N

N

Parsing Directed Acyclic Graphs with Range
Concatenation Grammars

Pierre Boullier, Benoit Sagot

» To cite this version:

Pierre Boullier, Benoit Sagot. Parsing Directed Acyclic Graphs with Range Concatenation Grammars.
International Conference on Parsing Technologies (IWPT 2009), 2009, Paris, France. inria-00616690

HAL Id: inria-00616690
https://inria.hal.science/inria-00616690
Submitted on 23 Aug 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00616690
https://hal.archives-ouvertes.fr

1

Parsing Directed Acyclic Graphs
with Range Concatenation Grammars

Pierre Boullier and Benoit Sagot
Alpage, INRIA Paris-Rocquencourt & Université Paris 7
Domaine de Voluceau — Rocquencourt, BP 105 — 78153 Le ChdSadgx, France
{Pierre.Boullier,Benoit.Sagp@inria.fr

Abstract

Range Concatenation Grammars (RCGSs)
are a syntactic formalism which possesses
many attractive properties. It is more pow-
erful than Linear Context-Free Rewriting
Systems, though this power is not reached
to the detriment of efficiency since its sen-
tences can always be parsed in polynomial
time. If the input, instead of a string, is a
Directed Acyclic Graph (DAG), onlgim-

ple RCGs can still be parsed in polyno-
mial time. For non-linear RCGs, this poly-
nomial parsing time cannot be guaranteed
anymore. In this paper, we show how the
standard parsing algorithm can be adapted
for parsing DAGs with RCGs, both in the
linear (simple) and in the non-linear case.

Introduction

translated into their simple PRCG counterpart in
order to get an efficient parser for free (see for
example (Barthélemy et al., 2001)).

However, in many Natural Language Process-
ing applications, the most suitable input for a
parser is not a sequence of words (forms, ter-
minal symbols), but a more complex representa-
tion, usually defined as a Direct Acyclic Graph
(DAG), which correspond to finite regular lan-
guages, for taking into account various kinds of
ambiguities. Such ambiguities may come, among
others, from the output of speech recognition sys-
tems, from lexical ambiguities (and in particular
from tokenization ambiguities), or from a non-
deterministic spelling correction module.

Yet, it has been shown by (Bertsch and
Nederhof, 2001) that parsing of regular languages
(and therefore of DAGS) using simple PRCGs is
polynomial. In the same paper, it is also proven
that parsing of finite regular languages (the DAG

The Range Concatenation Grammar (RCGkase) using arbitrary RCGs is NP-complete.
formalism has been introduced by Boullier ten This papers aims at showing how these

years ago.

A complete definition can becomplexity results can be made concrete in a

found in (Boullier, 2004), together with some parser, by extending a standard RCG parsing

of its formal properties and a parsing algorithmalgorithm so as to handle input DAGs.

(qualified here of standard which runs in

polynomial time.

We
will first recall both some basic definitions and

In this paper we shall only their notations. Afterwards we will see, with a

consider the positive version of RCGs whichslight modification of the notion of ranges, how
will be abbreviated as PRC&.PRCGs are it is possible to use the standard PRCG parsing
very attractive since they are more powerfulalgorithm to get in polynomial time a parse forest
than the Linear Context-Free Rewriting Systemsyith a DAG as inpuf However, the resulting
(LCFRSs) by (Vijay-Shanker et al., 1987). In fact parse forest is valid only for simple PRCGs. In
LCFRSs are equivalent to simple PRCGs whichthe non-linear case, and consistently with the
are a subclass of PRCGs. Many Mildly Context-complexity results mentioned above, we show that
Sensitive (MCS) formalisms, including Tree the resulting parse forest needs further processing
Adjoining Grammars (TAGs) and various kinds for filtering out inconsistent parses, which may
of Multi-Component TAGs, have already beenneed an exponential time. The proposed filtering

INegative RCGs do not add formal power since bothalgOrithm allows for parsing DAGs in practice

versions exactly cover the clasBTIME of languages Wwith any PRCG, including non-linear ones.
recognizable in deterministic polynomial time (see (Bieu)|

2004) for an indirect proof and (Bertsch and Nederhof, 2001) ?The notion of parse forest is reminiscent of the work
for a direct proof). of (Lang, 1994).

