert I;havoc(targets(B)); assume I;

((assume e;B; assert I; assume false)

8assume ¬e)

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 7

/*@ requires a != null && b != null */

/*@ requires a.length == b.length */

/*@ ensures \result == a.length || b[\result] */

/*@ loop_predicate spot == a.length, b[spot], spot < i */

int find (int [] a, boolean [] b) {

int spot = a.length; int i = 0;

while (i < a.length) {

if ((spot == a.length) && (a[i] != 0))

spot = i;

b[i] = (a[i] != 0);

i++;

}

return spot;

}

Figure 3: A Simple Java Program

spot = a.length; i = 0;
( (assume (i < a.length);

((assume (spot == a.length && a[i] != 0); spot = i) 8
(assume ¬(spot == a.length && a[i] != 0))
b[i] = (a[i] != 0); i = i + 1)) 8

(assume ¬(i < a.length))

Figure 4: Desugaring of {P, I} while e do B

For example, let us consider the while loop in the Java program of Figure 3 (borrowed
from [FQ02]). Given the set of predicates P : { spot == a.length, b[spot], spot < i} the loop
reduced to the guarded command language is shown in Figure 4.

The key contribution of this approach is the use of predicate abstraction techniques to infer loop
invariants automatically. The algorithm also implements heuristics to guess predicates that could be
used for invariant generation. Further, one could generate universally quantified loop invariants. The
basic operation for loop invariant generation is the computation of abstraction of a set of reachable
states, iteratively. The initial approximation is obtained by computing the set of reachable states at
loop entry C. Further approximations enlarge this set by executing the loop body B once from the
current approximation. Given a set of predicates p1, p2, · · · , pn, and a set of states given by formula
φ, an abstraction of φ is computed by making theorem prover queries. One of the advantages of this
approach over SLAM [BMMR01] is the ability to generate universally quantified invariants. One
possible disadvantage may be the use of theorem prover for computing predicate abstraction. If an
SMT solver or a SAT solver is used in its place, the exponential number of theorem prover queries
gets replaced by a single SAT or SMT instance.

Boogie: Boogie [BCD+05] is a research project at Microsoft Research and it is aimed at Spec#
programs. In its basic approach it is very similar to ESC Java. BoogiePL is used as an interme-
diate language. BoogiePL includes procedures, mutable variables, pre- and post-conditions. The

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 8

WP (assert e,Q) = e ∧Q

WP (assume e,Q) = e =⇒ Q

WP ((A;B), Q) = WP (A,WP (B,Q))

WP (A 8B,Q) = WP (A,Q) ∧WP (B,Q)

Figure 5: BoogiePL: Weakest Pre-condition Semantics

invariant generation using abstract interpretation employed in Boogie is very similar to that of ES-
C/Java tool. The difference between the two approaches is that BoogiePL also includes declarations
for mathematical functions and axioms. The semantics of the intermediate language BoogiePL is
weakest pre-condition semantics in contrast to strongest post-condition semantics of the guarded
command language of ESC Java. The verification conditions are generated by computing weakest
pre-condition

wp(S, true) (1)

where S is the program statement. The semantics of BoogiePL are given in Figure 5.
In order to generate VC for a loop, such as

LoopHead : assert I; S; goto LoopHead;

it is transformed into the following:

x01 := x1; · · · ;x
0
n; assert I;

havoc x1, · · · , xn; assume I;
S; assert I; assume false;

Further, the abstract interpretation engine of Boogie has implementations for various abstract
domains — polyhedra abstract domain, heap succession domain for heaps, abstract domains for
constant propagation and dynamic type analysis. The basic idea is to have a combination of abstract
domains so that one can trade-off precision and efficiency. The BoogiePL with invariants is passed
on to the VC generator. The invariant generation algorithm of Boogie is rather involved. The core is
the use of a lemmas-on-demand theorem prover. The basic idea is to pass ¬(1) to a theorem prover.
If it is UNSAT then S is valid. If it is SAT the theorem prover returns a monome — a conjunction of
atomic formulas that makes the formula SAT. This step utilizes a DPLL-based SMT solver, solving
a Boolean abstraction of ¬(1), and it is similar to finding minimum unsatisfiable core in SMT
solvers. Once a monome is found, an algorithm to extract facts from the monome is invoked. This
algorithm can switch between various abstract domains in order to tune the quality of the facts, the
invariants generated. The verification flow of BoogiePL is depicted in Figure 6.

An advantage of Boogie is that the precision can be tuned by varying the abstract domains.
Further, the use of SMT solver for computing the monome could be efficient. But the predicates
discovered may not be the best ones and the fact generation algorithm might get expensive if it runs
into many iterations. Boogie claims that the VCs generated by Boogie are more compact than what
is generated by ESC.

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 9

Figure 6: BoogiePL: Verification Flow

The KeY System: The KeY verification system [SW07] uses a combination of deductive
verification and abstract interpretation. The main difference in this approach with respect to
ESC/Java and Boogie is that the three main components — the abstract interpretor, the VC
generator and the theorem prover are all integrated within one program logic. The approach works
on the program logic JavaCard DL (Dynamic Logic). It extends first order predicate calculus
with [p] (box) and 〈p〉 (diamond) operators for program statement p. [p]ψ means that if execu-
tion of p terminates in a state s then ψ holds in state s. 〈p〉 additionally requires that p does terminate.

