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Abstract. Asclepios! is the name of a research project-team officially
launched on November 1°%, 2005 at INRIA Sophia-Antipolis, to study the
Analysis and Simulation of Biological and Medical Images. This research
project-team follows a previous one, called Epidaure, initially dedicated
to Medical Imaging and Robotics research. These two project teams were
strongly supported by Gilles Kahn, who used to have regular scientific in-
teractions with their members. More generally, Gilles Kahn had a unique
vision of the growing importance of the interaction of the Information
Technologies and Sciences with the Biological and Medical world. He was
one of the originators of the creation of a specific BIO theme among the
main INRIA research directions, which now regroups 16 different research
teams including Asclepios, whose research objectives are described and
illustrated in this article.

1 Introduction

1.1 The revolution of biomedical images and quantitative medicine

There is an irreversible evolution of medical practice toward more quantitative
and personalized decision processes for prevention, diagnosis and therapy. This
evolution is supported by a continually increasing number of biomedical devices
providing in vivo measurements of structures and processes inside the human
body, at scales varying from the organ to the cellular and even molecular level.
Among all these measurements, biomedical images of various forms increasingly
play a central role.

Facing the need for more quantitative and personalized medicine based on
larger and more complex sets of measurements, there is a crucial need for devel-
oping 1) advanced image analysis tools capable of extracting the pertinent infor-
mation from biomedical images and signals; 2) advanced models of the human
body to correctly interpret this information; and 3) large distributed databases
to calibrate and validate these models.

! Asclepios was a Greek hero who later became the Greek god of medicine and heal-

ing. His most famous sanctuary was located in Epidaurus which is situated in the
northeastern Peloponnese (from Ron Leadbetter).



1.2 Advanced Biomedical Image Analysis

Tremendous progress has been made in the automated analysis of biomedical
images during the past decades [16, 3]2. For instance, for rigid parts of the body
such as the head, it is now possible to fuse, in a completely automated man-
ner, images of the same patient taken from different imaging modalities (e.g.
anatomical and functional), or to track the evolution of a pathology through
the automated registration and comparison of a series of images taken at widely
spaced time instants [20,42] (cf. Figure 1). It is also possible to obtain from
a Magnetic Resonance image of the head an adequate segmentation into skull
tissues, white matter, grey matter, and cerebro-spinal fluid [43], or to measure
certain functional properties of the heart from dynamic sequences of Magnetic
Resonance [2], Ultrasound or Nuclear Medicine images [22].
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Fig. 1. Automatic detection of the evolution of multiple sclerosis lesions from a time
sequence of 3-D magnetic resonance images of the head of a patient (from D. Rey et
al. [34]).

Despite these advances one may note that statistical models of anatomy are
still very crude, resulting in poor registration results in deformable regions of
the body, or between different subjects. If some algorithms exploit the physical
modeling of the image acquisition process, only a few actually model the physical
or even physiological properties of the human body itself. Coupling biomedical
image analysis with anatomical and physiological models of the human body

2 One can gain a good understanding of the state of the art from the proceedings of the
most recent conferences MICCAT’2006 (Medical Image Computing and Computer
Assisted Intervention) or ISBI’2006 (Int. Symp. on Biomedical Imaging) as well as
from the most recent issues of journals like IEEE Trans. on Medical Imaging or
Medical Image Analysis (Elsevier).



would not only provide a better comprehension of the observed images and
signals, but would in addition provide efficient tools to detect anomalies, to
predict the evolution of diseases and to simulate and assess the effect of therapies.

1.3 Computational Models of Anatomy and Physiology

Computational Models of the Human Body constitute an emerging and rapidly
progressing area of research whose objective is to provide a better understanding
of anatomical variability (Computational Anatomy) and of the major functions
of the human body (Computational Physiology), as well as to provide effective
algorithmic tools for their realistic numerical simulations [4, 14, 5].

