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Abstract

Biophysical models are increasingly used for medical @pfibns at the organ scale. However, model predictions
are rarely associated with a confidence measure althoughahe important sources of uncertainty in computational
physiology methods. For instance, the sparsity and noigbeotlinical data used to adjust the model parameters
(personalization), and thefticulty in modeling accurately soft tissue physiology. Theer theoretical progresses in
stochastic models make their use computationally tragtduoit there is still a challenge in estimating patient-gmec
parameters with such models. In this work we proposefacient Bayesian inference method for model personal-
ization using polynomial chaos and compressed sensing. mathod makes Bayesian inference feasible in real 3D
modeling problems. We demonstrate our method on cardiatrefghysiology. We first present validation results on
synthetic data, then we apply the proposed method to clidata. We demonstrate how this can help in quantifying
the impact of the data characteristics on the personalizgtind thus prediction) results. Described method can be
beneficial for the clinical use of personalized models agjilieitly takes into account the uncertainties on the data
and the model parameters while still enabling simulatitiag tan be used to optimize treatment. Such uncertainty
handling can be pivotal for the proper use of modeling asraaal tool, because there is a crucial requirement to
know the confidence one can have in personalized models.

Keywords: Probabilistic Inverse problems, Bayesian Inference, PEets, Polynomial Chaos, Spectral
Representation, Cardiac Electrophysiology, Model Peatoation, Eikonal Models, Compressed Sensing

1. Introduction

Modeling of physiological processes and pathologies isoirigmt for understanding the underlying phenomena
and also for designing better clinical systems for diaghasid therapy planning. The research community has fo-
cused on the mathematical models for a long time aiming tatermore realistic and multi-scale models, Murray
(2002). Recently, thanks to the advances in clinical imggind mapping, modeling research broadened its interest
and started to focus on aftlirent type of problemmodel personalization. Model personalization is the adaptation of
a generic model to a specific patient based on the availabiealldata. This is crucial both for transferring mathe-
matical models into clinical practice and for validating aets with patient data. In this article we concentrate on the
estimation of patient specific parameters.
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Parameter estimation from clinical data is a challengisg thue to the nature of the clinical observations and the
complexity of the mathematical models, even in simplifieslesa He and Keyes (2007). The challenge mainly arises
due to the following reasons:

i. Sparsity of the data: The temporal (frequency) and spatial (resmiyisampling of the acquired clinical obser-
vations are much lower than the corresponding scales ofrtterlying processes. For example, during a cycle
of a healthy heart the electrical wave passes through atleh&in the cardiac tissue. The cardiac mappings on
the other hand, samples at best a few hundred points at 1 Hedyoundary of the heart.

ii. Uncertainty on the data: The measurements obtained from clinical dat@féen gathered through invasive
andor indirect procedures. For example, cardiac electroghygy mapping can either be achieved by catheter-
ization or indirectly derived from body surface potentidis the first case the contact points are on a moving
heart and can slide due the beating of the heart and the brgatiotion. Furthermore, the matching between
the measurement points and the computational mesh used Birttulations - which is extracted from med-
ical images - is ambiguous. Both the motion and the ambiguaishing are sources of uncertainty on the
measured values.

iii. Complexity of the model: The mathematical models describe complexmjcsaresulting in nonlinear formu-
lations. The interactions between the model parametarsntitel variables and the observations are therefore
not trivial. Furthermore, models often include large numifeparameters that must be estimated. The param-
eter estimation problems for such models are in general &addoften results in non-unique solutions in the
sense that observations could have resulted via a rangessibj®parameter sets instead of a single one.

iv. Assumptions of the model: Modeling is by definition a simplification, thilie degree of realism of the model
compared to the observations is limited by the assumptioatsnthake the model valid. Finding the right level
of details in a model in order to be able to both adjust it todhta and achieve meaningful predictions is not
simple.

These challenges undermine the uniqueness of the paragséteation problem. Under these settings one can expect
multiple parameter sets satisfying the observations viighsame accuracy. Methods for estimating patient-specific
parameters should take these challenges into accounturdprg not only point estimates for the parameters but also
ranges of possible parameters and confidence margins.

Most physiological models used today are continuum modatet on systems of partialfidirential equations
(PDEs), Murray (2002). Parameter estimation problems a studied for PDE systems, Tarantola (2005). Ap-
proaches can be coarsely classified as deterministic orpiiadiic, Kaipio and Somersalo (2005). Deterministic
approaches are based on minimizing a cost function thatuneshe dierence between the observations and the
model solutions. The solution giving the minimum value tlsenves as the estimate. The most common techniques
involve variational (e.g. adjoint model) or sequentiag(eKalman filter) methods, Tarantola (2005); Voss and Tim-
mer (2004). These methods are very popular due to the tibistadd the estimation and the well studied control
theory. On the other hand, it is well known that these metfawdgprone to local minima and the sensitivity analysis
can become cumbersome in complex models where analytidgghtiens are not possible. In the case of sparse and
uncertain observations these drawbacks become impostards.

Probabilistic or statistical methods are based on the theaf Bayesian inference and numerical schemes to
generate the posterior distributions for the parametets. problem of parameter estimation is cast as a probabilisti
model defining a joint probability distribution between ebstions, parameters and variables. The estimation task
is then defined as computing the posterior distributiontiergarameters given the observations. These distributions
provide much richer information than the point estimatemiied in deterministic methods. They contain information
about how well all possible sets of model parameters fit trsenfations. They can be used to obtain point estimates
(e.g. Maximum-A-Posteriori (MAP) estimates) as well asfatences on these estimates. Another advantage of
probabilistic methods is that they are less sensitive tallotnima since they estimate the whole distribution.

The main disadvantage of the probabilistic methods is tw@inputational cost. In general posterior distributions
cannot be computed analytically and must be approximatetenuoally. The conventional numerical method for
this task is sampling through Markov-Chain Monte-Carlo (MC) methods, Kaipio and Somersalo (2005). MCMC
methods is based on simulating the model with many numbeiifeérdnt parameter sets and approximating the
posterior distribution using these samples. Obtaining @ui@te estimate using probabilistic methods requires a
large number of sample simulations. When a single modellsiton can take a considerable amount of time on
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a high performance computer, as it can be the case in orgdadsiophysical models, running thousands of them
becomes impractical.

