K. T. Tusscher, D. Noble, P. Noble, and A. Panfilov, A model for human ventricular tissue, AJP: Heart and Circulatory Physiology, vol.286, issue.4, pp.1573-1589, 2004.
DOI : 10.1152/ajpheart.00794.2003

A. Garny, D. Noble, and P. Kohl, Dimensionality in cardiac modelling, Progress in Biophysics and Molecular Biology, vol.87, issue.1, pp.47-66, 2005.
DOI : 10.1016/j.pbiomolbio.2004.06.006

B. Schnfisch, Anisotropy in cellular automata, Biosystems, vol.41, issue.1, pp.29-41, 1997.
DOI : 10.1016/S0303-2647(96)01664-4

M. Gerhardt, H. Schuster, and J. J. Tyson, A cellular automaton model of excitable media, Physica D: Nonlinear Phenomena, vol.46, issue.3, pp.392-415, 1990.
DOI : 10.1016/0167-2789(90)90101-T

A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal of Physiology, vol.177, pp.500-544, 1952.

D. Noble, A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials, The Journal of Physiology, vol.160, issue.2, pp.317-352, 1962.
DOI : 10.1113/jphysiol.1962.sp006849

G. W. Beeler and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, The Journal of Physiology, vol.268, issue.1, pp.177-210, 1977.
DOI : 10.1113/jphysiol.1977.sp011853

C. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circulation Research, vol.68, issue.6, pp.1501-1526, 1991.
DOI : 10.1161/01.RES.68.6.1501

D. Noble, A. Varghese, P. Kohl, and P. Noble, Improved guinea-pig ventricular cell model incorporating a diadic space, I Kr and I Ks , and length and tension dependent processes, Canadian Journal of Cardiology, vol.14, pp.123-134, 1998.

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793, 2003.
DOI : 10.1016/S0092-8240(03)00041-7

P. Colli-franzone, L. Guerri, and S. Rovida, Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations, Journal of Mathematical Biology, vol.25, issue.4
DOI : 10.1007/BF00163143

P. Chinchapatnam, K. Rhode, M. Ginks, C. Rinaldi, P. Lambiase et al., Model-Based Imaging of Cardiac Apparent Conductivity and Local Conduction Velocity for Diagnosis and Planning of Therapy, IEEE Transactions on Medical Imaging, vol.27, issue.11, pp.1631-1642, 2008.
DOI : 10.1109/TMI.2008.2004644

URL : https://hal.archives-ouvertes.fr/inria-00616071

O. Camara, A. Pashaei, R. Sebastián, and A. F. Frangi, Personalization of Fast Conduction Purkinje System in Eikonal-Based Electrophysiological Models with Optical Mapping Data, Proceedings, pp.281-290, 2010.
DOI : 10.1007/978-3-642-15835-3_29

V. Jacquemet, An Eikonal Approach for the Initiation of Reentrant Cardiac Propagation in Reaction–Diffusion Models, IEEE Transactions on Biomedical Engineering, vol.57, issue.9, pp.2090-2098, 2010.
DOI : 10.1109/TBME.2010.2051156

E. Konukoglu, O. Clatz, B. H. Menze, M. Weber, B. Stieltjes et al., Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations, IEEE Transactions on Medical Imaging, vol.29, issue.1, pp.77-95, 2010.
DOI : 10.1109/TMI.2009.2026413

URL : https://hal.archives-ouvertes.fr/inria-00616100

M. Sermesant, E. Konukoglu, H. Delingette, Y. Coudiere, P. Chinchaptanam et al., An anisotropic multifront fast marching method for real-time simulation of cardiac electrophysiology, Proceedings of Functional Imaging and Modeling of the Heart, pp.160-169, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00616051

J. Sethian, Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 1999.

J. Sethian and A. Vladimirsky, Ordered Upwind Methods for Static Hamilton--Jacobi Equations: Theory and Algorithms, SIAM Journal on Numerical Analysis, vol.41, issue.1, p.41
DOI : 10.1137/S0036142901392742

