J. Aguado-sierra, A. Krishnamurthy, C. Villongco, E. Howard, and J. Chuang, Patient-specific modeling of dyssynchronous heart failure: A case study, Progress in Biophysics and Molecular Biology, vol.107, issue.1, 2011.
DOI : 10.1016/j.pbiomolbio.2011.06.014

S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo et al., Approximation errors and model reduction with an application in optical diffusion tomography, Inverse Problems, vol.22, issue.1, p.175, 2006.
DOI : 10.1088/0266-5611/22/1/010

O. Camara, A. Pashaei, R. Sebastián, and A. F. Frangi, Personalization of Fast Conduction Purkinje System in Eikonal-Based Electrophysiological Models with Optical Mapping Data, In: STACOM/CESC. Lecture Notes in Computer Science, vol.6364, pp.281-290, 2010.
DOI : 10.1007/978-3-642-15835-3_29

O. Camara, M. Sermesant, P. Lamata, L. Wang, and M. Pop, Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology, Progress in Biophysics and Molecular Biology, vol.107, issue.1, 2011.
DOI : 10.1016/j.pbiomolbio.2011.07.007

URL : https://hal.archives-ouvertes.fr/inria-00616197

P. Chinchapatnam, K. Rhode, M. Ginks, C. Rinaldi, P. Lambiase et al., Model-Based Imaging of Cardiac Apparent Conductivity and Local Conduction Velocity for Diagnosis and Planning of Therapy, IEEE Transactions on Medical Imaging, vol.27, issue.11, pp.1631-1673, 2008.
DOI : 10.1109/TMI.2008.2004644

URL : https://hal.archives-ouvertes.fr/inria-00616071

R. Clayton, O. Bernus, E. Cherry, H. Dierckx, F. Fenton et al., Models of cardiac tissue electrophysiology: Progress, challenges and open questions, Progress in Biophysics and Molecular Biology, vol.104, issue.1-3, pp.22-48, 2011.
DOI : 10.1016/j.pbiomolbio.2010.05.008

C. Franzone, P. Guerri, L. Rovida, and S. , Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations, Journal of Mathematical Biology, vol.25, issue.4, pp.121-176, 1990.
DOI : 10.1007/BF00163143

J. Dong, H. Calkins, S. Solomon, S. Lai, D. Dalal et al., Integrated Electroanatomic Mapping With Three-Dimensional Computed Tomographic Images for Real-Time Guided Ablations, Circulation, vol.113, issue.2, p.186, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.565200

D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, vol.52, issue.4, pp.1289-1306, 2006.
DOI : 10.1109/TIT.2006.871582

URL : https://hal.archives-ouvertes.fr/inria-00369486

A. Doostan, H. Owhadi, A. Lashgari, and G. Iaccarino, Non-adapted sparse approximation of PDEs with stochastic inputs. Center for Turbulence Research, 2009.

M. Fink, S. A. Niederer, E. M. Cherry, F. H. Fenton, J. T. Koivumki et al., Cardiac cell modelling: Observations from the heart of the cardiac physiome project, cardiac Physiome project: Mathematical and Modelling Foundations, pp.1-3, 2011.
DOI : 10.1016/j.pbiomolbio.2010.03.002

S. E. Geneser, R. M. Kirby, and R. S. Macleod, Application of Stochastic Finite Element Methods to Study the Sensitivity of ECG Forward Modeling to Organ Conductivity, IEEE Transactions on Biomedical Engineering, vol.55, issue.1, pp.31-40, 2008.
DOI : 10.1109/TBME.2007.900563

R. Ghanem and A. Doostan, On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data, Journal of Computational Physics, vol.217, issue.1, pp.63-81, 2006.
DOI : 10.1016/j.jcp.2006.01.037

M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.13, issue.10, 2011.
DOI : 10.1111/j.1467-9868.2010.00765.x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. He and D. Keyes, Reconstructing parameters of the FitzHugh???Nagumo system from boundary potential measurements, Journal of Computational Neuroscience, vol.84, issue.2, pp.251-264, 2007.
DOI : 10.1007/s10827-007-0035-9

E. Konukoglu, M. Sermesant, O. Clatz, J. M. Peyrat, H. Delingette et al., A Recursive Anisotropic Fast Marching Approach to Reaction Diffusion Equation: Application to Tumor Growth Modeling, Inf Process Med Imaging, vol.20, pp.687-699, 2007.
DOI : 10.1007/978-3-540-73273-0_57