Quite advanced models have already been proposed to study at the molec-
ular, cellular and organic level a number of physiological systems (e.g. cardiac,
respiratory, digestive, nervous (central and peripheric), reproductive, etc. [24]).
For instance, computational models of the heart have been proposed to interpret
the cardiac electromechanical activity from medical images and electrophysio-
logical measurements [6, 9], or to study the properties of physiological flows in
blood vessels [33], in order to predict the appearance of cardiovascular diseases.
Computational Models have also been proposed to explore the structures and
the activity of the brain from anatomical and functional images and signals,
for instance to better understand a number of brain diseases (e.g. Alzheimer’s
disease, Multiple Sclerosis, Creutzfeldt-Jakob disease, Epilepsy or Schizophre-
nia) [13]. Advanced models of abdominal organs including the liver [14] and the
intestine [21] have been developed in the context of image-guided surgery (cf.
Figure 2) and surgery simulation (cf. Figure 3). Other models have been de-
veloped to predict the evolution of cancerous lesions in various organs [39, 38,
25).

It is necessary but not sufficient to develop, refine and validate such models.
In addition, new methods must be designed to automatically fit the model pa-
rameters to a given person from the available biomedical signals (in particular
medical images) and also from prior genetic information. Building such patient-
specific models is a challenging goal which requires in particular the development
of new data assimilation methods which can cope with massive numbers of mea-
surements and unknowns.

1.4 Large Distributed Databases

Another important milestone towards progress in these directions is the devel-
opment of large databases of subjects and patients, including biomedical signals
and images as well as genetic information, and the development of specific tools
to correlate, for instance, the shape and evolution of anatomical structures (phe-
notype) with the genetic information (genotype) and/or with a certain number
of pathologies. The construction and exploitation of such databases require the
development of specific measurement platforms which can regroup cutting edge



Fig. 2. Augmented reality for image-guided radio-frequency ablation of a liver tumor
(from S. Nicolau, L. Soler et al. [28]).

imaging facilities with easy access provided to internal and external research
teams (e.g. the Neurospin® platform of CEA).

Huge computing power is already required to run advanced computational
models in their direct mode (for prediction) or inverse mode (to adapt to a spe-
cific patient from biomedical measurements). The amount of required computing
power to process large databases will require the development of grid-enabled
algorithms capable of exploiting distributed computing power and data in large
international networks [23].

2 From Epidaure to Asclepios

To address the above issues, the Asclepios research project-team was launched on
November 1%¢, 2005 at INRIA Sophia Antipolis after final approval by the INRIA
CEO Gilles Kahn. It built on the results of the previous research project-team
Epidaure, initially launched at INRIA Rocquencourt in 1989 and later installed
in Sophia-Antipolis in October 1992 thanks to the strong support of Gilles Kahn
and Pierre Bernhard (at the time respectively VP for Science and Director of
INRIA Sophia-Antipolis). The original scientific objectives were the quantitative

3 URL of Neurospin: http://www.meteoreservice.com/neurospin/.



Fig. 3. Surgery simulation with visual and force feedback (cf. S. Cotin, G. Picinbono,
C. Forest et al. [12, 32, 18]).

analysis of medical images and the coupling of medical imaging with medical
robotics and surgery simulation.

Some of the major contributions of the Epidaure project were published in an
invited article in the IEEE Transactions on Medical Imaging in November 2003
[3]. The Epidaure team has contributed, in association with a number of other
teams, to the establishment of Medical Image Analysis and Simulation as a well
distinct discipline in the field of computer science, with its own scientific com-
munity, its scientific peer-reviewed journals and conferences. In particular we
contributed to the founding of the Medical Image Analysis journal (MedIA) and
the MICCALI conference (Medical Image Computing and Computer Assisted In-
tervention), again with the encouragement of Gilles Kahn who attended the pre-
cursor conference CVRMed’95 (Computer Vision, Virtual Reality and Robotics
in Medicine) organized by INRIA in Nice in April 1995, and the MICCAT’04
conference organized by INRIA in Saint-Malo in September 2004.



2.1 Personalized models for diagnosis and therapy

If several of the problems listed in the original 1989 Epidaure research proposal
have been solved, some important ones remain and new challenging problems
have appeared. The research objectives of the Asclepios proposal take into ac-
count this situation and are organized around 5 research directions, namely:
1) Medical Image Analysis; 2) Biological Image Analysis; 3) Computational
Anatomy; 4) Computational Physiology; and 5) Clinical and Biological Vali-
dation. Only directions 1 and (part of) 5 correspond to a continuation of the
research objectives of the former Epidaure project, whereas directions 2, 3 and 4
correspond to novel objectives related to emerging problems.