Recent advances in uncertainty quantification (UQ) and mizgademethods for stochastic PDEs provide solutions
for reducing the computational cost of Monte-Carlo simolas of PDE systems, Ghanem and Doostan (2006); Xiu
and Karniadakis (2002). These methods are based on polghoh@os (PC) expansions of random variables and
spectral representations of the equations. Through spegproximations, the model simulations can be executed
using only linear combinations of spectral basis functicatber than solving the PDE. This yields faster Monte-
Carlo simulations and faster uncertainty quantificatiohjcl have significant impact on probabilistic methods for
sensitivity analysis and parameter estimation, GhanenDaubtan (2006); Xiu and Karniadakis (2002); Marzouk
et al. (2007); Marzouk and Najm (2009); Marzouk and Xiu (2008a and Zabaras (2009); Doostan et al. (2009);
Xiu (2007, 2009).

In this article we propose and demonstrate fiitient Bayesian inference method for the parameter estmati
problems involving largex 10) number of parameters. In order to demonstrate the ttters between uncertainty
on the data and the model parameters we focus on the paraestitaation problem in Eikonal-Busion (ED) type
models for cardiac electrophysiology (EP). We formulate Bayesian inference problem for the ED model and
demonstrate the inference method. In Section 2 we briefudsthe cardiac electrophysiology model used in this
work. Section 3 explains the probabilistic formulation d@hd Bayesian inference problem. In Section 4 we explain
the inference algorithm (mathematical details are giveammendices). The proposed methodology is demonstrated
both on synthetic and clinical data. Sections 5 and 6 prebese results. Finally we conclude this article with
discussions.

2. Eikonal-Diffusion Model for Cardiac Electrophysiology

Among the diferent models describing the electrical activity in the @dissue, Fink et al. (2011); Clayton
et al. (2011), here we chose to focus on the Eikonditi8ion (ED) model Colli Franzone et al. (1990), as it allows a
compact formulation while still including important noméiarities. Moreover, by using the anisotropic Fast-Marghi
Method, Konukoglu et al. (2007), Eikonal models can be sblkapidly which makes them suitable for clinical
applications, Chinchapatnam et al. (2008), and treatmemiations, Pernod et al. (2011).

2.1. The Eikonal-Diffusion Model
The ED model describes the depolarization tifi(®) in the cardiac tissur € Q\Qg, through the nonlinear PDE

oD(X) (VVTM(X)VT) = V- (DM (X)VT) = 7, (1)
T(X) =0, X € Q, (2)

where the boundary conditions depict the initializationtloé excitation (electric wave) at locatid®e, the onset
location (which is a set of points in the discrete setting). In thisatgpn the superscrifgitdenotes the transposition,
nablais the gradient operatag is the dimensionless constant related to the cell membradheia the cell membrane
time constantD(x) is the square of the local tissue space constant and isddlathe conductivity of the tissue. The
tensor quantityM (x) incorporates the local fiber orientation to represent thisaropy in conduction velocity of the
cardiac tissue (see Tomlinson et al. (2002) for furtheritteta the Eikonal-Diftusion model parameters).

The parameters of interest in this equation are the condiycB(x) and the onset locatioRe. D(X) is a spatially
varying conductivity function with specific structure. italue in the cardiac myocardium volume is taken as a global
parameter. But on the endocardium surface, it varies sdlyatize to the existence of the Purkinje network extremities
This network creates important fast conduction pathwaysannot be observed using medical imaging. The goal
of the inverse problem is to find the global myocardium coniglitg and the locally varying conductivity on the
endocardium. We represeb{x) with a radial basis function approximation as often donéhim literature, Nobile
et al. (2008); Ma and Zabaras (2009).

Do if X € Qmyo,
— 2 .
ﬁ Zm=1 Dm exp(_(H)((%mH)) if X € Qendo,

D(X) = { 3)
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whereQny, is the myocardial tisSSu®engo is the endocardial surfacg(x) = Z:\n"zl exp(IIX—Xml2/c?)) is the normal-
ization term,Dg is the muscle tissue conductivit, are pre-defined radial basis centdirs| is the geodesic distance
on the endocardium surface abg’s are scalar weights. Based on this representation theseygoblem foD(X) is
defined as estimating the vecir= [Dy, ..., Dy]. Alternative representations can also be used, Marzodk\&jm
(2009); Marzouk and Xiu (2009). Ideally one would reprede() as a dfferent value at each discretization point
in the computation domain. This however, yields a high disi@mal inverse problem creating a high computational
cost, Kaipio and Somersalo (2005).

We model the onset locatidde as a point on the septum wall on the endocardium. Although e mealistic
model would formulate this as a set offférent junctions we currently approximate this with a singtént and
endocardial areas of fast conduction. Based on this asgumypé represent the location of tlig- with two spatial
coordinates on the septum of the endocardial surfaceg:.

2.2. The Observation Model

The clinically available observations are depolarizatiores on the left ventricular endocardium (from catheter-
based mapping) and depolarization times on the epicardiom,catheters or computed from the inverse problem of
electrocardiography. These observations are mathertiatiepresented a$(x) = T(X) + e(x) for {xi}T c dQ on the
boundary of the heart, whee€x) is the observation noise ar{fd(xi)}? forms the observation vector. The observation
noise approximates the following sources of uncertainty:

- During the acquisition procedure the catheters positi@nges due to the beating of the heart and the breathing
motion.

- The position of each observation point is projected ontodbmputation domai which is extracted from
medical images taken either before or after the acquisitidrerefore, these points do not necessarily corre-
spond to each other.

- The depolarization times are estimated from the eledtpiotentials measured by the catheter. This estimation
is also prone to noise, Steinhaus (1989).

An in depth analysis of each of these sources of error wouleebgbeneficial however, this is beyond this presented
work. Here we approximate the contribution of all of theserses with the observation noisgx).

3. Probabilistic Modeling of Parameter Estimation for the ED Model

Different methods have been proposed to adjust cardiac elbgsiofpgy models, including for instance genetic
algorithms for the fast conduction system, Camara et all@gMaximum A Posteriori state estimation, Wang et al.
(2011), or in similar conditions using a deterministic aggh and a trust-region minimizations, Chinchapatnam et al
(2008); Relan et al. (2011). Up to the best of our knowledgeeraf these approaches use a full probabilistic treatment
of the problem.