Formulas are of the form (φ =⇒ [p]ψ). The JavaCard DL calculus includes proof rules similar
to sequent calculus for programming constructs of Java. Basically, this approach works by starting
with a formula of the form (φ =⇒ [p]ψ). The initial φ is true. Starting from (true =⇒ [p]ψ)
where p is the program fragment which might contain loops. p is symbolically executed by applying
the rules of JavaCard DL. This gradually transforms (true =⇒ [p]ψ) into a form (φ1 =⇒ [p]ψ).
The left hand side of the implication is considered as a candidate for loop invariant. At a certain
point (technically, just after the application of loopMerge rule) predicate abstraction is applied.
The predicates P are heuristically chosen — the loop guard, parts of the post-condition and all parts
of the invariant candidate (left hand side of (φ1 =⇒ [p]ψ)) accumulated before the first unfolding
of the loop. A conjunction of predicates p ∈ P such that (φi =⇒ p) is computed which is the
desired loop invariant.

Other Approaches: There are other approaches to automatically generate loop invariants. Tem-
plate based invariant inference is employed in [SG09]. It is based on [CSS03] and extends it for
quantified invariants using SMT solvers instead of specialized non-linear solvers. The user provides
a template, guessing the shape of the invariant to be discovered, along with the predicates. The prob-
lem of invariant discovery is reduced to a problem of finding the optimal solutions for unknowns
(in the template) over user defined predicates. The invariant inference algorithm fills in the template
with the predicate valuations discovered. This instantiated template becomes the loop invariant.
Guessing invariant templates might be as challenging as guessing the right predicates, or in certain
cases the invariant itself. For in certain examples, the invariants could be of different shapes and
hence working with just a single template might introduce a restriction. Approaches as in INTER-

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 10

PROC [Jea] static analyzer use abstract interpretation techniques with numerical abstract domains
(the Apron library). The input is a program written in a small imperative language with loops and
recursive procedures. It performs forward or backward analysis (or a combination) discovering facts
(invariants) at each program point. The output is a program annotated with invariants. A new ap-
proach described in [SDDA11] transforms the input program by rewriting multi-phase loops into a
sequence of loops and then applies the techniques of abstract interpretation. The main drawback of
techniques like [Jea], as mentioned in [SDDA11], is the inability to generate useful loop invariants
for programs with multi-phase loops, and hence the need for transformation of the input program.

3 Verification of C Programs

C programs are still widely used, mostly in embedded softwares. The embedded softwares are in
turn widely used in safety-critical applications. Hence, there is a need to ensure the correctness of
the programs used in these applications up to the highest confidence level. Exhaustive testing is
clearly ruled out because of the complexity of the softwares and also because of the fact that testing
does not ensure the absence of faults, though it could figure out the presence of it. The only way
is to do a rigorous mathematical treatment using formal verification tools in order to ensure the
correctness of these programs.

Frama-C [Fra08] is a verification framework that combines a set of program analysis engines
in order to reason about the correctness of C-programs. The basic idea behind the architecture of
Frama-C is derived from the ideas in [FM04] and [FM07]. Frama-C borrowed the multi-prover ver-
ification paradigm to C programs and included techniques for static analysis of C code. The input
is an annotated C program that conforms to ACSL [BFM+08] syntax. Annotations include func-
tion contracts, pre and post-conditions, loop invariants and assertions. The verification is usually
achieved translating the annotated program into an intermediate language — Jessie [Mar07] which
generates a set of verification conditions using weakest pre-condition computation. These verifi-
cation conditions (VCs) are discharged by a bunch of automated provers. The VCs when proved
correct establish the correctness of program behaviour. The flow of the Frama-C/Jessie/Why tool
chain is shown in Figure 7.

The input C programs are manually annotated by the user. Of ACSL annotations, loop invariants
are of special interest. The topic of loop invariants has been researched for decades in order to find
techniques to generate them without much manual intervention. In some cases, writing the loop
invariant could be more challenging than verifying the program itself. In this report, we suggest
innovative ways of generating loop invariants automatically with the help of user-defined predicates
(hints). The techniques suggested use predicate abstraction employing SMT solvers thus scaling up
the algorithms to larger examples, in an efficient manner.

4 Predicate Abstraction

Abstraction techniques help in taming the complexity of automated formal verification, by sim-
plifying the original program, henceforth referred to as the concrete program. Predicate Ab-

straction [GS97] is one of the most widely used abstraction techniques, particularly in automated
abstraction-refinement frameworks that are more popularly dubbed CEGAR [CGJ+03]. In this tech-

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 11

Figure 7: Combined Why/Frama-C Architecture

nique, the behaviour of a set of predicates is tracked with respect to the behaviour of the concrete
system. Predicates α(~x) are relations over the variables of the concrete program ~x. Each predicate
αi(~x) is represented by a Boolean variable bi in the abstracted version, henceforth referred to as
the abstract program. Intuitively, each such bi helps in partitioning the concrete state space into
two — one in which bi holds and the other in which it does not. Since predicates correspond to
Boolean variables, the abstract program obtained in this manner is a Boolean program and is much
more amenable to model-checking techniques. Thus, each abstract state corresponds to a set of con-
crete states where the corresponding predicate holds. Two abstract states are related if and only if
there exists a transition between two sets of concrete states in the corresponding concrete program.
Abstractions computed in this manner are conservative, i.e., if the abstract program is free of bugs,
so is the concrete program. On the other hand, if there is a bug in the abstract program, there may
not necessarily be a bug in the concrete program. A bug in the concrete program may be spurious,
introduced as a result of loss of precise information during abstraction process.

