On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping

Falk Hante 1 Mario Sigalotti 2, 3 Marius Tucsnak 4, 5
2 GECO - Geometric Control Design
Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR7641
4 CORIDA - Robust control of infinite dimensional systems and applications
IECN - Institut Élie Cartan de Nancy, LMAM - Laboratoire de Mathématiques et Applications de Metz, Inria Nancy - Grand Est
Abstract : We study the asymptotic stability of a dissipative evolution in a Hilbert space subject to intermittent damping. We observe that, even if the intermittence satisfies a persistent excitation condition, if the Hilbert space is infinite-dimensional then the system needs not being asymptotically stable (not even in the weak sense). Exponential stability is recovered under a generalized observability inequality, allowing for time-domains that are not intervals. Weak asymptotic stability is obtained under a similarly generalized unique continuation principle. Finally, strong asymptotic stability is proved for intermittences that do not necessarily satisfy some persistent excitation condition, evaluating their total contribution to the decay of the trajectories of the damped system. Our results are discussed using the example of the wave equation, Schrödinger's equation and, for strong stability, also the special case of finite-dimensional systems.
Type de document :
Article dans une revue
Journal of Differential Equations, Elsevier, 2012, 252 (10), pp.5569-5593. 〈10.1016/j.jde.2012.01.037〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00616474
Contributeur : Mario Sigalotti <>
Soumis le : vendredi 10 février 2012 - 16:05:53
Dernière modification le : mercredi 17 octobre 2018 - 16:54:59
Document(s) archivé(s) le : vendredi 11 mai 2012 - 02:50:51

Fichiers

PE-hilbert-post.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Falk Hante, Mario Sigalotti, Marius Tucsnak. On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping. Journal of Differential Equations, Elsevier, 2012, 252 (10), pp.5569-5593. 〈10.1016/j.jde.2012.01.037〉. 〈inria-00616474v2〉

Partager

Métriques

Consultations de la notice

623

Téléchargements de fichiers

281