URL : https://hal.archives-ouvertes.fr/inria-00616056

M. Lustig, D. Donoho, J. M. Santos, and J. M. Pauly, Compressed Sensing MRI, IEEE Signal Processing Magazine, vol.25, issue.2, 2008.
DOI : 10.1109/MSP.2007.914728

X. Ma and N. Zabaras, An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method, Inverse Problems, vol.25, issue.3, 2009.
DOI : 10.1088/0266-5611/25/3/035013

Y. Marzouk, H. Najm, and L. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, AIP Conference Proceedings, pp.560-586, 2007.
DOI : 10.1063/1.2149785

Y. Marzouk and D. Xiu, A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems, Communications in Computational Physics, vol.6, issue.4, pp.826-847, 2009.
DOI : 10.4208/cicp.2009.v6.p826

Y. M. Marzouk and H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics, vol.228, issue.6, pp.1862-1902, 2009.
DOI : 10.1016/j.jcp.2008.11.024

F. Nobile, R. Tempone, and C. Webster, A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data, SIAM Journal on Numerical Analysis, vol.46, issue.5, pp.2309-2345, 2008.
DOI : 10.1137/060663660

E. Pernod, M. Sermesant, E. Konukoglu, J. Relan, H. Delingette et al., A multi-front eikonal model of cardiac electrophysiology for interactive simulation of radio-frequency ablation, Computers & Graphics, vol.35, issue.2, pp.431-471, 2011.
DOI : 10.1016/j.cag.2011.01.008

URL : https://hal.archives-ouvertes.fr/inria-00616180

C. Ramanathan, R. N. Ghanem, P. Jia, K. Ryu, and Y. Rudy, Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia, Nature Medicine, vol.10, issue.4, pp.422-428, 2004.
DOI : 10.1038/nm1011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950745

J. Relan, P. Chinchapatnam, M. Sermesant, K. Rhode, M. Ginks et al., Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia, Interface Focus, vol.48, issue.12, pp.396-407, 2011.
DOI : 10.1016/j.jacc.2006.07.062

URL : https://hal.archives-ouvertes.fr/inria-00616188

L. Richmond, K. Rajappan, E. Voth, V. Rangavajhala, M. Earley et al., Validation of Computed Tomography Image Integration into the EnSite NavX Mapping System to Perform Catheter Ablation of Atrial Fibrillation, Journal of Cardiovascular Electrophysiology, vol.17, issue.8, pp.821-827, 2008.
DOI : 10.1111/j.1540-8167.2008.01127.x

F. Sacher, K. Roberts-thomson, P. Maury, U. Tedrow, I. Nault et al., Epicardial Ventricular Tachycardia Ablation, Journal of the American College of Cardiology, vol.55, issue.21, pp.2366-2372, 2010.
DOI : 10.1016/j.jacc.2009.10.084

B. Steinhaus, Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study, Circulation Research, vol.64, issue.3, 1989.
DOI : 10.1161/01.RES.64.3.449

R. Tomioka and M. Sugiyama, Dual-Augmented Lagrangian Method for Efficient Sparse Reconstruction, IEEE Signal Processing Letters, vol.16, issue.12, pp.1067-70, 2009.
DOI : 10.1109/LSP.2009.2030111

K. Tomlinson, P. Hunter, and A. Pullan, A finite element method for an eikonal equation model of myocardial excitation wavefront propagation, SIAM J. Appl. Math, vol.63, issue.1, pp.324-350, 2002.

H. Voss and J. Timmer, NONLINEAR DYNAMICAL SYSTEM IDENTIFICATION FROM UNCERTAIN AND INDIRECT MEASUREMENTS, International Journal of Bifurcation and Chaos, vol.14, issue.06, pp.1905-1938, 2004.
DOI : 10.1142/S0218127404010345

L. Wang, K. C. Wong, H. Zhang, H. Liu, and P. Shi, Noninvasive Computational Imaging of Cardiac Electrophysiology for 3-D Infarct, IEEE Transactions on Biomedical Engineering, vol.58, issue.4, pp.1033-1043, 2011.
DOI : 10.1109/TBME.2010.2099226

D. Xiu, Efficient collocational approach for parametric uncertainty analysis, Communications in Computational Physics, vol.2, issue.2, pp.293-309, 2007.

D. Xiu, Fast numerical methods for stochastic computations: A review, Communications in Computational Physics, vol.5, issue.2-4, pp.242-272, 2009.

D. Xiu and G. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.43, pp.4927-4948, 2002.
DOI : 10.1016/S0045-7825(02)00421-8