For our purposes of description, we can consider the system to be defined by an initial state and
state transitions. A state is defined as the values of the state variables. Let ~x be the set of variables
of the concrete program and let Φc(~x) be a first order logic formula describing the concrete program
— concrete initial states and concrete transitions. Predicate abstraction computes the propositional
formula

Φa(~b) ≡ ∃~x. (Φc(~x) ∧
∧

i

bi ↔ αi(~x)) (2)

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 12

4.1 Predicate Abstraction as Quantifier Elimination

From equation 2, we see that computation of abstraction involves just quantifier elimination. If
the equation is cast as a SMT problem, any SMT solver that is tuned to give us a set of satisfying
assignments — an AllSMT procedure, could solve the above equation. The set of assignments we
thus obtain characterizes the abstract program. Henceforth we refer to the predicate abstraction
procedure Solve which is shown below:

Algorithm 1 Predicate Abstraction: Quantifier Elimination

1: function Solve(T (s, s′), bi, b′i)
2: ~x := Var(s);
3: ~x′ := Var(s′);
4: rα := ∃~x, ~x′.((bi ↔ α(~x)) ∧ (b′i ↔ α(~x′)) ∧ T (s, s′))
5: return rα
6: end function

5 Predicate Abstraction for Loop Invariant Generation

Loop invariant generation is an interesting and challenging problem that has been tacked by
computer scientists for years. There has been several approaches for computing loop invariants, as
described in Section 2. We tackle loop invariants in the context of Frama-C, the main goal being
automated discovery of loop invariants for annotating C programs, with the user having to provide
just a few hints - the predicates. Most of these predicates could also be extracted from the program
itself.

We concentrate on predicate abstraction techniques as they have a demonstrated potential in en-
suring scalability and making program analysis feasible. We propose to use techniques of predicate
abstraction in order to automate the process of generating loop invariants. We use a SMT solver
as an abstraction engine for computing the abstractions as described in the previous section. We
implement two techniques for generating loop invariants from a given set of predicates. The first
technique computes invariants at every program point, and is referred to as abstraction at program

points. A second technique computes invariants by considering the path programs at the loop head.
We shall refer to this as a abstraction at loop heads. The following section describes the techniques
in greater detail.

5.1 Abstraction at Program Points

We deviate from the usual predicate abstraction procedures that abstract the entire concrete program
en masse. Instead we compute the abstraction with respect to a given set of predicates at each
program point of the concrete program. The valuations of the chosen predicates at each program
point indicate precise information at that program point. For reasons of ease of explanation, we
assume that we are given a set of predicates. In Section 7 we give some insights into discovering
predicates automatically for use with such a procedure.

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 13

int main()

{

int x = 0;

int y = 1;

while (x < 100) {

x = x + y;

y = x;

}

//@ assert x < 200;

return 0;

}

Figure 8: A Simple C Program

We use the C function of Figure 8 as a running example for illustrating our approach. The CFG
of this concrete program is shown in Figure 9. We assume that we are given the set of predicates:
P : {(x < 200), (x < 100), (x+ y < 200)}. We compute the abstraction at each program point in
the CFG shown in Figure 9, w.r.t the given set of predicates P . Let us consider the first node in the
CFG and its transition as shown in Figure 10(a).

The algorithm for constructing the abstract program by computing predicate abstraction at each
program point on the concrete CFG is given below:

Algorithm 2 Abstract CFG Construction
1: procedure BuildAbsCFG(G : CFG)
2: A : AbsCFG := empty

3: Build(0, _)
4: where
5: function Build(i : node, v : valuation)
6: if (i, v) ∈ A then

7: return (* node already reached *)
8: end if

9: add state (i, v) in A

10: for all j successor of i in G do

11: sol := Solve(G, i, v, j)
12: for all v′ ∈ sol do

13: Build(j, v′)
14: add transition (i, v) to (j, v′) in A

15: end for

16: end for

17: end function

18: end procedure

The algorithm proceeds as follows. From the input concrete CFG G it builds the abstract CFG A to
be constructed using predicate abstraction. The recursive procedure Build(i, v) builds the part of
A starting from node (i, v) where i is a node of G and v denotes some valuation of the predicates.

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 14

Figure 9: Concrete Program CFG

To start with Build() is called with initial index ‘0’ and an empty valuation (’_’) as its parameters.
Recursively, for each successor node j of node i in G the algorithm computes the abstract reachable
states by a call to Solve() – predicate abstraction step. Since the number of Boolean predicates
we use are finite, we will always have finite number of satisfiable solutions. And for each of these
solutions v′, a recursive call to Build() is made with the successor node j as the first parameter and
the solution v′ as the second parameter. The transitions ((i, v), (j, v′)) are added to the abstract CFG
A. Since we compute all possible solutions given a set of predicates, the abstractions we compute
are precise. In other words, given a set of predicates we compute all possible abstract transitions
corresponding to concrete transitions. Each such satisfying assignment v′ is a valuation of the set of
predicates whose concretization (

∧
(i,v′)∈A γ(v

′)) is essentially an invariant at node i in the CFG G.
For illustrating the above algorithms, let us consider the first node in the concrete CFG of our

running example in Figure 9. The fragment of the concrete CFG is shown in Figure 10(a). The node
labelled ‘0’ corresponds to s in Algorithm 1, and the node labelled ‘1’corresponds to s′. The assign-
ments to variables x and y corresponds to the transition relation T (s, s′). Computing the predicate
abstraction as described in Equation (2), we require to solve the following quantifier elimination
problem:

