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ABSTRACT

Currently there is an increase usage of CT-based bone di-

agnosis because low-radiation and cost-effective 2D imaging

modalities do not provide the necessary 3D information for

bone diagnosis. The fundamental objective of our work is

to build a model connecting 2D X-ray information to 3D CT

information through regression. As a first step we propose

an univariate non-parametric regression on individual predic-

tor variables to explore the non-linearity of the data. To later

combine these univariate models we then replace them with

parametric models. We examine two predictors, shaft length

and caput collum diaphysis angle on a database of 182 CT

images of femurs. We show that for each predictor it is pos-

sible to describe 99% of the variance through a simple up to

second order parametric model. These findings will allow us

to extend to the multivariate case in the future.

Index Terms— Non-Parametric Regression, Parametric

Regression, Log-Euclidean Framework, Diffeomorphic De-

formations, Femur

1. INTRODUCTION

Up to now, 3D bone anatomy has been generated from X-ray

images using computational tools. However these tools have

focused only on 3D bone shape reconstruction while little at-

tention has been given to 3D reconstruction of bone mineral

density, which is important in analysis of bone fragility, or-

thopedic surgery, orthopedic implant design, etc. We hypoth-

esize that full 3D bone anatomy (i.e. bone shape and bone

mineral density) for X-ray based diagnosis can be achieved

through development of computational and statistical tools,

making use of vast amount of femur CT images.

The fundamental objective is to perform multivariate re-

gression on the anatomy of bones. As predictors, the regres-

sion model uses patient-specific metadata (e.g. age, weight,

body mass index, etc.), and image features extracted from pa-

tient radiographs. The variables to predict are patient-specific

3D CT images of bones. As a first step, in this paper we

propose univariate parametric regression models based on the

exploration of non-parametric regression results for femur

bones on a selected subset of clinically meaningful morpho-

logical parameters: Femoral shaft length depicted in Fig. 1

(a,b) and caput collum diaphysis (CCD) angle in Fig. 1 (c).

(a) (b) (c)

Fig. 1: (a) Starting point of shaft length morphological pa-

rameter at the greater trochanter. (b) End point between

condyles. (c) CCD angle.

Currently in medical image regression, parametric (e.g.

[1, 2, 3]) and non-parametric (e.g. [4]) approaches have been

employed.

• On one hand, parametric-based approaches can be uti-

lized for multivariate regression without encountering

the curse of dimensionality problem, but its use pre-

imposes a statistical structure on the data.

• On the other hand, non-parametric approaches do not

impose a certain structure, but they suffer from the

curse of dimensionality when trying to optimize for

hyper-parameters in high-dimensional spaces. How-

ever, provided low-dimension subspaces can be found,

efficient optimization could be performed. Neverthe-

less, this is still an open research question [5, 6].

Therefore, we selectively combine these two approaches to

solve the problem in a low-dimensional space, without pre-

imposing a statistical data structure. For this goal we pro-

pose a two-step approach. First, we explore the data structure

through univariate non-parametric regression. This step en-

forces no assumptions on the data structure while avoiding

the curse of dimensionality problem. Second, we parametrize

the explored structures.



In [4] the authors showed kernel regression formulated

with Fréchet weighted means to take into account the non-

Euclidean nature of diffeomorphisms endowed with a right

invariant metric (LDDMM) and applied it to images of the

brain. In contrast, in this work we formulate kernel regres-

sion in an Euclidean way in a Log-Euclidean framework. This

simplifies and speeds-up the process significantly while still

taking into account a large part of the non-Euclidean nature

of the manifold-valued data. Furthermore, this simplifica-

tion allows for other computations that are out of reach to

LDDMM, such as determining the optimal kernel bandwidth

through cross-validation. The Log-Euclidean framework uses

stationary velocity fields to parametrize a diffeomorphic de-

formation, whereas in [4] non-stationary velocity fields are

used. Although the theory shows that not all diffeomorphic

deformation can be reached with stationary velocity fields;

there is no indication so far that this affects the anatomical

shape analysis in any way.

In the following, we develop the methodology and show

results obtained on femur CT images.

2. METHODS

The methods description will be divided in five parts: Log-

domain registration, Log-Euclidean statistics, non-parametric

kernel regression, cross-validation and parametrization of

principle component (PC) scores.

2.1. Log-Domain Registration

To setup correspondences between anatomical images, a set

of images are registered to a reference. We use the novel

symmetric diffeomorphic registration approach described in

[7]. What is new in this registration framework is the efficient

optimization in the log-domain. As a consequence, the re-

sults of the registration are so-called stationary velocity fields.

These velocity fields can be looked at as generators for dif-

feomorphic deformations through the group exponential map

that can be very efficiently computed using the scaling and

squaring method [8].

2.2. Log-Euclidean Statistics

Applying the Log-Euclidean framework [8] on these fields al-

lows us to compute statistics, e.g. averages, and still preserve

diffeomorphism. In the Log-Euclidean framework, velocity

fields are regular elements in a vector space; this allows us

to use simple Euclidean statistics instead of more complex

non-linear techniques, which we needed when working in the

LDDMM space of diffeomorphic transformations. To map re-

sulting velocity fields into diffeomorphic transformations the

exponential is calculated. To go from diffeomorphic transfor-

mation back to velocity fields, a logarithmic mapping is per-

formed. However, in many cases the intrinsic parametrization

of the transformation by its log in the log-domain registration

allows to avoid this numerically unstable step. For a detailed

survey of the methodology we refer to [9].