The probabilistic approach taken here formulates each hpadameter as a random variable. The distributions
for these random variables reflect the possible ranges piateneters as well as their expected value. Under this ran-
domness the relationship between the model parameterb@antbidel variable$ can be written as a joint probability
distribution. This distribution can be decomposed basetherconditional dependencies of the PDE, i.dfedent
parameters leading toftierent solutions. The joint distribution for the ED modeld#sed above can be written as

p(T, T, D(X), o, 7, M(x), Q) = p(TID(X), Co, 7, M (%), Q) p(TIT) p(D(X), Co, 7, M (X)) P(Qe) (4)

where thel = {T(x1), T(x2), ..., T(xn)} is the set of observationp(Qg) is the prior distribution for the onset location
and p(D(x), co, 7, M (X)) is the prior distribution for the model parameters. On tight hand side of this equation,
the first term describes the probability that for a given paeter set the simulated depolarization times willlheghe
second term describes the probability of obseringhen the simulation result is given &sand the last two terms
are the prior distributions for the parameters. Here we émtys onD(x) andQg therefore we can drop the other
parameters in the formulation. Furthermore, we assumetlieabbservation noisgx) is an independent random
variable for each point - a common assumption for the prdistibimodels, Kaipio and Somersalo (2005). Consid-
ering the independent nature of contact mappings this gstsomcan be justified for the catheter based observations.
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This assumption allows us to state that for a given locatiéhnT (x) is given thenT (x) does not depend on the ob-
servations taken from other locatiopghowever, we would also like to note that this independessamption could
also be changed without greatlffecting the overall method.). Based on this conditional jreshelence and using the
approximation given in Eq. (3) the formulation becomes

N
p(T, T. D, xe, &) = [ [{p(TC0)IT () p(T04)ID, e, Ye)} pD)POXE, V). (5)
i=1

In the case of parameter estimation for PDES, given a boyrmardition and a set of parameters the forward sim-
ulation often provides a unique solution. This is also theed@r the ED model. This is integrated as an additional
simplification: p(T(x))|D, Xg, Ye) = O (xB xeye)» Where we usd (x|D, Xe, Ye) to represent the solution of the model
Eq. (1) given a specific parameter set arisithe Dirac’s delta function. We can then compute the pastdistribution

for the parameterg(D, xg, Ve, |T), given an observation vector:

TR, p(TOOIT (D, e, Ye)) PD) %, Ye)

p(D, xe, Vel T) = N = — — — ,
By T2 P(TO)IT (6[D, Xe, Ve)) p(D) p(xe, e )dDdxedlye

(6)

where the integral in the denominator of the posterior itistion is over all the possible parameter sets. One can
see the advantage of probabilistic methods in this forrariatThe posterior distributiop(D, Xe, Ye, [T) not only
provides us with the best possible parameter set that fitsltkervation, but also contains information on how all
other possible parameter sets fit the observations.

In principle the prior distributions for the conductivityales and the onset locations can be obtained through
populations statistics. In order to take into account ock laf knowledge of such statistics — which up to the best of
our knowledge do not exist yet — here the prior distributiaresset to uniform distributions, namely the uninformative
priors

D ~ U(D3,DE), m=0,...,. M
Xe ~ UOE, XR), Ve ~ UNE. V). (7

The values for the upper and lower limits of the distribusiovill be specified in the experiments section.

4. Fast Bayesian Inference

Bayesian inference corresponds to computing the posteistnibution p(D, xg, ye, |T) for a given observation
set. Equation (6) admits an analytical solution only if taeni T(x|D, X, Ye) can be written analytically. For most
models, as is the case for this one, solutions cannot beewittalytically. They are found by numerically solving the
PDE systems. The common approach to comp(ie xg, ye|T) is to use sampling methods such as MCMC, Kaipio
and Somersalo (2005). MCMC methods evaluate the numeratequation 6 sequentially at many random points
and approximate the posterior distributions using thesegss (we would like to note here that the independence as-
sumption ore(X) only determines the method of computation of this numeratd it can easily be interchanged with
another observation model). One can immediately see thkebetk here: evaluation of the mod&l(x|D, Xe, V&)
Simulating models often takes time and this is the reasoheohigh computational cost of probabilistic methods.

Spectral representations based on polynomial chaos expareficiently approximatd (x/D, xg, e) and yield
substantial speed ups, Ghanem and Doostan (2006); Xiu J2@@®zouk and Najm (2009). It has already been used
for the sensitivity analysis of the direct problem of electrdiography at the macroscopic scale, where number of
parameters is small and the underlying equation is lineaneSer et al. (2008). The spectral approximation for the
probabilistic formulation of the ED model given above cargben as

P
T(XD. X, ye) ~ ) Ti)®i(D, Xe. Ye), (8)
i=0



(b)

Figure 1: Geometric setting: (a) Simulation domain withesation points (in red). Green point: onset location fquezkments 1. Yellow disc:
region of unknown onset location in experiment 2, (b) Figiaeshown in a dferent view point, (c) Ground truth varying conductivity. btle
conductivity: Dg = 0.06 mn? (the conduction velocity = ¢y vDo/7 = 0.6 m/s). Endocardial conductivity set using Eq. (3) with= 17.

whereT;(x) are so-called the spectral basbs,are multivariate orthonormal Legendre polynomials of @aging order
andP is the total number of spectral components involved in thr@gmation. The summation on the right hand
side approximates the solution of the model equation. Onesea that the computation of this summation can be
executed much faster than numerically solving the modehtagpu because it only involves addition of functions.
Therefore, in the Bayesian inference this approximationtmaused to compute the samples necessary to build the
posterior distribution. For the ease of explanation we dgnovide the mathematical details at this stage please refe
to Appendix A for these details.

The computation of the spectral bagigx) for high number of parameters is in general a computatipeapen-
sive task. However, for the ED model, compressed sensinpeased to determine the basis in a fast manner. Such
a technigue has been demonstrated for the linddusidon equation in Doostan et al. (2009). As a result, one can
compute the basis functions easily and in &iceent manner (see Appendix B for a brief explanation). Ushrese
two improvements together, we can then apply Bayesianénfer on such non-linear 3D models in a tractable way.
We will provide computational times in the experiments &gcto elaborate on this advantage.