∃x0, x1, y0, y1.((x1 = 0 ∧ y1 = 1) ∧

(b0 ↔ (x0 < 200) ∧ b′0 ↔ (x1 < 200)) ∧

(b1 ↔ (x0 < 100) ∧ b′1 ↔ (x1 < 100)) ∧

(b2 ↔ (x0 + y0 < 200) ∧ b′2 ↔ (x1 + y1 < 200)))

The above formula could be fed to an SMT solver capable of also providing satisfying assign-
ments to a first-order formula. We project the assignments on the set of variables that are of in-
terest to us, namely the Boolean variables {b0, b1, b2} and their corresponding next state variables
{b′0, b

′

1, b
′

2}. We use Alt-Ergo SMT solver which was suitably modified for our requirements. Each
v′ of the possible set of assignments assignments denoted sol in Algorithm 2 for the above formula

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 15

Figure 10: Abstraction at program point

as given by the solver – {b′0 = ⊤, b′1 = ⊤, b′2 = ⊤} is subsequently used as the initial valuation of
the predicates {b0 = ⊤, b1 = ⊤, b2 = ⊤} for computing predicate abstractions for the successive
node in the CFG. The algorithm recursively calls itself with the new node (j = 1) and updated val-
uation of the predicates (v′) as shown in Line 13 in Algorithm 2. The abstract CFG is built from the
solutions of calls to Solve() and it is shown in Figure 11.

In the final abstract CFGA, the concretization of the predicates at any node denotes the invariant
at the corresponding node. In our example, the loop head corresponds to node 2 (as shown in
Figure 9). We compute the disjunction of the predicate valuations at the nodes indexed 2 to be
I : (b0 ∧ b1 ∧ b2)∨ (¬b0 ∧ b1 ∧¬b1). The concretization of I , i.e., γ(I) is the desired loop invariant
in the concrete CFG G. Hence,

((x < 200) ∧ (x < 100) ∧ (x+ y < 100)) ∨

(¬(x < 200) ∧ (x < 100) ∧ ¬(x+ y < 100))

is the required loop invariant.

5.2 Abstraction at Loop Heads

The technique described in the previous section works fine for most of the examples. However,
there are certain cases where the background abstraction engine - the SMT solver does not have
enough information to compute the precise abstract state. An instance of such an example is shown
in Figure 12(a).

An elegant approach would be to abstract only at the loop heads. Let us define a path program

to be the sequence of program statements along a path starting from a particular program point

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 16

Figure 11: Final Abstract CFG

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 17

(j < n)

C

a[j] < min !(a[j] < min)

ind = j;
min = a[j];

!(j<n)

j++;

A

B

D

C

(a) Insufficient Information at node-D

A
BCD BD

!(j < n)

(b) Path Programs

(say a loop head) and terminating at the same program point (for example, loop iteration) or at a
different point (for example, loop termination). In figure 12(a), ABCDA is a path program and so
are ABCD and ABD. At each loop head we compute the path programs fanning out of the loop
head and abstract each of these path programs using the same technique as above. In contrast to the
previous technique which does not record the information at the sink of two paths, this technique
records all the information along any particular program path, thereby enabling precise computation
of abstractions.

Let us illustrate the technique with a simple C program that computes the minimum element of
the input array. The C program and the corresponding path programs in the CFG are shown below:

int searchmin (int a[], int n)

{

int j, min, ind;

//@ ghost int r;

ind= 0;

min = a[0];

j = 1;

while (j < n) {

if (a[j] < min) {

ind= j;

min = a[j];

}

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 18

j++;

}

}

return min;

Computing predicate abstractions for the path programs ABCDA, ABDA and AE yields the
following abstract CFG. As with our previous technique we can extract the loop invariant by
concretizing the Boolean formula over predicates at the loop node. In this case, the invariant turns
out to be:

∀r.¬(0 ≤ r < j) ∧ (0 < j) ∧ (n ≥ 1) ∧ (0 ≤ ind < n) ∧ (min = a[ind])

∨(0 ≤ r < j) ∧ (a[r] ≥ min) ∧ (0 < j) ∧ (n ≥ 1) ∧ (0 ≤ ind < n) ∧ (min = a[ind])

which is sufficient to prove the post-condition - ∀x.(0 ≤ x) ∧ (x < n) =⇒ (min ≤ a[x])) as well
as the assertion - (min = a[ind]). Intuitively, the different path programs capture the phase tran-
sitions within the loop. Each of the path programs ABCDA and ABDA corresponds to different
phases of the loop, corresponding to the conditional (a[j] < min) being true or false respectively.
This technique is more relevant in programs involving multi-phase loops (described in Section 6.3)
where other techniques [SDDA11] transform the input program in order to generate useful loop
invariants.

6 Loop Invariant Generation for Complex Data Structures

6.1 Arrays and Quantified Invariants

The algorithms described in the previous section is also capable of generating more complex invari-
ants, using the same procedure. In particular, it is capable of generating quantified loop invariants.

Let us start with the simplest example with arrays in order to illustrate this. We consider the C
program which initializes all the elements of an input array to a particular value.

void initcheck(int *a, int n)

{

int i=0;

//@ ghost int j;

while (i<n) {

a[i] = 0;

i++;

}

}

We introduce a variable j which is quantified over. We introduce it as a ghost variable as it does
not belong to the program. Let us assume that P : { b0 : (i < n), b1 : 0 ≤ j < i, b2 : a[j] = 0}
is the set of user-defined predicates. Note that some of the predicates are over the variable j. Our
technique generates the loop invariant ¬b1 ∨ (b1 ∧ b2) which is the following in the concrete C
program after adding the universal quantifier:

∀j;¬(0 ≤ j < i) ∨ ((0 ≤ j < i) ∧ (a[j] = 0))

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 19

In short, the technique just introduces variables to be quantified over, and predicates involving
such variables, and we prefix the generated invariant with an universal quantifier.