Figure 4 attemps to summarize the overall objectives of the Asclepios project.
The computational models of the human body that we consider often have
four different primary components which we characterize as geometry, statistics,
physics and physiology. In order to personalize a generic model, it is necessary
to identify its parameters by confronting it to a set of patient-specific biomedical
images and other biomedical signals. The personalized model can then, in turn,
be projected back onto the images and signals to better interpret them, and to
provide support for the diagnosis of disease. The personalized model can also be
used to predict the evolution of disease, or to plan and simulate an intervention.
This provides support for the prevention and therapy of diseases.

Interpretation

(diagnosis) Prediction of
evolution
Geometry
S tatist.ics Ther apy
Physics 1 .
Physiology planning
Identification Therapy
simulation

(personalization

Fig. 4. Objectives of the Asclepios project-team.

In the remainder of this article we provide four illustrations of several aspects
of current research in Asclepios respectively on: a) the automatic measurement of
the variability of the geometry of some brain structures; b) the simulation of the
growth of personalized brain tumors; c) the simulation of personalized electrome-
chanical activity of cardiac ventricles; and d) the construction of large mosaics



of microscopic molecular images acquired in vivo and in situ. We conclude with
a last section.

3 Measuring Brain Variability from Sulcal lines

The objective of Computational Anatomy is the modeling and analysis of bio-
logical variability of the human anatomy®*. Typical applications cover the sim-
ulation of average anatomies and normal variations, the discovery of structural
differences between healthy and diseased populations, and the detection and
classification of pathologies from structural anomalies.

Studying the variability of biological shapes is an old problem (cf. the re-
markable book "On Growth and Form” by D’Arcy Thompson [40]). Significant
efforts have been made since that time to develop a theory of statistical shape
analysis, refer to [15] for a good synthesis, to a specific special issue of Neuroim-
age [41] or more recently to the first international workshop on the Mathematical
Foundations of Computational Anatomy organized by Xavier Pennec and Sarang
Joshi at MICCAT’2006 [30].

Computational Anatomy lies at the intersection of geometry, statistics and
medical image analysis. A three-stage approach to computing statistics on anat-
omical shapes was proposed by M. Miller in [27]: 1) construction from medical
images of anatomically representative manifolds based on feature points, curves,
surfaces and volumes); 2) assignment of a point-to-point correspondence between
these manifolds (possibly through a restricted class of geometric transforma-
tions, e.g. rigid, affine, diffeomorphism); and 3) generation of probability laws of
anatomical variation from these correspondences.

We provide below an illustration of a similar approach applied to the study
of the variability of certain brain cortical structures. Through a longstanding
collaboration® with the LONI research group of UCLA (Pr. Paul Thompson),
we developed a method to study the variability of the so-called sulcal lines, which
are defined by neuroanatomists as the bottoms of brain cortical foldings. These
lines can be extracted and labeled manually by experts (in our case on a database
of 700 subjects), or automatically by expert systems such as the one developed
at CEA by the group led by J.F. Mangin [35].

Figure 5 shows a typical set of sulcal lines extracted on the cortical surface
of a brain of the LONI database. Together with V. Arsigny® and P. Fillard, we
developed an original approach to register all the images of the database to a
common reference frame after an affine normalization, followed by an individual
alignment of all homologous sulcal lines. This enabled us to compute for each
sulcal line an average sulcal line, and along each of these lines a local measure of

4 Cf. the summer school organized at UCLA in July 2004 by P. Thompson (UCLA)
and M. Miller (Johns Hopkins) cf. www.ipam.ucla.edu/programs/mbi2004/.

5 Cft. Associated Teams BRAIN-ATLAS http://www-
sop.inria.fr/epidaure/Collaborations/UCLA /.

5 Vincent Arsigny received in 2007 the runner-up Gilles Kahn PhD prize for his re-
search.



Fig. 5. Example of sulcal lines drawn on the cortical surface of one of the brains of the
UCLA database (courtesy of P. Thompson).

variability under the form of covariance matrix computed at regularly sampled
points.