5. Validation on Synthetic Data

In this section we demonstrate the proposed Bayesian mfenmethod on synthetic data where the ground truth
for the local cardiac muscle conductivity is known. Using fynthetic problem we aim to demonstrate the influence
of the data uncertainty on the confidences of the estimatethpers. We use an idealised left ventricle geometry
(see Fig. 1). The computation domain is discretized as ae€lart grid in 3D, its size is 15 15 x 10 cn® and the
resolution of each voxel is & 1 x 1 mm?. The ED model Eq. (1) is solved within the volume enclosedHgyrhesh
shown in Fig. 1a (mesh is only shown for visualization pugsoand the computations were done on a Cartesian grid
for this synthetic study) using a Fast-Marching approache parameters — which are assumed to be known and
constant for the presented experiment —@re 2.5,7 = 1 andM is here an isotropic tensor.

5.1. Problem Setting

We generated a ground truth conductivity function using(Bjjand simulated data similar to what can be acquired
in a clinical environment: a set of endocardial depolaiiratimes as measured with a catheter, Dong et al. (2006);
Richmond et al. (2008), and a set of epicardial depoladraiimes, as measured either by a catheter, Sacher et al.
(2010) or from body surface potential mapping, Ramanathaai. €2004). Using the simulated data we infer the
conductivity function under dlierent settings. The presented experiments encompass $tineenain dificulties of
this inverse problem: the spatial variation of conducyivinh the endocardium from very low values (scars) to very
high values (Purkinje extremities), and the uncertaintyh@nonset location.

In order to exclude the onset from the data, we simulate aBefidle Branch Block, therefore we initiate the
electrical onset on the right ventricular septum (greemfiai Fig 1a). In the first experiment this location is known,
and in the second experiment we relax this assumption aridrpea joint inference of both the onset location and
the conductivity function. The yellow region shown in Figx denotes possible locations of the onset point for this
second experiment.



The ground truth conductivity common to both of the presgmbeperiments is shown in Fig. 1c. In this figure
and all the following figures, we show the conduction velpuit= ¢, VD/7 rather than th® value due to its clinical
relevance. For completeness we will provide numericalesfor bothD andv. To model the scars and the existence
of Purkinje extremities, the conductivity on the endocandivaries from very low values (@016mm? ~ 0.1 m/s) to
very high values (® mm? ~ 2.4 m/s), as seen in Fig. 1¢c. We construct the conductivity funcéismiven in Eq. (3).
We used an 18 dimensionBl with M = 17 radial basis functions defined ¢x,} which are equally spaced on the
surface and the ground truth muscle conductivity is takeRg@s 0.06 mn? ~ 0.6m/s.

Using the model Eq. (1) and the parameter settings descabede, we simulated data affféirent observation
points on the endocardium (200 points) and the epicardiudf (®ints). The epicardial data were assumed to be
only on the opposite side of the onset point since the regioaral the onset would normally be located inside the
right ventricle and not accessible. In Fig. 1a and b we shasdlobservation points as red spheres on the surface. As
explained in Section 2.2 the observed depolarization titaade uncertain due to several factors. In order to integrat
this into our synthetic experiment we added Gaussian noigeetsimulated depolarization times with variance of 25
ms (simulated depolarization times varied betweem&530 125ms at the observation points).

5.2. Probabilistic Model Details and Computational Aspects

The parameters of the presented method are the limits ofritierm distributions given in Equation 7 and the
number of spectral componerfsto be included in the spectral approximation. For lh@arameter the ranges for
the synthetic problem are set d33(D5) = (0.01,0.09) mn¥ ~ (0.25,0.75) m/s and O3, DB) = (0.001,0.9) mn¥
~ (0.08,24)m/sform = 1,...,17. On the other hand for the onset locati@da the prior distribution is defined as
the uniform distribution defined over the yellow region skmow Fig. 1a, which is a disc of 6 cm in diameter on the
surface. Using this probabilistic setting we computed fiectral basi$T; (x)}ipzo on all the observation points. In our
experiments we sé® = 10626 containing all 20 dimensional multivariate Legenas/nomials of maximum order
4,

In terms of computational times the construction of the spébasis is the most expensive part. However, as
explained in Section 4 compressed sensing framework spgedsis construction. In the synthetic example the
computation of theT; (x)}iP:O took about 2.5 hours for all the 500 observation points.

5.3. Estimation Experiments

We present two dierent experiments using the setting explained above: &yénte ofD using observations
taken on endocardial and epicardial surfaces assumingribwl&dge ofQe and 2) joint inference oD and Q.

All the inferences are done using the formulation and thenoaexplained in Sections 3 and 4. Once the spectral
basis is constructed the inference for each of the expetsienkless than 5 minutes for both of the experiments.
The MCMC algorithm we used is described in Girolami and Cdidad (2011). The posterior distributions were
approximated through generating 15000 samples where 689 Samples were discarded as burn-out. As it is not
feasible to visualize the high dimensional posterior dhistions p(D|T) and p(D, g, ye|T) in the experiments we
present the mean of the posterior distribution and the matgtandard deviations on these estimates.

In Fig. 2a and b we show the mean of the posterior distributibthe conductivity and the posterior marginal
standard deviation fob obtained from the first experiment. We observe that the estirns very similar to the
ground truth both quantitatively and qualitatively (the BMrror between the simulated depolarization times using
the posterior mean and the measurements isnkeg). The standard deviation is low showing the higher confidenc
in the estimation. The posterior average and the standatidtia of muscle conductivity estimate in this case is
0.061+ 0.001mm? ~ 0.62+ 0.01 m/s. In Figure 2c we show the standard deviation of the estimatiom the top
view. Notice that the standard deviation is higher for thgioms where there are no epicardial observation points.
This is as expected since the sparsity of observation irsttiatof the synthetic left ventricle increases the uncetyai
in the estimated parameters. Furthermore, we also notitefth standard deviation increases towards the top of the
left ventricle where the number of observation points islienén other words the observations are sparser.