A more complicated example involving arrays is the following C program to find the minimum
element of an array. The post-condition that we would like to establish is:

∀x.(0 ≤ x < n) =⇒ (min ≤ a[x])

We shall useP : {(0 ≤ r < j), (a[r] ≥ min), (min = a[ind]) } as the set of user-defined predicates.

void searchmin (int a[], int n)

{

int j, min, ind;

//@ ghost int r;

ind= 0;

min = a[0];

j = 1;

while (j < n) {

if (a[j] < min) {

ind= j;

min = a[j];

}

j++;

}

}

The invariant generated, that also establishes the correctness of the post-condition is:

∀r. (0 ≤ r < j)) ∧ (a[r] ≥ min) ∧ (min == a[ind])

∨ ¬(0 ≤ r < j) ∧ (min == a[ind])

The details on rewriting the generated loop invariant with universal quantification are described in
Section 7.

6.2 Structures and Pointers

In addition to generating quantified invariants as illustrated in the previous section, the proposed
technique can also handle complex datatypes that appear in C programs. Of particular interests are
arrays, structures and pointers.

Structures Structures are handled by looking at the fields of the structure as arrays of structure
instantiations. This is the so-called component-as-array memory model early proposed by Burstall
and emphasized by Bornat in 2000 [Bor00].

Since we already know how to handle arrays, once this casting is done, the rest of the technique
is straight forward. In order to illustrate this, let us consider the following C program that partitions
a list: removing every element greater than an input value v from the input list l and returns the new
list.

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 20

struct cell {

int val;

struct cell *next;

};

struct cell

*partition (struct cell *l, int v)

{

struct cell *curr, *prev;

struct cell *newl, *nextCurr;

curr = l; prev = newl = NULL;

while (curr != NULL) {

nextCurr = curr->next;

if (curr->val > v) {

if (prev != NULL)

prev->next = nextCurr;

if (curr == l)

l = nextCurr;

curr->next = newl;

//@ assert (curr != prev);

newl = curr;

}

else

prev = curr;

curr = nextCurr;

}

return newl;

}

In the structure in the above C program has two fields, val and next, each of which could be
seen as an array indexed by the different instantiations of the structure cell - namely curr, prev,
newl and nextCurr. For example, val is seen as val[curr], val[prev], val[newl] and
val[nextCurr]. So, an assignment to one of the fields of the structure is seen as an assignment
to an index of the corresponding field array. For example, an assignment to a field of the form
curr→val = 0 would become val[curr] = 0, and an assignment of the form prev→next =

nextCurr becomes next[prev] = nextCurr. One of the main reasons for modelling fields in
this manner is to get the information from the CFG of the concrete program to the underlying SMT
solver in a straight forward manner. As the underlying SMT solver does not understand structures
and pointers, it should be recast in such a way as to not lose the intended semantics.

In this example, given the set of predicates P: {b0 : prev = NULL, b1 : prev→ val > v}, the
proposed techniques generates the following loop invariant:

b0 ∨ (¬b0 ∧ ¬b1)

Pointers Pointers can be handled in a manner similar to structures described above. This is indeed
how they are handled in the memory model of the Jessie plugin [Mar07, Hub08, Moy09] The main
idea is to view the pointer to a type t as a C structure containing only one field of type t. For
example, int *p would be viewed as

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 21

struct Sint {

int Fint;

}p;

An assignment to a variable v of the form v = *p would thus become v = p→Fint. Consequently,
this statement as described in the previous section boils down to v = Fint[p]. An assignment to
a pointer of the form *p = exp becomes p→Fint = exp, which eventually becomes Fint[p] =

exp.

In general, a pointer of type <t> of the form <t> *p is imagined to have the following C
structure:

struct S<t> {

int F<t>;

}p;

An assignment of the form var = *p involving a pointer thus becomes var = p→F<t> and
an assignment to a pointer of the form *p = exp becomes p→F<t> = exp.

6.3 Disjunctive Invariants for Multi-phase Loops

A challenging case for loop invariant generation is the case where the program requires disjunctive
invariant. This combined with multi-phase loops - where a condition within a loop evaluates to true
during one iteration of the loop and to false during another iteration. The following C program
borrowed from [SDDA11] illustrates this:

int main ()

{

int x=0, y=50;

while (x < 100) {

if (x < 50)

x++;

else {

x++;

y++;

}

}

//@ assert (y == 100);

return 0;

}

The conditional (x < 50) evaluates to true during some iterations of the while loop and for the
remaining iterations, evaluates to false. Techniques involving abstract domains like INTERPROC
computes loop invariants that are conjunctions of inequalities, but still can not prove the assertion.
Abstraction refinement based techniques do succeed in proving the assertion, but go through an
unacceptable number of iterations of the CEGAR loop. The technique proposed in [SDDA11]
transforms the above program into an equivalent program with two while loops corresponding to
the different phases of the conditional (x < 50) and then uses the usual techniques of abstract
interpretation for generating loop invariants, that would assist in proving the assertion right. Our
technique based on predicate abstraction does not require any program transformation and still it
could generate loop invariants that are strong enough to prove the assertion right. We use P :

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 22

{b0 : x ≤ 50, b1 : y = 50, b2 : x ≤ 100, b3 : x = y, b4 : y = 100 } as the set of predicates. The
generated loop invariant is:

(¬(x ≤ 50)∧(¬(y = 50)∧((x ≤ 100)∧(x = y))))∨((x ≤ 50)∧((y = 50)∧((x ≤ 100)∧¬(y = 100))))

which also helps in establishing the correctness of the assertion (y = 100).

