Comparison of statistical models performance in case of segmentation using a small amount of training datasets

François Chung 1 Jérôme Schmid 2 Nadia Magnenat-Thalmann 2 Hervé Delingette 1, *
* Auteur correspondant
1 ASCLEPIOS - Analysis and Simulation of Biomedical Images
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Model-based image segmentation has been extensively used in medical imaging to learn both shape and appearance of anatomical structures from training datasets. The more training datasets are used, the more accurate is the segmented model as we account for more information about its variability. However, training datasets of large size with a proper sampling of the population may not always be available. In this paper, we compare the performance of statistical models in the context of lower limb bones segmentation using MR images when only a small number of datasets is available for training. For shape, both PCA-based priors and shape memory strategies are tested. For appearance, methods based on intensity profiles are tested, namely mean intensity profiles, multivariate Gaussian distributions of pro- files and multimodal profiles from EM clustering. Segmentation results show that local and simple methods perform the best when a small number of datasets is available for training. Conversely, statistical methods feature the best segmentation results when the number of training datasets is increased.
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00616199
Contributeur : Project-Team Asclepios <>
Soumis le : lundi 8 juillet 2013 - 17:55:59
Dernière modification le : jeudi 11 janvier 2018 - 17:06:44
Document(s) archivé(s) le : mardi 3 janvier 2017 - 17:35:39

Fichier

comparison_of_statistical_mode...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

François Chung, Jérôme Schmid, Nadia Magnenat-Thalmann, Hervé Delingette. Comparison of statistical models performance in case of segmentation using a small amount of training datasets. Visual Computer, Springer Verlag, 2011, 27 (2), pp.141-151. 〈10.1007/s00371-010-0536-9〉. 〈inria-00616199〉

Partager

Métriques

Consultations de la notice

198

Téléchargements de fichiers

92