As a result of new metrics defined in the space of Symmetric Positive Defi-
nite Matrices (also called “tensors” in our community), we were able to propose
a method to extrapolate this local measure of variability to the whole cortex in
a plausible manner [29, 1]. We see in Figure 6 a color representation of the vari-
ability measured in various regions of the brain which quantitatively confirms
previous observations made on a more qualitative basis by neuroanatomists.
These results are published in [17].

Statistical information about variability can be used to help guide the su-
perposition of a brain atlas to the brain images of a specific patient. This was
shown with a different statistical database and in an image-guided radiotherapy
context by O. Commowick et al. in [11].

Another study, conducted during the PhD work of Jonathan Boisvert [8],
concerned the statistical analysis of the variability of the scoliotic spine. By using
an articulated model based on the relative position and orientation of successive
vertebrae (through rigid body transformations), we were able to estimate the
variability of the spine shape over a database of more than 300 patients. This
was used to assess the evolution of the deformation during orthopedic treatments;
moreover, the first four modes of variation appeared to be closely correlated to
the usual clinical classification of scolioses, which reinforces the clinical interest
of the chosen approach. Figure 7 illustrates a typical result.

4 Simulation of Tumor Growth

Combining anatomical, physical and physiological models of the human body
is part of the Computational Physiology research field, to which the next two
examples belong. The first concerns the simulation of diffusive tumor growth
based on medical images. The objective is to identify the parameters of a generic
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Fig. 6. Color maps showing the geometrical variability of the cortical structures ex-
trapolated from the sulcal variability and a mathematical Riemannian framework. Left
column shows the amplitude of the variability (hot colors mean high variations among
subjects). Right column shows the main direction of variability. (color code: Red: left-
right oriented tensor, Green: posterior-anterior oriented, Blue: inferior-superior ori-
ented). Cf. P. Fillard, V. Arsigny et al. [17].
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dynamic model from a sufficient number of observations on a specific patient,
in order to better characterize the nature of the observed tumor. This image-
based characterization of the tumor aims at better predicting its plausible evolu-
tion, and anticipating the effects of possible therapies (e.g. radiotherapy, surgery,
chemotherapy).

The work described in [10] includes three main levels of modeling: the first
is geometrical and includes the extraction of the main structures of the head
from a set of multisequence magnetic resonance images (MRIs). Among these
structures are 1) the skull, 2) the gray and 3) the white matter of the brain, 4) the
cerebrospinal fluid and 5) the falx cerebri. Figure 8 shows a typical representation
of these structures. The accurate geometric description of these structures is
important because the proliferation and migration of glial tumor cells strongly
depend on the nature of the tissues and also on the orientation of the white
matter fibers.
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Fig. 7. Statistical spine model. From left to right: mean spine model reconstructed from
a database of 300 patients with scoliosis, rotation and translation covariance measuring
the local variability of each vertebra (color encodes the determinant of the covariance
matrices). Top: Postero-anterior view. Bottom: lateral view. (cf. J. Boisvert [8])

The second level of modeling refers to biomechanics. The aim is to simulate
the deformation of the brain induced by the tumor growth, also called the "mass
effect”. We built a finite element model of the previously extracted head struc-
tures under the hypothesis of inhomogeneous isotropic linear elastic behavior of
the biological tissues. Linearity is a reasonable assumption to impose since the
amplitude of the deformations is small. Inhomogeneity takes into account the
mechanical variability of the tissues.

The third level of modeling concerns the physiopathology of the tumor it-
self. We consider a macroscopic description of the tumor cell density through
a Fisher-Kolmogorov reaction diffusion equation. The reaction component is a
second order polynomial which corresponds to a logistic proliferation law: expo-
nential increase of number of cells followed by a reduced proliferation rate until
an asymptotic value is reached. The diffusion component models the migration of
tumor cells in their neighborhood. Because glioma cell migration is preferentially
along the white matter fibers, the main bundles of white matter fibers are in-
cluded in the model, through diffusion tensor MRI. The biomechanical coupling
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with the reaction-diffusion equation is introduced in the constitutive equation
through a local pressure proportional to the tumor cell density.