2 Basic notions and notations

2.1 Positive Range Concatenation Grammars

A positive range concatenation gramm@RCG)
G = (N,T,V, P, S) is a 5-tuple in which:

e T and V' are disjoint alphabets derminal
symbolsandvariable symbolsespectively.

e N is a non-empty finite set gfredicatesof
fixed arity (also calledfan-ou). We write
k = arity(A) if the arity of the predicatel is
k. A predicateA with its argumentss noted
A(a’) with a vector notation such thaf| = k

anda([j] is its 7" argument. An argument is a

string in(V U T)*.

e S is a distinguished predicate called ttart
predicate(or axiom) of arity 1.

e P is a finite set ofclauses A clausec
is a rewriting rule of the formAy(ap) —
Ai(al)... Ap(ar) wherer, r > 0 is its
rank, Ao(ap) is its left-hand sideor LHS
andA;(aj) ... A.(a,) its right-hand sideor
RHS By definitionc[i] = 4;(¢;), 0 <i <r
whereA; is a predicate and; its arguments;
we notec[i][j] its 5™ argument;c[i][j] is of
the form X, ... X,,,; (the X}'s are terminal
or variable symbols), while[:][j][k], 0 <
k < n;; is apositionwithin c[i][;].

For a given clause, and one of its predicates
cli] asubarguments defined as a substring of an

argument[¢][j] of the predicate]:]. It is denoted
by a pair of positiongc[i][j][k], c[¢][7][K']), with
k<K.

Let w = ay...a, be an input string inl™,
each occurrence of a substriag ; . .. a,, is a pair
of positions (w[l],w[u]) st. 0 <1 < u < n
called arange and noted(l..u),, or (l..u) when
w is implicit. In the range(l..u), [is its lower
bound while u is its upper bound If [= u,

the range(l..u) is an emptyrange, it spans an

empty substring. Ifp; = (l3..u3), ... and
pm = (lm-..un,) are ranges, theoncatenatiorof
P1s -+ Pm NOtEdpy ... pyy IS the range = (1..u)
if and only if we haveu; = l;11, 1 < i < m,
l=1; andu = u,,.

If ¢ = Ap(a) — Ai(ar)... A () is a
clause, each of its

p = (l..u) as value: we say that it isstantiated

sub-
argumentsc[¢][j][%], c[é][4][K']) may take a range

by p. However, the instantiation of a subargument
is subjected to the following constraints.

o If the subargument is the empty string (i.e.,
k = k'), pis an empty range.

¢ If the subargument is a terminal symbol (i.e.,
k+1 =K and X, € T), pis such that
[+ 1 =wanda, = X;». Note that several
occurrences of the same terminal symbol
may be instantiated by different ranges.

e If the subargument is a variable symbol
(e, k+1 = K and X € V),
any occurrencecli'|[j'][m], ¢[i'][j'][m]) of
X is instantiated byp. Thus, each
occurrence of the same variable symbol must
be instantiated by the same range.

e If the subargument is the string 1 ... X,
p is its instantiation if and only if we have
P = Pk+1--- Pk in which Pk+1y + -+, Pk AIE
respectively the instantiations ofy. 1, ...,
Xk/.

If in ¢ we replace each argument by its
instantiation, we get aimstantiated claus@oted
Ao(po) — Ai(p1)...A.(pr) in which each
A;(p;) is aninstantiated predicate

A binary relation calledleriveand noted=- is

G,w

defined on strings of instantiated predicatésfllf
andT', are strings of instantiated predicates, we
have

I'y Ao(po) 'z o 'y Ai(p1) .- Am(pm) T2
ifand only if Ag(pp) — A1(p1) ... Am(pm)isan
instantiated clause.

The (string) languageof a PRCGG is the
set £(G) = {w | S{0..|w])w) Gé; e}, In

other words, an input stringp € T%, |w| =
n is a sentenceof G if and only there exists a
complete derivatiorwhich starts fromS((0..n))
(the instantiation of the start predicate on the
whole input text) and leads to the empty string
(of instantiated predicates). Tiparse foresbf w
is the CFG whose axiom iS((0..n)) and whose
productions are the instantiated clauses used in all
complete derivation3.