7 Predicate Discovery

Some of the predicates that might be useful for generating loop invariants using the proposed tech-
nique can be syntactically obtained from the program itself. We illustrate the discovery of sim-
ple predicates from the program text using Example 8. The example uses three predicates namely
b0 : x < 200, b1 : x < 100 and b2 : x+ y < 200. The first of the predicates, b0 : x < 200 is the
assertion to be proved. The predicate b1 : x < 100 is the loop guard. The third and the more in-
teresting predicate b2 : x+ y < 200 is the weakest precondition of the assertion with respect to the
program statements. Intuitively the weakest precondition of the post-condition (here, the assertion)
gives the invariant at the head of the loop that would contribute to driving the assertion to true.

In the case of quantified invariants, we need predicates over quantified variables. For purposes of
illustration, let us consider a C program for initialization of arrays, as shown in Example 8. A trivial
post-condition that we would like to establish is that all the elements of the array are initialized to 0
when the function returns.

We follow the usual heuristics for discovering predicates for universally quantified invariants.
First, we add the loop guard as one of the predicates. Hence, b0 : (i < n) is a predicate. For the
more interesting predicates, we explore the loop body. If the loop targets contain updates of array or
fields, we introduce a variable to be quantified over. In the above example, the loop body contains
array modification (a[i] = 0 on Line 6). We introduce a variable j as a ghost variable (as on Line
4). This variable is not a part of the program, but is introduced to quantify over. We introduce new
predicates referring to j, that indicate the scope of the integer variables the index of the array ranges
over. In this case, the array index ranges from 0 to n. Hence, we introduce a predicate referring to j:
b1 : 0 ≤ j < i. And finally, we introduce a predicate referring to the array update b2 : (a[j] = 0).
With the three above mentioned predicates, the proposed technique discovers ¬b1 ∨ (b1 ∧ b2)
which with the intended universal quantifier is:

∀j;¬(0 ≤ j < i) ∨ ((0 ≤ j < i) ∧ (a[j] = 0))

The effectiveness of the loop invariant generated using predicate abstraction techniques heavily
depends on the quality of the predicates used. While the user is allowed to add predicates of his
choice, irrelevant predicates when added result in a bottleneck in the computation of abstraction. It
is important to choose predicates wisely. Other techniques like Craig interpolants [Cra57] could also
be used to infer localized predicates. But these techniques are beyond the scope of the topic of this
report and hence ignored.

Simplification of Invariants We build BDDs incrementally for the formulas that constitute the
invariants. Although variable ordering is an open problem in BDDs, most of the real-world examples
would involve loop invariants as formulas over a small set of variables - a dozen or less, and for such

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 23

a case, ordering does not affect the performance drastically. On the other hand, we are able to get
shorter and more understandable expressions for loop invariants after this simplification.

8 Experimental Evaluation

Let us consider other simple examples, in order to illustrate the potential of our approach in gener-
ating loop invariants.

Example 1: The following example has been borrowed from [FQ02] and cast as a C program.

int main (int a[], int b[], int length)

{

int i;

int spot = length;

//@ ghost int j;

for (i=0; i<length; i++) {

if (spot == length)

spot = i;

if (a[i] != 0)

b[i] = 1;

else

b[i] = 0;

}

return spot;

}

The variable spot is initialized to the length of the array. It is assumed that arrays a and b are
of the same length. The program returns the index of the first non-zero element of a if such an
element exists. In case there is no such element, it returns the length of the array. We try to establish
the post-condition ∀j.(0 ≤ j < \result) =⇒ (b[j] = 0). We use P : { spot == length,
b[spot] 6= 0, spot < i, i ≤ length, 0 ≤ j < i, a[j] 6= 0, b[j] 6= 0, j < spot } as the set of
predicates for abstraction. Our technique generates the following loop invariant which is sufficient
to establish the correctness of the post-condition.

¬(spot == length) ∧ (spot < i) ∧ (i ≤ length) ∧ ¬(0 ≤ j < i) ∧ ¬(spot == length)
∨(0 ≤ j < i) ∧ ¬(a[j] 6= 0) ∧ ¬(b[j] 6= 0) ∧ ¬(j < spot) ∧ ¬(spot == length)
∨(a[j]¬ = 0) ∧ (b[j]¬ = 0) ∧ ¬(j < spot) ∧ ¬(spot == length)
∨(spot == length) ∧ (¬(spot < i) ∧ (i ≤ length) ∧ ¬(0 ≤ j < i) ∧ (spot == length)

Example 2: In the following C program, we would like to prove the assertion (a+ b = 3n) at the
end of the loop. We use P : { 3i = a+ b, 3n = a+ b, 3(i+ 1) = a+ b, i < n } as the set of
user-defined predicates.

extern unsigned int nd();

void tricky(int n)

{

int i = a = b = 0;

int x;

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 24

while (i<n)

{

x = nd();

if (x != 0)

{

a = a + 1;

b = b + 2;

}

else

{

a = a + 2;

b = b + 1;

}

i++;

}

//@ assert (a+b == 3*n);

}

The generated loop invariant is:

(3i = a+ b) ∧ ¬(3n = a+ b) ∧ ¬(3(i+ 1) = a+ b) ∧ (i < n)
∨(3n = a+ b) ∧ ¬(3(i+ 1) = a+ b) ∧ ¬(i < n)

which also helps in establishing the correctness of the assertion at the end of the loop.