For the second experiment we defined the onset location aslamaparameter of the system as well. In the first
experiment the onset location was centered in the allowalgien. In order to show that the proposed methodology
indeed works for the whole region we changed the ground o#et location to the white sphere shown in Fig. 2f.
In Fig. 2d we show the mean of the posterior distribution @& tonductivity estimate of the conductivity. Observe
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Figure 2: Mean estimate of the conductivity function (a)égperiment 1, and (d) for experiment 2. Standard deviatfdheoconductivity estimate
(b) for experiment 1 and (e) for experiment 2. (c) Distribatiof the marginal standard deviation (inverse of the confiden estimation) with
respect to the location of epicardial observation pointstidé that where there are more observations the standai@ida on the estimation is
lower. (f) -log posterior distribution of the onset locatigiven the observations. The white point denotes the grtutid and the red point denotes
the mean of the posterior distribution.

that again the locations of the low and high conduction negjere well captured (the RMS error on the depolarization
times is 3.5msec). Moreover the standard deviation for this estimate showfig. 2e demonstrates that again
the diference between the ground truth and the estimate is capuitigid the standard deviation of the estimate.
Comparing Figures 2b and e we notice that the standard dmviam the estimated conductivity function increases
slightly. This is as expected since the posterior distiidng for the parameters captures all possible parameethst

fit the (noisy) observations. Therefore, by introducingdinset location in the parameter estimation we enlarge the
possible parameter sets that would have a close fit with teerghtions. This increases the standard deviation leading
to a decrease our confidence. The muscle conductivity ircéisis is estimated afd®2-+0.001mn? ~ 0.62+0.01m/s.

In Fig. 2f we show the mean of the posterior distribution & timset location (small red sphere) and the negative log
posterior distribution-log(p(Qe|T)). The mean of the posterior distribution well estimates gnound truth onset
location (44 mm apart).

6. Evaluation on Clinical Data

In order to evaluate this method on clinical data, we usedaamapping of the myocardium, acquired during an
electrophysiology study for ventricular tachycardia mattequency ablation. This study comprises both endoaardi
and epicardial mapping, which is rare in clinical routing boables to precisely evaluate the impact of both mea-
surements on the estimated parameters and its associatédeoze. We used either the 20-polar 5-spline PentaRay
| (Biosense-Webster, CA) or the 30-polar 5-spline PentaRéBiosense-Webster, CA) catheters for high density
endo- and epicardial mapping. The PentaRay Il cathetedesalmultaneous multi-electrode contact mapping of up
to 60 mm? myocardial surface, when fully expanded. This novel teghaiof high density map acquisition enables
rapid high-density mapping. The mean duration for acqgiarhigh-density map is about 5-10 minutes. The EP
measurements were processed to estimate the depolanitiatEs, Steinhaus (1989) at 958 observation points (both
endocardial and epicardial) which were then used to adjestriodel.

Magnetic Resonance Images (MRI) of the patient were alsoigad) both anatomical images and late-enhancement
ones, in order to locate scar tissue (this patient has a &argerysm in the left ventricle). The 3D anatomical image
was segmented to generate the myocardial mesh and lateeamhant MRI was segmented and used to label scar
tissue and peri-infarct area (border zone) in the mesh. Xitra-eellular potential measurements obtained with the
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catheters were then globally manually registered to thishmand projected on the mesh surface. In Fig. 3 we present
the mesh extracted from the MR images and the observationispiojected onto the mesh. The color of the points
corresponds to the distance between the location of thedigmn point during the procedure and the mesh surface
extracted from the MR image. Notice that these distancedearuite large and contribute to the uncertainty on the
observation values.

[mm]

Figure 3: The computational mesh extracted from the MR imagel the observation points. On the left two views of the eardbal surface is
shown with the observation points plotted on top. On thetrigio views of the epicardial surface is also drawn (as a wiesim. The observation
points on the two surfaces are depicted in the images whereolbrs correspond to thstance each point was projected to the mesh surface.

6.1. Probabilistic Model Details and Computational Aspects

The parameters we focus on are: the onset location, the dastuction system on the endocardium, and the
myocardiuny scar/ border zone conductivities. As in the synthetic case, werdghed 17 anatomical regions on
the endocardial surface and use the formulation given irakgu 3 to describe the endocardial conductivity function.
This ( together with the myocardiystayborder zone conductivities ) in total yields 20 conducyiparameters to
estimate. The conductivity parameters were again forradlas uniformly distributed random variables with ranges:
i) myocardium and border zone -.§01.6) mn? ~ (0.25, 1) m/s, ii) scar - (003, 0.4) mm? ~ (0.15,0.5) m/s and iii)
each endocardial parameter -1(®.0) mm? ~ (0.8, 3.5) m/s. In addition to these we formulated the uncertainty on the
onset location as a uniform distribution on the septum (&lw regions shown in Figures 4c, 5¢ and 6¢) yielding two
extra parameters, 22 parameters in total to estimate. Ro22dimensional problem we us@d= 14950 containing
22 dimensional multivariate Legendre polynomials of maximorder 4 similar to the synthetic examples shown
before.

The ED model was solved on a tetrahedral mesh with an avetagest volume of 10nm®. The parameters
7 = 1 msec andcy = 2.5 were used as in the synthetic experiments. The teMdarsthis case were generated using
an analytical model of cardiac fiber orientations where thisairopy ratio between the principal direction and the
others is 0.15 (which corresponds to a conduction velohitye times faster along the fibre). The total time elapsed
for the computation ofT;(x)}7, took 4.2 hours for all the observation points. In the phasiefefence we used 30
000 samples (after the first 5000 samples that were discaslbdrn-out) to compute the posterior distributions for
the parameters under investigation. Each inference psdoek 15 minutes on average.

6.2. The Noise Model

Different sources of uncertainty acting on the cardiac mappate ekplained above are: i) the displacement of
the catheter contact points on the cardiac surface due tadtien of the heart, ii) the estimation of the depolarizatio
times from the EP measurements and iii) the registratiortla@grojection of the observation points onto the cardiac
surface. All these sourceffect the interaction between the model and the observed ddtéharefore, influence the
parameter estimation problem. In depth understandingesieiffects are crucial to model this interaction accurately.
As a preliminary step in this work we used a simplified undatyamodel for the observations. The contributions
of the first two sources are modeled as Gaussian noise witlogeneous variance over all the observation points,
e1(x) ~ N(0,400msec?). The contribution of the third source is modeled as a Ganssoise with inhomogeneous
variance. It is modeled to depend on the distance betweemésh surface (extracted from the MR images) and
the location of the observation points (computed duringdhtheterization). This projection distance is available
for each mapping point, see Figure 3. The inhomogeneouana@iis formulated in a very simple form g¢x) ~
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N(O, pproj(X)? msec?) wherepproj(X) is the projection distance for the observation poink.afhe overall noise model
for each observation point is then given as the Gaussia 8Os = €1(X) + €2(X) ~ N(0, 400+ pproj(X)*mMsec?).
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Figure 4: Estimation results for the experiment 1 - infeeensing all the measured points. (a) Mean estimates for ttecandial conductivity
function shown from two views. (b) Marginal standard degias on the estimated conductivity function. (dpg(p(Qe|T)) - the - log posterior
for the onset location. (d) Depolarization time isochrosiesulated with the mean estimates where color points reptdee measurements and
their depolarization times. (e) Comparison between thesorea depolarization times and the probabilistic model Range for all possible
personalized simulations is computed through the postdistributions for the parameters. The green region is bsevation noise model added
to the possible simulation range.