We say that the arity of a PRCG ks and we
call it ak-PRCG, if and only ifk is the maximum

3Note that this parse forest has no terminal symbols (its
language is the empty string).

arity of its predicatesi = maxycy arity(A)). transition function 6 : @ x ¥ — @. In
We say that &-PRCG issimple we have a simple other words, there are ne-transitions and if
k-PRCG, if and only if each of its clause is (q1,t,q2) € 6, t # e andP(q1,t,¢5) € § with
¢, # ¢2. Each NFA can be transformed by
the subset constructiofinto an equivalent DFA.
Moreover, each DFA can be transformed by a

« non-erasing each variable which occur in minimization algorithminto an equivalent DFA

its LHS (resp. RHS) also occurs in its RHSgEXh |_sr:nf|n|mal (i.e., there is no other equivalent
(resp. LHS); with fewer states).

e non-combinatorial the arguments of its RHS
predicates are single variables;

e linear: there are no variables which occur2'3 Directed acyclic graphs

more than once in its LHS and inits RHS. Formally, a directed acyclic graph (DAQ@) =
(Q,%,0,q0, F) is an NFA for which there exists
The subclass of simple PRCGs is of importance, strict order relationc on @ such that(p, ¢, q) €
since it is MCS and is the one equivalent tos5 _. ,, ~ , Without loss of generality we may
LCFRSs. assume that is a total order.
Of course, as NFAs, DAGs can be transformed

2.2 Finite Automata . . I -
into equivalent deterministic or minimal DAGs.

A non-deterministic finite automato(NFA) is

the 5-tupleA = (Q,%,0,q0,F) where@ isa 3 DAGs and PRCGs

non empty finite set obtates X is a finite set _ .

of terminal symbols s is the ternarytransiion A DAG D is recognized(acceptegi by a PRCG

relation = {(q;, ¢, ;)| q; € QAL € SU{e}}, G if and only |_f L(D) ﬂ__E(G) # 0. _ A trivial

qo is a distinguished element 6f called thenitial ~ Way to solve this recognition (or parsing) problem

stateand ' is a subset of) whose elements are iS t0 extract the complete paths 6{D) (which

calledfinal states The size of4, noted|4|, isits ~ &€ in finite number) one by one and to parse

number of states 4| = |Q|). each such string with a standard PRCG parser, the
We define the ternary relatioff onQ x ©* x @~ (complete) parse forest fdb being the union of

as the smallest set s&* = {(q,£,q) | ¢ € Q} U eagh individual fore§‘t.However smce.DAGs may

{(q1,7t,43) | (q1, 2, q2) € 0" A (ga, t, q3) € 6. If define an exponential number of strings w.r.t. its

(¢,2,q') € 6*, we say that is apath betweeny ~ OWN size3 the previous operation would take an
andq. If ¢ = qo andq’ € F, z is acomplete path exponential time in the size ab, an_d th_e parse
Thelanguage£(A) defined(generated recog- forest would also have an exponential size.
nized acceptedl by the NFAA is the set of allits ~ The purpose of this paper is to show that
complete paths. it is possible to directly parse a DAG (without
We say that a NFA igmptyif and only if its ~ any unfolding) by sharing identical computations.
language is empty. Two NFAs aesjuivalentif This sharing may lead to a polynomial parse time
and only if they define the same language. afor an exponential number of sentences, but, in
NFA is e-free if and only if its transition relation SOMe cases, the parse time remains exponential.
does not contain a transition of the fofm, , ¢2). 3.1 DAGs and Ranges
Every NFA can be transformed into an equivalent™
e-free NFA (this classical result and those recalledn many NLP applications the source text cannot
below can be found, e.g., in (Hopcroft and Uliman, e considered as a sequence of terminal symbols,
1979)). but rather as a finite set of finite strings. As
As usual, a NFA is drawn with the following mys do not share any production (instantiated

conventions: a transitiofigi, t,g2) IS an arrow clause) since ranges in a particular forest are all related

labelled ¢ from stateq; to stateg, which are to the corresponding source st.ring (i.e., are all of.the
inted with ded circle. Final stat form (i..7)w). To be more precise the union operation on
printed with a surrounded circle. Final states ar€y,jiqual forests must be completed in adding productions

doubly circled while the initial state has a single which connect the new (super) axiom (s&y with each root
unconnected, unlabelled input arrow. andswhlch are, for eacly of the formS” — S((0..|w|)w).
T : F le the | n hich i

A deterministic finite automatoDFA) is a or example the languagelb)”, n > 0 which contains

) X - -) 2" strings can be defined by a minimal DAG whose size is
NFA in which the transition relations is a n+1.

