Geometry-Aware Multiscale Image Registration Via OBBTree-Based Polyaffine Log-Demons

Abstract : Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.
Type de document :
Communication dans un congrès
MICCAI - Medical Image Computing and Computer Assisted Intervention - 2011, 2011, Toronto, Canada. Springer, Heidelberg, 6892, pp.631-638, 2011, Lecture Notes in Computer Science. 〈10.1007/978-3-642-23629-7_77〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00616215
Contributeur : Project-Team Asclepios <>
Soumis le : vendredi 28 juin 2013 - 10:04:26
Dernière modification le : jeudi 11 janvier 2018 - 16:44:46
Document(s) archivé(s) le : mardi 3 janvier 2017 - 17:32:17

Fichier

SeilerOBBTreeMultiscalePolyLog...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Christof Seiler, Xavier Pennec, Mauricio Reyes Aguirre. Geometry-Aware Multiscale Image Registration Via OBBTree-Based Polyaffine Log-Demons. MICCAI - Medical Image Computing and Computer Assisted Intervention - 2011, 2011, Toronto, Canada. Springer, Heidelberg, 6892, pp.631-638, 2011, Lecture Notes in Computer Science. 〈10.1007/978-3-642-23629-7_77〉. 〈inria-00616215〉

Partager

Métriques

Consultations de la notice

252

Téléchargements de fichiers

131