Figure 9 shows a simulation of the progression of a glioblastoma during a
six month period, with a good correspondence between observations and simu-
lations. The identification of the parameters of the model followed an interactive
and semi-automatic procedure. Currently it is the PhD work of E. Konukoglu
[26] to identify automatically these parameters from the observations at two time
points, and to measure the predictive power of the model against a third time
point.

Once validated, we believe that such models could be used to better delin-
eate for instance the dosimetry planning in radiotherapy, by proposing a margin
outside of the visible contours of the tumor which would take into account the ac-
tual proliferation and diffusion parameters of the model, as well as the privileged
directions of the main white matter fibers.

Fig. 8. The different tissues included in the biomechanical model of the head. 1 Skull.
2 Grey matter. 3 White matter. 4 Ventricles. 5 Falx cerebri.

5 Personalized Electro-Mechanical Model of the Heart

Building a personalized electro-mechanical model of the heart ventricles is an
important precursor to the simulation and analysis of the electrical or mechanical
activity of the heart of a specific patient.

We began research on this topic at INRIA about seven years ago through
a collaborative action ICEMA” funded by the scientific management of INRIA.
This collaborative action was followed closely and supported by Gilles Kahn.
It involved several project-teams at INRIA including Sosso, Caiman, Epidaure,

" www-rocq.inria.fr/sosso/icema2/icema2.html.
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Fig. 9. Six months simulation of a glioblastoma growth. (A) T2 MRI of the patient,
March 2002. (B) Previous MRI with superimposed tumor cell isodensity contours used
for initialization. (C) T2 MRI of the same patient in September 2002 (6 months later).
(D) Previous MRI with superimposed tumor cell isodensity contours simulated with
the model.

Opale and Macs, as well as external research groups at NIH (E. Mc Veigh), Guy’s
Hospital (R. Razavi), and Philips (O. Gérard). This collaboration was reinforced
more recently through a specific INRIA consortium called CardioSense3D?, cur-
rently involving the INRIA project-teams Asclepios, Macs, Reo and Sisyphe, as
well as the NIH, Guy’s Hospital and Philips research groups.

The current models again include three levels of description [36]. The first
is a geometrical description of the anatomy of the cardiac ventricles, which is
adapted to the specific geometry of a given patient through image processing
methods. The direction of the cardiac fibers is projected onto this geometric
model by automatically mapping an average description which comes from a
previous statistical analysis [31].

The second level of modeling is a macroscopic description of the evolution of
the action potential of cardiac cells, which measures the difference between the
extra-cellular and the intra-cellular electrical potentials. This evolution is mod-
eled through a set of reaction diffusion equations (initially proposed by FitzHugh
and Nagumo, and later refined by Aliev and Panfilov). These equations take into
account the higher conductivity in the direction of the fibers at each point of
the previous geometrical description, and enable the realistic simulation of the
depolarization and repolarization waves within the cardiac tissues.

The third level of modeling is the electro-mechanical coupling which describes
how the action potential variations actually control the contraction and the

8 http://www-sop.inria.fr/CardioSense3D.
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Fig. 10. The simulated displacement of the brain parenchyma due to the development
of the previous tumor model in (left) coronal and (right) transverse views.

relaxation of the cardiac fibers. We chose a macroscopic model due to Bestel,
Clément and Sorine [7]: a set of partial differential equations combines locally
the behavior of an active elastic contractile element controlled by the previous
action potential, with in addition two passive elastic elements respectively in
parallel and in series. This model, initially inspired by the model of Hill-Maxwell
is based on a multiscale analysis from the nanoscopic to the macroscopic scale.
We see in Figure 11 an illustration of the realistic simulation of the contraction
of a generic instance of this model.

The personalization of such a generic model must then be done through a
set of specific measurements obtained through cardiac imaging (e.g. Ultrasound,
Magnetic Resonance, Computed Tomography or Nuclear Medicine Imaging) as
well as electrophysiology (typically the electrocardiogram or ECG). This is a
difficult inverse problem which can be attacked through several strategies (cf.
for instance [37]). Figure 12 shows the personalization of the model obtained
through tagged MRI and specific electrophysiological measurements obtained
with an endovascular procedure.

The future objectives of this research include the simulation of various ther-
apies, like for instance Cardiac Resynchronization Therapy (CRT), or radiofre-
quency ablation procedures, or the effect of stem cells therapy.