mentioned in th introduction, this non-unique (see Example 1), a sentence®fD)N Z (G, D)
string could be used to encode not-yet-solved . N .
ambiguities in the input. DAGs are a convenientmay not be inL(G). To put it differently, if we

way to represent these finite sets of strings b3}J se the standard RCG parser, with the ranges of

factorizing their common parts (thanks to thea DAG, we p.roduce the s_har_ed parse-forest for
minimization algorithm). the languageZ (G, D) which is a superset of

In order to use DAGs as inputs for PRCG £(D) N L(G).
parsing we will perform two generalizations. However, if G is a simple PRCG, we have

The first one follows. Letv = t;...t, be a , .

o the equalit = i D).
string in some alphabét and letQ = {¢; | 0 < quality£(&) = Upis aDAG £ (@,).
i < n} be a set of + 1 boundswith a total order Note that the subclass of simple PRCGs is of
reTation<, we havegy < q1 < ... < gn. The importance since it is MCS and it is the one
sequencer = qot1qitags .. . tngn € QX (XX Q)" equivalent to LCFRSs. The informal reason of

is called abounded stringvhich spellsw. A range the equality is the following. If an instantiated
is a pair of boundgg;, ¢;) with ¢; < ¢; noted predicate A;(p;) suc_ceeds Ln 'some RHS, this
(pi-.p;)= and any triple of the form(g;_1t;q;) Mmeans that e_:ach of |ts_rangﬁ$j] = (k..l)p has
is called atransition All the notions around Pe€enrecognized as being a componentgimore
PRCGs defined in Section 2.1 easily generaliz@ecisely their exists a path frointo / in D which
from strings to bounded strings. It is also the casdS @ component off;. The range(k..[)p selects

for the standard parsing algorithm of (Boullier, N D & se€td. ;) of transitions (the transitions
2004). used in the bounded paths fraimto). Because

of the linearity ofGG, there is no other range in that
RHS which selects a transition #y, ;y,. Thus

the bounded paths selected by all the ranges of that
RHS are disjoints. In other words, any occurrence
of a valid instantiated rangg..j) p selects a set of
paths which is a subset gf(D;).

Now the next step is to move from bounded
strings to DAGs. LetD = (Q,%,9,qo, F) be a
DAG. A stringz € ¥* s.t. we haveqy, z, q2) €
0* is called apath betweeng; andgs and a string
T =qtiqi...tpgp € Q@ x (XU{e} x Q)" isa
bounded pattand we say that spellst;t, .. . t,.

A path z from o to f € Fis acomplete path Now, if we consider a non-linear PRCG, in
and a bounded path of the forqgt, ... ¢, f with some of its clauses, there is a variable, say

f € Fis acomplete bounded path In the \hich has several occurrences in its RHS (if we
context of a DAGD, a range is a pair of states consider a top-down non-linearity). Now assume
(gi,q5) with ¢; < g; noted (g;..q;)p. A range that for some input DAGD, an instantiation of
{¢i--g;)p is valid if and only if there exists @ that clause is a component of some complete
path fromg; to ¢; in D. Of course, any range derivation. Let(p..q)p be the instantiation o
(p--q)p defines its associated sub-DAGy, ;) = in that instantiated clause. The fact that a predicate
(Qp..q)r X4p.q)» Op..q)» P> {q}) as follows. Its i which X occurs succeeds means that there exist
transition relation ig, ;) = {(r.t.s) [(,t,s) € paths fromp to ¢ in Dy, . The same thing stands

o A (p,a'sr),(s,2",q) € 6"} I 654 = 0 for all the other occurrences of but nothing

(i.e., there is no path betweenandq), Dy, 4 IS force these paths to be identical or not.
the empty DAG, otherwis€), ., (resp. X,)

are the states (resp. terminal symbols) of the
transitions ofd, .. With this new definition of

ranges, the notions of instantiation and derivationzyample 1.
easily generalize from bounded strings to DAGs.

