Spatial Decision Forests for MS Lesion Segmentation in Multi-Channel Magnetic Resonance Images

Abstract : A new algorithm is presented for the automatic segmentation of Multiple Sclerosis (MS) lesions in 3D Magnetic Resonance (MR) images. It builds on a discriminative random decision forest framework to provide a voxel-wise probabilistic classification of the volume. The method uses multi-channel MR intensities (T1, T2, and FLAIR), knowledge on tissue classes and long-range spatial context to discriminate lesions from background. A symmetry feature is introduced accounting for the fact that some MS lesions tend to develop in an asymmetric way. Quantitative evaluation of the proposed methods is carried out on publicly available labeled cases from the MICCAI MS Lesion Segmentation Challenge 2008 dataset. When tested on the same data, the presented method compares favorably to all earlier methods. In an a posteriori analysis, we show how selected features during classification can be ranked according to their discriminative power and reveal the most important ones.
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00616194
Contributeur : Project-Team Asclepios <>
Soumis le : vendredi 26 juillet 2013 - 14:03:56
Dernière modification le : vendredi 12 janvier 2018 - 11:02:38
Document(s) archivé(s) le : dimanche 27 octobre 2013 - 02:40:11

Fichier

Geremia-MS-NeuroImage-2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ezequiel Geremia, Olivier Clatz, Bjoern H. Menze, Ender Konukoglu, Antonio Criminisi, et al.. Spatial Decision Forests for MS Lesion Segmentation in Multi-Channel Magnetic Resonance Images. NeuroImage, Elsevier, 2011, 57 (2), pp.378-390. 〈10.1016/j.neuroimage.2011.03.080〉. 〈inria-00616194〉

Partager

Métriques

Consultations de la notice

373

Téléchargements de fichiers

426