J. Kevorkian, Partial differential equations: Analytical solution techniques, 2000.

C. Kao, S. Osher, and Y. Tsai, Fast Sweeping Methods for Static Hamilton--Jacobi Equations, SIAM Journal on Numerical Analysis, vol.42, issue.6
DOI : 10.1137/S0036142902419600

J. Qian, Y. Zhang, and H. Zhao, A Fast Sweeping Method for Static Convex Hamilton???Jacobi Equations, Journal of Scientific Computing, vol.80, issue.1-2, pp.237-271, 2007.
DOI : 10.1007/s10915-006-9124-6

E. Konukoglu, M. Sermesant, J. Peyrat, O. Clatz, H. Delingette et al., Ayache, A recursive anisotropic fast marching approach to reaction diffusion equation: Application to tumor growth modeling, Information Processing in Medical Imaging (IPMI'07), 2007.

M. Reumann, J. Bohnert, G. Seemann, B. Osswald, and O. , Preventive Ablation Strategies in a Biophysical Model of Atrial Fibrillation Based on Realistic Anatomical Data, IEEE Transactions on Biomedical Engineering, vol.55, issue.2, pp.399-406, 2008.
DOI : 10.1109/TBME.2007.912672

M. Nash, C. Bradley, P. Sutton, R. Clayton, P. Kallis et al., Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study, Experimental Physiology, vol.289, issue.2, p.91, 2006.
DOI : 10.1113/expphysiol.2005.031070

D. Fuentes, R. Cardan, R. J. Stafford, J. Yung, G. D. Iii et al., High-fidelity Computer Models for Prospective Treatment Planning of Radiofrequency Ablation with In Vitro Experimental Correlation, Journal of Vascular and Interventional Radiology, vol.21, issue.11, pp.1725-1732, 2010.
DOI : 10.1016/j.jvir.2010.07.022

Y. Lai, Y. B. Choy, D. Haemmerich, V. Vorperian, and J. Webster, Lesion Size Estimator of Cardiac Radiofrequency Ablation at Different Common Locations With Different Tip Temperatures, IEEE Transactions on Biomedical Engineering, vol.51, issue.10, pp.1859-1864, 2004.
DOI : 10.1109/TBME.2004.831529

M. K. Jain and P. D. Wolf, A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation, Annals of Biomedical Engineering, vol.28, issue.9, pp.1075-1084, 2000.
DOI : 10.1114/1.1310219

J. Allard, S. Cotin, F. Faure, P. Bensoussan, F. Poyer et al., Sofa an open source framework for medical simulation, Medicine Meets Virtual Reality (MMVR'15), 2007.
URL : https://hal.archives-ouvertes.fr/inria-00319416

J. Dequidt, M. Marchal, C. Duriez, E. Kerrien, and S. Cotin, Interactive Simulation of Embolization Coils: Modeling and Experimental Validation, Proceedings of MICCAI, pp.695-702, 2008.
DOI : 10.1007/978-3-540-85988-8_83

URL : https://hal.archives-ouvertes.fr/inria-00336907

V. Luboz, C. Hughes, D. Gould, N. John, and F. Bello, Real-time Seldinger technique simulation in complex vascular models, International Journal of Computer Assisted Radiology and Surgery, vol.6, issue.3, pp.589-596, 2009.
DOI : 10.1007/s11548-009-0376-0

W. Stevenson, H. Khan, P. Sager, S. L. , H. Middlekauff et al., Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction, Circulation, vol.88, issue.4, pp.1647-1670, 1993.
DOI : 10.1161/01.CIR.88.4.1647

U. K. Hanno, R. Ventura, D. Steven, C. Johnsen, T. Rostock et al., Catheter ablation of multiple ventricular tachycardias after myocardial infarction guided by combined contact and noncontact mapping, Circulation, vol.115

G. Saupin, C. Duriez, and S. Cotin, Contact Model for Haptic Medical Simulations, Fourth International Symposium on BioMedical Simulation (ISBMS'08), 2008.
DOI : 10.1007/978-3-540-70521-5_17

URL : https://hal.archives-ouvertes.fr/hal-00841570