6.3. Estimation Experiments

Using the proposed Bayesian formulation and the inferenethod three dferent experiments were conducted.
In all the experiments posterior distributions for the coactil/ity values and the onset location are estimated as ex-
plained in Section 6.1. In the first experiment all the 958enbation points (both endocardial and the epicardial)
were used in the inference to compute the posterior digtoibs for the parameters. In the second experiment only
the observation points on the epicardial surface (observabints shown in the right two most surfaces in Figure 3)
were used in the inference. The computed posterior disioibfior the parameters is then used to predict depolariza-
tion times for the points on the endocardial surface. Thesdigtions are given as ranges of possible personalized
model simulations based on the posterior distributiondefrhodel parameters. The ranges are obtained using the
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Myocardium Aneurysm Border Zone
Experiment 1: Inference using all the observations @:-8805 0.31+ 0.05 0.58+ 0.08
Experiment 2: Inference using the epicardial observations 0.95+ 0.03 0.24+ 0.05 0.31+ 0.09
Experiment 3: Inference using the endocardial observation 0.48+ 0.14 0.41+ 0.07 0.58+ 0.10

Table 1: Estimated conductivities (mean and standard tienian m/s) for myocardium, aneurysm and border zone for the thréerént experi-
ments.

probabilistic framework and the fast sampling scheme mtesein Sections 3 and 4. Comparisons with the mea-
sured values - which were not used during the estimationreisgmnted. In the third experiment, only the endocardial
observation points were used in the inference and the giedécare done for the epicardial depolarization times.
For ease of visualization, we present most of the resultaidfaces, but everything was computed on the volumetric
myocardial mesh.

Results on Experiment 1. Figure 4 and the first row of Table 1 present the results obthfor the first experiment.
The posterior distribution for the endocardial condutyitiinction is presented by its mean (Fig. 4a) and the makgina
standard deviation (Fig. 4b). The estimated volumetricdemtion velocities are also given in Table 1, which are in
the range of the values found in the literature. Notice thatdtandard deviations for the endocardial conductivities
are higher in some regions. Comparing this with the locatimithe observation points in the Figure 3, we see that the
standard deviation is higher where the density of obsematoints is lower. This is intuitive as in the sense that our
confidence on the estimated values is directly linked to #resily of observation points. This shows that the presented
probabilistic method well captures the interaction betwibe sparsity of the observations and the estimation of mode
parameters. Figure 4c shows that the posterior distribdtothe onset location which is concentrated in a region.
This is also in accordance with the density of the obsermgimnts.

Two different types of comparison between the model fit and the medsatues are shown. In Figure 4d the
isochrones on the mesh show the depolarization times aataiith the mean estimates of the parameters. On the
same figure the observation points are shown where their colwesponds to the measured depolarization times.
The match between the mean model (model using the mean &ssifioa the parameters) and the measured values
is 16 msec in RMS error. The mean model however, does not show the richnration context of the probabilistic
formulation. The link between the uncertainties in thereated parameters and the model simulations yields a
possible range of model fits. Figure 4e presents a compabistween the measured depolarization times and the
possible range of model fits computed through the paramestepor distributions. The blue region shows the range
of all possible simulated (with personalized parameteggjpthrization times, i.e. the range of all the possible @slu
of T(x|D, Qe) computed using(D, Qe|T). The green region shows the addition of the noise model isrptissible
range, i.e+ one standard deviation of the observation noise me@lto the possible range fdar(x|D, Qg). Notice
that the width of the blue region is rather narrow showingficemce in the model fit. Furthermore, most of the
observation points lie within the blue region while almdsbthe remaining points lie within the green region.

Results on Experiment 2. The results for this experiment are presented in Figure Stemdecond row in Table 1. The
surface meshes shown in (a) demonstrate that the mean obsheripr distribution for the parameters is structurally
similar to the ones estimated in the first experiment witgttlidiferences. The estimated volumetric conduction
velocities given in Table 1 also show a similar trend. Thedgad deviations shown in Fig. 5b on the other hand are
significantly higher compared to Fig. 4b. This suggestsdhst epicardial observations are not enough to confidently
estimate endocardial conductivities. This is not surpgsis the observations in this case are not directly taken fro
the endocardial surface. For most of the epicardial polresiepolarization times are influenced bffelient regions

on the endocardium as well as the myocardial conductiviberéfore, we do not have a direct observations that can
confidently estimate the endocardial conductivity functi®n the other hand, we notice the low standard deviations
for the volumetric conductivities given in Table 1 showiihgt the epicardial observations are enough to confidently
estimate the volumetric conduction velocities. Regardiegnumerical dterences between the estimated values, we
will come back to this point while presenting the resultsEaperiment 3.
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Figure 5: Estimation results for the experiment 2. (a) Mestimeates for the endocardial conductivity functions shéwem two views. (b) Marginal
standard deviations on the estimated conductivity funstio(c)—log(p(Qe|T)) - the - log posterior for the onset location. (d) Depolatian
time isochrones simulated with the mean estimates wheoe points represent the measurements and their depolanzanhes. (e) Comparison
between the measured depolarization times and the pragtihihodel fit and model prediction. The estimation usey té epicardial observation
points. The endocardial depolarization times are predlicte

Observing Fig. 5b one notices that the standard deviatiom$igher on one side of the endocardium surface.
This is as expected since the projection distances of epaaybservation points shown in Fig. 3 are higher on the
same side as well. Therefore, these points have higher tamgrleading to lower confidences on the endocardial
conductivity estimates on the corresponding side of theeadlium surface. This demonstrates that the presented
method well captures the interaction between the unceytafrthe observations and the model parameter estimates.