6 Building Large Mosaics of Microscopic Images

The last example concerns microscopic imagery. During the past few years, we
have initiated a research on the digital processing of microscopic images acquired
in vivo and in situ. This was made possible through the development of new
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Fig. 11. Short axis (top row) and long axis (bottom row) views of an electromechan-
ical heart model during end diastole (left column), ventricular depolarization (middle
column) and end systole (right column).

imaging devices enabling the acquisition of confocal microscopic images at the
end of a very thin optical probe. The probe can be introduced in the operator
canal of an endoscope in order to provide images of the cellular architecture of
suspicious tissues on line. This operation can also be seen as an ”optical biopsy”.

One of the issues with this type of imaging is the limited field of view of
the microscopic images: because such images have a resolution of the order of a
micron, the field of view is usually limited to a few hundreds of microns. This
poses a problem when the analysis of the cellular architecture requires a larger
field of view (this can be the case, for instance, when observing human colonic
crypts), or when certain statistical measurements require a larger number of cells
or vessels, or simply when it is necessary to reposition the probe exactly in a
given location (when doing a temporal series of images at distant time points
to study a slow dynamic phenomenon for instance). Through a collaboration
with the Mauna Kea Technology company, T. Vercauteren [44] proposed during
his PhD research a method to build a larger scene from the video sequence of
microscopic images acquired during a smooth motion of the acquisition probe.
The mosaic of images is obtained by replacing all of them in a common reference
frame. This is a difficult problem because of the possible deformations induced
by the motion of the probe and the non-rigid nature of the observed tissues.
Figure 13 shows a typical example of the reconstruction of such a mosaic. Other
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Fig. 12. (a) Intervention in the XMR room at Guy’s Hospital (Pr. Reza Razavi) that
allows to combine MRI and Xray acquisition. (b) Integration of XMR data providing
anatomy, motion and electrophysiology measurements of a specific patient into the pre-
vious generic electromechanical model to get a personalized electro-mechanical cardiac
model (cf. [37]).
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work on the construction of large mosaics of 3-D confocal images acquired from
in vitro samples can be found in [19].

Fig.13. Top : in wvivo mouse colon vascularization after injection of FITC-Dextran
high MW (300 input frames, Courtesy of M. Booth, MGH, Boston, MA); Middle :
Ex vivo reflectance imaging of the human colon (mosaic includes 1500 input frames);
Bottom : Microcirculation of the peritubular capillaries of a live mouse kidney with
FITC-Dextran high MW (31 input frames). (cf. T. Vercauteren et al. [44])
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7 Conclusion

We have outlined and illustrated in this article the current research objectives
of the Asclepios project at INRIA, whose main application areas are in medicine
and biology. The pharmaceutical domain is also an application area, as com-
putational models of the human body can be exploited to better predict and
quantify the effects of new drugs.

We believe strongly that the development of advanced biomedical image anal-
ysis methods combined with specific computational models of living systems will
lead to a more profound understanding of the anatomy and physiology of the hu-
man body, and of the correlation between anatomical or physiological anomalies
with the development of certain pathologies. We also believe that this research
effort will be helpful to better exploit the huge amount of available biomedi-
cal signals (from in vivo molecular and cellular imaging to macroscopic organ
imaging) as well as the genetic information potentially available on each patient.

An important clinical objective will be to increase significantly the potential
for pre-symptomatic diagnosis and early treatment for a maximum medical ef-
ficiency. This research could also help the simulation and evaluation of various
therapies, in particular traditional or minimally invasive surgery, radiotherapy,
chimiotherapy, and also some currently experimental therapies like genetic or
cellular therapy. It should also contribute to the promotion of image guided
therapies.

Gilles Kahn strongly encouraged this research while he was the scientific
director of INRIA Sophia-Antipolis, later the Vice-President for Science, and
finally the CEO of INRIA. Through his numerous scientific interactions with the
researchers involved, through his exceptional vision of the future, he stimulated
this activity and gave those scientists the necessary confidence to explore new
directions sometimes far away from their traditional background. For all these
reasons we are proud to dedicate this article to the memory of Gilles Kahn.
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