2.3. Non-Parametric Kernel Regression

We use a kernel regression method to compute the deforma-

tion of the template that best predicts the images based on

prediction variables x, in our case shaft length and CCD an-

gle. Our kernel regression function is

m̂σ(x) = exp

(

∑N

i=1
Kσ(x − xi)vi

∑N

i=1
Kσ(x − xi)

)

, (1)

where N , xi, Kσ , exp and vi are the total number of im-

ages, shaft length or CCD angle for image i, a Gaussian kernel

function with σ bandwidth, the mapping from velocity fields

to diffeomorphic deformations and the ith velocity field, re-

spectively.

2.4. Cross-Validation

The quality of kernel regression methods strongly depends on

the selection of bandwidth parameters. To select a bandwidth

parameter we apply cross-validation with penalty functions.

The penalty and corresponding weighting functions penalize

very small bandwidth values. Bandwidth values equal to zero

are not interesting because they are just a nearest neighbor

interpolation of the data. In our case we solve the following

minimization problem:

σ̂ = argmin
σ∈R

N
∑

i=1

|| log(m̂σ(xi)) − vi||
2Ξ(Wσ,i(xi)), (2)

where N , log, σ, Ξ are total number of images, mapping

from diffeomorphic deformations to velocity fields, band-

width and penalty function, respectively, and Wσ,i(xi) =

K1(0)/
∑N

j=1
K1(σ

−1(xi − xj)) is the weighting function.

For details we refer to [10]. By solving this optimization

problem we obtain a kernel bandwidth greater than zero

which minimizes the regression function’s prediction error

for all images N .

2.5. Parametrization of Univariate Kernel Regression

To parametrize the non-linear regression function that we

have established via kernel regression, the regressed velocity

fields are reduced in dimension using principle component

analysis (PCA). The data points are then projected onto a

low-dimensional space covering 99% of the variance and

evaluated for possible parametrization. In all cases that we

have observed so far it is possible to fit a polynomial to each

PC. The procedure can be summarized as follows:

1. Regress velocity fields



2. PCA on regressed velocity fields

3. Plot scores for each PC

4. Fit parametric function to each score plot

The new parameterized regression model is then:

m̂(x) = exp

(

µ +

M
∑

i=1

pi(x)zi

)

, (3)

where µ is the mean regressed velocity field, pi(·) is the ith
polynomial function representing ith PC scores, z are PCs

and M the number of PCs describing 99% of the variance.

Regression is done on 50 predictor values drawn from a

normal distribution we obtained on the original data. This

way we avoid conducting PCA on the original data and still

get a reasonable representation of the original data structure.

3. RESULTS

Considering generalized cross-validation (GCV), Ξ(u) =
(1 − u)−2, as the penalty function in (2) we obtain 2.1 for

shaft length and 1.6 for CCD angle. With these bandwidth

values, prediction is performed on a dataset of 182 left femur

CT images.

To validate the results, 50 velocity fields were predicted

with prediction values drawn from the normal distribution of

the original data. Then the exponential was taken of these

fields and the shaft length and CCD angle were measured in

the exponentiated fields.

3.1. Shaft Length Regression

To find the best parametric model, different polynomials were

evaluated. Our evaluation showed that the best fit is linear

for all PCs. In Fig. 2 the score plots are depicted and in

Tab. 1 four different parametrization and the root mean square

(RMS) prediction error are listed. Parametric model 4 per-

forms similar to the non-parametric model.

In Fig. 3 the prediction values are compared in a more

qualitative manner.

PC1 PC2 PC3 RMS [mm]

Parametric 1 1 2 5 1.37

Parametric 2 1 2 3 2.26

Parametric 3 2 2 5 0.97

Parametric 4 1 1 1 0.83

Non-parametric - - - 0.84

Table 1: Shaft length parametrization comparison. PCn

columns show the order of the polynomial fit used for the

corresponding PC.
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Fig. 2: Score values for the first three PCs.
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Fig. 3: Comparison of parametric and non-parametric regres-

sion results for shaft length.

3.2. Caput Collum Diaphysis Angle Regression

Similar to the shaft length low order polynomial give better

prediction results. The best prediction results are reached us-

ing a linear parametrization for the first PC and quadratic for

the second (Tab. 2). This parametric model even outperforms

the non-parametric model. See Figs. 4 and 5 for score and

prediction error plot.

4. DISCUSSION AND CONCLUSIONS

Only three PCs for shaft length and two for CCD angle are

needed to describe 99% of the variance in the velocity fields.

This fact enables us to evaluate each predictor individually.

Surprisingly, in both experiments low order polynomial pa-

rameterizations provided the best results. One possible reason

for this could be the behavior of polynomials at the boundary

data points. In both cases the parametric slightly outperforms

the non-parametric model. It seems that the non-parametric



112 114 116 118 120 122 124 126
−2000

−1000

0

1000

2000

3000

4000

PC score vs. CCD angle

CCD angle [degree]

P
C

 s
co

re

 

 
PC1

PC2

Fig. 4: Score values for the first two PCs.
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Fig. 5: Comparison of parametric and non-parametric regres-

sion results for CCD angle.

model overfits on the training data. Therefore, we gain in

three ways from parametric models: Simplicity of the model,

computational efficiency and reduction of overfitting.

We plan to evaluate other parametric functions to avoid

possible problems at boundary data points. The shown vali-

dation can only test the consistency of the method, therefore

we will further validate our method by comparing the predic-

tion to manual segmentation results. In future work, simplic-

ity and efficiency, will allow us to use univariate exploration

methods to build multivariate regression models with two and

more predictors.
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