Figure 5c¢ shows that the posterior distribution for the ¢iseation, which (almost) covers the one of Fig. 4c.
However itis much more spread, also as expected. In Figutlessdepolarization times simulated by the mean model
are shown along with the observations. On the epicardiummptban model matches the measured depolarization
times with a RMS error of 19 msec. Using the estimated parameters, the depolarization tioreéke endocardium
are also predicted. The mean model prediction matches theured values on the endocardium with a RMS error of
26.1 msec.

In Figure 5e the comparison between the measured valuedhambssible ranges for the depolarization times
simulated with the personalized model are shown. For thetpdhat were used for the estimation - epicardial points
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Figure 6: Estimation results for the experiment 3. (a) Mestingtes for the endocardial conductivity functions shdvam two views. (b)
Marginal standard deviations on the estimated condugtivinctions. (c)-log(p(Qe|T)) - the - log posterior for the onset location. (d) De-
polarization time isochrones simulated with the mean eg#siwhere color points represent the measurements amdlépeilarization times.
(e) Comparison between the measured depolarization timegtshe probabilistic model fit and model prediction. Theraation uses only the
endocardial observation points. The epicardial dep@#dr times are predicted.

- we see that the ranges are similar to the ones given in Fighd probabilistic model fit is similar in this case with

a narrow range and almost all measurements lying within the tegion. The properties of the predicted endocar-
dial depolarization times are however, significantlffelient. The range for the possible predictions is much wider
reflecting the uncertainties on the estimated endocardiadiactivities. The measured endocardial depolarization
times remain within the model plus the observation noiséoredghowever, the spread is much wider. Furthermore,
this quantifies the importance of having observation paamboth sides of the myocardium for the accuracy and
confidence in the personalized model. We note that we useftieaatit ordering of observation points while plotting
Figure 4e and 5e to have a better visualization.

Results on Experiment 3. The results for this experiment are presented in Figure @faathird row in Table 1. We
notice that the mean of the posterior distribution for theductivity function and the volumetric conductivity vaiie
are again structurally similar to the ones estimated in theipus experiments. The numericaffdrences between the
three experiments demonstrates that the observations teikie endocardium and the epicardium slightly disagrees
on the exact values of the conductivities ( comparing Figaavith Figure 5a and second row of the Table 1 with
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the third ). This, we believe, is due to the discrepancy betwtbe ED model and the underlying real dynamics. Two
observations related to these discrepancies are: i) tha psanates of Experiment 1 are - in loose terms - averaged
between the mean estimates of Experiment 2 and 3, which ig@ected and ii) the regions with high standard
deviation shown in Figure 4b reflect thefgrences between the estimates given in Figures 5a and 6andiating

that the non-uniqueness of the model-observation interacan be captured using the proposed method.

Observing Figure 6b we notice that the standard deviatioms@related to the density of the observation points
as in the first experiment. Furthermore, as the inferencased on the observations taken only from the endocar-
dial surface the standard deviation values shown in Figbraré lower than the other experiments. However, the
high standard deviation on the myocardial conductivityegivn Table 1 shows that the endocardial observations are
not very informative about the muscle conductivity and oreds observations from the epicardium to confidently
estimate this value.

The posterior distribution for the onset location (Figu® hows similarities to the one obtained in the first
experiment. In Figure 6d we show the depolarization timesikited by the mean model. The RMS model fit error
between the mean model simulation and the endocardial mezasnts is 18 msec. The diference between the
predicted epicardial depolarization times and the medsomes has an RMS error of 22nsec.

As in the previous cases in Figure 6e we show the possiblesdiog the depolarization times simulated with the
personalized model and the measured values. As expecteskviieat the range for possible simulated depolarization
times is narrower for the endocardial points where the misdiii to the observations. On the other hand, the range
of possible predictions of the depolarization times on thieardium is much wider. Comparing Figures 5e and 6e
we notice that the uncertainty on the predicted depolaomdimes in the latter case is higher. This result is due to
the fact that the epicardial observations contain inforomadn the whole system since these depolarization times are
influenced by the endocardial conductivities as well as thenaetric ones. The endocardial observations on the other
hand, contain much less information regarding the myoehmtinductivity. Therefore, the predictions in this case
have much a wider possible range, i.e. have much less conédénle note that this separation of the information
content is partly due to the conductivity model we use asrgirdEquation 3.

7. Discussion

The presented results show the capabilities of the propmedxbilistic method and the fast inference framework.
However, there are some important factors that influenceethidts of the method:

- Data Noise Model: The selected noise model has an important impact on thetsesdere we used some
arbitrary values from our experience on such data, a moraustive process looking through the repeatability
of the measures and the processing pipeline from the ravalsigithe extracted depolarization time should be
undertaken to properly define the noise model.

- Model Parameter Variability: The prior distributions used for the ftkrent model parameters also have an
important impact on the results. Here uninformative pritage been used with large ranges. Narrower ranges
or a diterent prior model would have altered the variations on thienased parameters as well as the ranges
for the possible model fits and predictions. Analysis of addatlinical cases should help in improving the
relevance of the prior distributions used here.

- Model Error: The realism of the selected model has also obviously an itmmac¢he success of such per-
sonalization. Some strategies were proposed to explicidade the model error in such joint probabilities,
including for instance the approximation errors, Arridgele (2006). These methods can be integrated into the
proposed framework.

Regarding the clinical applications, the presented pribilstio framework provides a confidence measure for the per-
sonalized model. This can help the clinician in weighingghedictions of a model with respect to the other clinically
available information in the decision process. Moreoveran also guide the data acquisition. Being able to quantify
the contributions of both endo and epi surfaces is impartanan help in deciding if the additional information given
by epicardial mapping - which in normal clinical practicewia not be available - will be quantitatively significant
or not. One application is also to move from invasive to novasive methods, namely from endocardial catheters to
epicardial data estimated from body surface potentiald there is then a need to know how confident one can be in
the estimated parameters when using only epicardial data.
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8. Conclusions

In this work we presented affifieient probabilistic framework for personalizing matheiratmodels. We demon-
strated the proposed framework for the parameter estimptimblem for cardiac electrophysiology. The probabdisti
formulation describes the interactions between data tmiogies, parameter estimation and the model predictions.
Following the formulation the Bayesian inference was gueghrough integrating spectral representations and com-
pressed sensing techniques. In the experiments we shoateBdiiesian inference for high dimensional parameters,
i.e. locally varying conductivity, can befeciently donewithin few minutes, given that the spectral basis is already
computed. Moreover, we have shown that the spectral basibeaomputedféciently as well (within 5 hours).
Considering the computational cost of conventional mestfodprobabilistic methods for PDEs, this is an important
step in making stochastic personalization practical, aadtréady provides interesting results on clinical datae Th
interaction between the uncertainty on the observatiodstla@ uncertainty on the estimated parameters is a major
phenomenon to consider when using biophysical models fmopalized medicine. We demonstrated on clinical
data how this interaction translates into the model parammetnd predictions for patient data. Our future work is
concentrated on analyzing the proposed methodology féerdnt modeling problems (including reactiorffdsion
models) and creating more realistic and yet tractable Rjgkietwork and myocardium interactions.