Example 3: The following example is borrowed from a TACAS paper [GCNR08] and it illus-
trates a simple, but tricky to verify C program. In order to establish the correctness of the post-
condition (assert(x >= 4 =⇒ (y > 2)) we choose as predicates, the atomic predicates in the
post-condition as well as the phase-changing condition BN == 1. With the set of predicates P : {
x ≥ 4, y > 2, BN == 1} our invariant generation algorithm generates the following loop invariant:

((¬(x ≥ 4) ∧ (¬(y > 2) ∨ ((y > 2) ∧ (BN == 1)))) ∨ ((x ≥ 4) ∧ (BN == 1)))

which is sufficient to establish the correctness of the post-condition.

//@ behavior agen: ensures \true;

void foo(){

int BN, x, y, w, z, arandom, brandom, crandom;

x = y = w = z = 0;

while(BN == 1) {

if(BN == 1){

x=x+1;

y=y+100;

}

else{

if(BN == 1){

if(x>=4){

x=x+1;

y=y+1;

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 25

}

}

else{

if(y>10*w && z>=100*x){

y=-y;

}

}

}

w=w+1;

z=z+10;

}

//@ assert (x >= 4) ==> (y > 2);

//@ for agen: assert (x >= 4);

//@ for agen: assert (y > 2);

//@ for agen: assert (BN == 1);

}

Example 4: Let us consider the following simple C program and try to generate loop invariants
for it.

extern int nd();

void test(int n)

{

int b;

int i=0;

while (i<n) {

b = nd();

if (b != 0)

i++;

}

//@ assert (i == n) && (b != 0);

}

As predicates we choose the atomic predicates that appear in the post-condition (assertion) as
well as the loop guard. So, the set of predicates we work with is P : { i ≤ n, b 6= 0, i < n}. The
loop invariant generated using any of the two techniques is:

(i ≤ n) ∧ ((¬(b 6= 0) ∧ (i < n)) ∨ (b 6= 0))

which is sufficient to establish the post-condition.

Our approach is also scalable and gives promising results for industrial-size software as shown
in the following table. We experimented with both variants of the predicate abstraction technique
described in this report indicated by the columns labelled ‘Loop’ and ‘Point’ respectively, in the table
below. The examples are borrowed from research papers on verification wherein the correctness of
industrial code like Apache have been established. Most of the examples were borrowed from the
benchmarks of InvGen. In the following table an entry ‘Y’ in the column ‘Useful Invariant’ indicates
that the generated invariant was useful in proving the post-condition or assertion. A ‘N’ indicates that

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 26

the loop invariants generated were not strong enough to prove the post-condition. The ‘Predicates’
column indicates the number of predicates that were required to do so. The last column shows
the time required (user time + system time) for computing the invariants. The experiments were
conducted on a machine with 4GB of RAM, 2.4 GHz Intel Core 2 Duo processor running Linux
(Ubuntu 11. 04) operating system.

Benchmark Useful Invariant # Predicates Time (s)
Loop Point

apache_get_tag.c Y Y 4 1.164
NetBSD_loop_int.c Y Y 3 0.512
sendmail_mime_XX.c Y Y 2 0.536
sendmail_mime_fromqp.c Y N 3 0.732
svd_some_loop.c Y N 7 16.329
svd4.c Y Y 7 11.741
nested9.c Y Y 3 0.884
nest-if5.c Y Y 4 2.524

9 Conclusions and Future Work

In this report, we proposed techniques for automated generation of annotations for deductive
verification of C programs in the Frama-C verification framework. In particular we showed that
predicate abstraction techniques can be effectively used for generating complex loop invariants
automatically. We also provided heuristics for choosing effective predicates in order to improve the
quality of the generated invariants. The experimental results show the potential of this approach.

The directions for future research is two-fold: (1) gathering information from other program
analyzers like value analysis or data-flow analysis or abstract interpretation techniques and using the
relevant information as predicates would be a better way of choosing predicates that are specific to
certain program variables. As Frama-C already includes these techniques it should be just a matter
of passing the information from one analyzer to another (loop invariant generator). Further the
plugin for weakest precondition computation could be effectively used to discover new predicates as
discussed in Section 7. (2) one could extract the abstract CFG of the input program and subject it to
model checking techniques in a CEGAR framework [CGJ+03,CFG+10,Kal09] for verifying simple
temporal properties of large programs. Other extensions could include use of the technique for
generating other interesting annotations, like assertions at interesting program points, and improve
the usability of the tool by providing constructs for adding predicates on the fly and computing
incremental abstraction.

The research in predicate abstraction techniques is almost a decade old and still is gaining in-
terest. Loop invariant generation techniques have been around for decades and is still seen as a
challenging research problem. A combination of these two techniques as proposed in this report and
also combining it with other techniques of interest as just discussed would enable cleaner software
engineering, easier verification and eventually improve productivity of verification engineers in the
long run.

RR n° 7714



Automated Generation of Loop Invariants using Predicate Abstraction 27

References

[BCD+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs 0002, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs. In
FMCO, pages 364–387, 2005.

[BFM+08] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick
Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language, 2008. http:
//frama-c.cea.fr/acsl.html.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Automatic
predicate abstraction of C programs. In Proceedings of the ACM SIGPLAN 2001 con-

ference on Programming language design and implementation, PLDI 2001, pages 203–
213, New York, NY, USA, 2001. ACM.

[Bor00] Richard Bornat. Proving pointer programs in Hoare logic. In Mathematics of Program

Construction, pages 102–126, 2000.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Trans. Comput., 35:677–691, August 1986.