Appendix A. Polynomial Chaos and Spectral Representation

Polynomial chaos (PC) expansion is an orthonormal basieseptation for random functions, Xiu and Karni-
adakis (2002). For the ease of explanation let us concerardy on the vectoD where diferent components were
modeled as random variables with uniform distributionse PIC expansion for the random vecbis given as

00 P
D2D() =) ddi(@) ~ ) ddi(d). (A1)
i=0 i=0

where¢é = [£1,...,&q] is a random vector of independent components with unifoistridutions, {®;}5 is the or-
thonormal (multivariate) Legendre polynomial basis a‘mqago are deterministic vectors — which we call thgectral

basisfor the D vector. The second part of Eq. (A.1) shows the computatipnsieful finite approximation of the
PC expansion where the paramefecorresponds to number of components to include in the ajppeaiion. The
orthonormality condition of the PC basis is defined as

< Di(6). ;&) >= fz L POROPEE = i (A2)
d - f DD (E)pE)E. 1. ] € No, (A3)
()

whereZ(¢) is the range of thé vector,p(¢) is the distribution - a constant value in this case - &nds Dirac’s delta.

The definition ofD(£) and the dimension of the vectgrdepend on the distribution of the vector itself and the
random vectoD, Xiu and Karniadakis (2002). Focusing on the inverse protdefined in Section 3, we defined each
component of the random vectdr= [Dy, ..., D] as uniformly distributed (note@/) independent random variables.
The PC expansion given in Equation A.1 can then be written as

DPn—D?ng +D§;+D;
2 °" 2

The power of the spectral methods for PDEs is that the randemafT (x) — which is due to the randomness
in parameters — can be represented using the same PC bagisrigrand the same random vecfoas the parame-
ters, Ghanem and Doostan (2006); Xiu (2009). We can write

&= [0 ém]y ém ~ U(-1,1), YMe {0, ..., M} = Dy = Di(ém) = (A.4)

00 P
T2 T8 = > TiDiE) ~ > Ti(i(8), (A.5)
i=0 i=0
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whereT;(x) are the spectral basis functions fbfx). This representation provides the computationafficeent link
betweenD and T(x). Let D be a single instance dd then there is a uniqué such thatD = D(¢) due to the
orthonormality of the spectral representation given indun A.2. As a result

P
T(KID) = T(x. &) ~ Y T()i(@). (A.6)
i=0

As a result instead of solving Eq. (1) to compit&|D) we can approximate it using the linear combination of
Eq. (A.6). This provides substantial speed up yieldinggiasampling.

The computationally expensive part in the given discus$othe estimation of the spectral basis functions
{Ti(x)}7,. Two different methods that have been proposed in the literature @sk@ projections, Xiu and Kar-
niadakis (2002); Ghanem and Doostan (2006), and stochasdtacation methods, Ma and Zabaras (2009); Nobile
et al. (2008). Both of these methoddfeu from the curse of dimensionality, i.e. when the dimensibihe parameter
D is high the construction 6F;(x) becomes computationally impractical. Depending on thadityuof the approxima-
tion, P, and the model equation, in the case of Galerkin projectimascan end up solving a system of 2000 coupled
PDEs, Xiu and Karniadakis (2002), and in the case of stothesliocation methods a substantial number of model
simulations(10°), might be needed, Ma and Zabaras (2009).

In this work we overcome the curse of dimensionality by inéigg compressed sensing based sparse reconstruc-
tions of {T(x)}, in the Bayesian inference framework. This integration jites substantial speed-ups in construct-
ing the spectral basis and makes the Bayesian inferendbleas

Appendix B. Spectral Reconstructing using Compressed Seing)

Compressed sensing (CS) is a very active field of researdprialsand image processing, Donoho (2006); Lustig
et al. (2008). The main idea is that if a signal is sparse wal meech less information to reconstruct it. This
information, for example, can be in terms of number of sasfd&en in the frequency domain. The reason for this
is that sparse signals contain only a small number of frequieomponents and therefore, a small number of random
samples is enough for accurate reconstruction, Donoh@j200the context of PDESs this corresponds to the fact that
in spectral expansion of the solutidr{x, &), only a small number of componenkgXx) are significantly larger than
zero. Following the compressed sensing theory the signifi@amponents can be recovered using a small random set
of £ = {fn}r'f:O whereK << P. This recovery is possible through the formulation

arg p(1xi)r1||T(x)||l subject to|| T(x, €) - ®(E)T(X)|, < é. (B.1)

A T(X) = [To(X), ..., Te(X)]'
T(X,&) = [T(X, &Q)s s T(X, E]Y VX € Q

where®(£) is the matrix ofK x P with [<I>($)]ij = ®;(&), Il is theLy norm,||-||, is theL, norm ands is the desired
accuracy. This minimization problem is defined for each poseparately. In the case of Bayesian inference problem
we solve it for all the observation poingsi}). Equation (B.1) is a linear program and can be solvé&diently and
accurately using various available tools, for example e given in Tomioka and Sugiyama (2009).

In Doostan et al. (2009) the one dimensional line&iudion equation has been analyzed. They have shown that the
significant spectral cdicients obtained using the Eq. (B.1) were very similar to ttececodficients. The advantage
of this approach is that it requires a few hundred simulatimnconstruct the significant spectral basis components
while stochastic collocation based methods requires highlrer of simulations@(10°)) to reach the same accuracy.
The amount of decrease in the computational burden depentiecparsity of the underlying equation. Although,
for the general equations the applicability of this mettodat known, in the case of the Eikonalfiision model the
sparsity holds and can be shown experimentally.

Editor's Note

Please see also related communications in this issue byddg8eerra et al. (2011) and Camara et al. (2011).
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