[CFG+10] Alessandro Cimatti, Anders Franzen, Alberto Griggio, Krishnamani Kalyanasundaram,
and Marco Roveri. Tighter integration of BDDs and SMT for predicate abstraction. In
Design, Automation & Test in Europe, Dresden. Germany, March 2010. IEEE.

[CGJ+03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. In Jour-

nal of the ACM, volume 50, pages 752–794, New York, NY, USA, September 2003.
ACM.

[Cra57] William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. Journal of Symbolic Logic, 22(3):269–285, 1957.

[CSS03] Michael A. Colón, Sriram Sankaranarayanan, and Henny B. Sipma. Linear invariant
generation using non-linear constraint solving. In Proceedings of Computer Aided

Verification, CAV 2003, pages 420–432. Springer Verlag, 2003.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover for
Program Checking. J. ACM, pages 365–473, May 2005.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,
and Raymie Stata. Extended static checking for Java. In Proceedings of the ACM

SIGPLAN 2002 Conference on Programming language design and implementation,
PLDI ’02, pages 234–245, New York, NY, USA, 2002. ACM.

[FM04] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C programs.
In ICFEM, pages 15–29, 2004.

[FM07] Jean-Christophe Filliâtre and Claude Marché. The why/krakatoa/caduceus platform for
deductive program verification. In CAV, pages 173–177, 2007.

RR n° 7714

http://frama-c.cea.fr/acsl.html
http://frama-c.cea.fr/acsl.html


Automated Generation of Loop Invariants using Predicate Abstraction 28

[FQ02] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification.
In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, POPL 2002, pages 191–202, New York, NY, USA, 2002. ACM.

[Fra08] The Frama-C platform for static analysis of C programs, 2008. http://www.

frama-c.cea.fr/.

[GCNR08] Bhargav S. Gulavani, Supratik Chakraborty, Aditya V. Nori, and Sriram K. Rajamani.
Automatically Refining Abstract Interpretations. In Proceedings of the Theory and

practice of software, 14th international conference on Tools and algorithms for the

construction and analysis of systems, TACAS’08/ETAPS’08, pages 443–458, Berlin,
Heidelberg, 2008. Springer-Verlag.

[GR09] Ashutosh Gupta and Andrey Rybalchenko. InvGen: An Efficient Invariant Generator.
In CAV, pages 634–640, 2009.

[GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with PVS. In
Proceedings of the 9th International Conference on Computer Aided Verification, CAV
1997, pages 72–83, London, UK, 1997. Springer-Verlag.

[Gul09] Gulwani, Sumit and Srivastava, Saurabh and Venkatesan, Ramarathnam. Constraint-
Based Invariant Inference over Predicate Abstraction. In Proceedings of the 10th In-

ternational Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI ’09, pages 120–135, Berlin, Heidelberg, 2009. Springer-Verlag.

[Hub08] Thierry Hubert. Analyse Statique et preuve de Programmes Industriels Critiques. Thèse
de doctorat, Université Paris-Sud, June 2008.

[Jea] B. Jeannet. The INTERPROC analyzer.

[Kal09] K. Kalyanasundaram. CEGAR Using SMT Solvers for Predicate Abstraction. PhD
thesis, University of Trento, March 2009.

[Lei08] K. Rustan M. Leino. This is boogie 2, 2008.

[Mar07] Claude Marché. Jessie: an intermediate language for Java and C verification. In Pro-

gramming Languages meets Program Verification (PLPV), pages 1–2, Freiburg, Ger-
many, 2007. ACM.

[Mic03] Michael Colón and Sriram Sankaranarayanan and Henny Sipma. Linear Invariant Gen-
eration Using Non-linear Constraint Solving. In CAV, pages 420–432, 2003.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th annual

Design Automation Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001.
ACM.

[Moy09] Yannick Moy. Automatic Modular Static Safety Checking for C Programs. PhD thesis,
Université Paris-Sud, January 2009.

RR n° 7714

http://www.frama-c.cea.fr/
http://www.frama-c.cea.fr/


Automated Generation of Loop Invariants using Predicate Abstraction 29

[SDDA11] Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. Simplifying loop invariant
generation using splitter predicates. In CAV, page To Appear, 2011.

[SG09] Saurabh Srivastava and Sumit Gulwani. Program verification using templates over
predicate abstraction. In Proceedings of the 2009 ACM SIGPLAN conference on Pro-

gramming language design and implementation, PLDI 2009, pages 223–234, New
York, NY, USA, 2009. ACM.

[SW07] Peter H. Schmitt and Benjamin Weiß. Inferring invariants by symbolic execution.
In Bernhard Beckert, editor, Proceedings, 4th International Verification Workshop

(VERIFY’07), volume 259 of CEUR Workshop Proceedings, pages 195–210. CEUR-
WS.org, 2007.

[Wei11] Benjamin Weiß. Predicate abstraction in a program logic calculus. Science of Computer

Programming, 2011. To appear.

RR n° 7714



Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399


	Introduction
	Related Work
	Verification of C Programs
	Predicate Abstraction
	Predicate Abstraction as Quantifier Elimination

	Predicate Abstraction for Loop Invariant Generation
	Abstraction at Program Points
	Abstraction at Loop Heads

	Loop Invariant Generation for Complex Data Structures
	Arrays and Quantified Invariants
	Structures and Pointers
	Disjunctive Invariants for Multi-phase Loops

	Predicate Discovery
	Experimental Evaluation
	Conclusions and Future Work