The language of a PRCG: for a DAG Let us take an example which will be used
D is defined byz G.D) = Uplz | throughout the paper. It is a non-linear 1-PRCG
’ fer which defines the language'tc®, n > 0 as
SU{qo-.f)p) =). Letz € £(D), itis notvery the intersection of the two languagesh™c™ and
G.D a"b"c*. Each of these languages is respectively

difficult to show that ifx € £(G) then we have defined by the predicatesb™c” and a™b"c*: the

v €L (G, D). However, the converse is not true start predicate isi"b"c".

a b standard algorithm works perfectly well with input

(2) DAGs, since a valid instantiation of an argument
of a predicate in a clause by some rangeq)
b e ¢ means that there exists (at least) one path between
p andg which is recognized.
Figure 1: Input DAG associated wittb|bc. The paper will now concentrate on non-linear

PRCGs, and will present a new valid parsing
algorithm and study its complexities (in space and

time).
In order to simplify the presentation we

a™c"(X) — a’b""(X) a"b"c*(X) introduce this algorithm as a post-processing pass

which will work on the shared parse-forest output
a*b"c"(aX) — a"b"c"(X) by the (slightly modified) standard algorithm
a*b"c"(X) = b"c"(X) which accepts DAGs as inpu.
b (bXc) — b'™(X)
b"c"(e) — € 3.2 Parsing DAGs with non-linear PRCGs

The standard parsing algorithm of (Boullier, 2004)
a"b"e*(Xe) = a"b"c"(X) working on a stringu can be sketched as follows.
a"b"c’(X) = a"b"(X) It uses a single memoized boolean function
a"b"(aXb) — a"b"(X) predicaté A, o) where A is a predicate and'is a
a"b"(¢) - € vector of ranges whose dimensioraiity(A4). The

If we use this PRCG to parse the DAG Ofmmal call to that functlor? has the forrpredicate
(S, (0..Jwl])). Its purpose is, for each,-clause, to

Figure 1 which defines the languaggib, bc}, . . .) .
instantiate each of its symbols in a consistant way.
we (erroneously) get the non-empty parse for- . i
. . . For example if we assume that tfieéargument of
est of Figure 2 though neithesib nor be is in

. o he LHS of th -cl isv. XaY o
a™b"c 8 It is not difficult to see that the problem the LHS of the currentio-clause isy; XaY o; and

th > e
comes from the non-linear instantiated variablei[hat thei™ component ofy; is the rangep;..g;) an

X 1.4y in the start node, and more precisely from instantiation ofX, a anY” by the rangegpx -.qx),

the actual (wrong) meaning of the three differ- <p“'f“> an_d <pY"qy>_IS suchltﬁat we<havp<i é

ent occurrences oKy 4 in a"b"c(X (1 qy) — Za)j](dz_u (J_)(wfa]z;l,,ivﬁﬁ |?U,]T“_+ 7Sﬁ12e_ﬂ$gl3_R((J‘jG

a*b"c™(X(1.4y) a™0"c*(X(1.4y)- The first occur- N | = DPa- ~ .y

rence in its RHS says that there exists a path i is non bottom-up erasing, the instantiation of all
The LHS symbols implies that all the arguments

trlenmf ut DAG from staté o stated which is an of the RHS predicated; are also instantiated and
a*b"c™. The second occurrence says that there

exists a path from staté to state4 which is an gathered into the vector of rangps Now, for

. (1 <i< i
a™b™c*. While the LHS occurrence (wrongly) sayseacm (1 =i < |RHS]|), we can callpredicate

. . A, p;). Ifall th Il he instanti
that there exists a path from statédo state4 which (4;, pi). It all these calls succeed, the instantiated
. o . . clause can be stored as a component of the shared
is ana”b"c". However, if the twaX(;_4's in the

RHS had selected common paths (this is not pod2> ¢ forest.

sible here) betweehand4, a valid interpretation . In the case of a DA@ - (Q.’.E’é.’ %0 F) as
input, there are two slight modifications, the ini-
could have been proposed.

tial call is changed by the conjunctive calted-
With this example, we see that the difficulty of icate(s, (qo..f1)) V ... V predicate(S, (qo--fi)))
DAG parsing only arises with non-linear PRCGs. with f; € F® and the terminal symbai can be in-

If we consider linear PRCGs, the sub-class ofstantiated by the rang@,..qq) p only if (pa, . ¢a)

the PRCGs which is equivalent to LCFRSs, the
"Note that such an instantiated clause could be

®In this forest oval nodes denote different instantiatedunreachable from the (future) instantiated start symbativh
predicates, while its associated instantiated clauses amill be the axiom of the shared forest considered as a CFG.
presented as its daughter(s) and are denoted by square nodes ®Technically, each of these calls produces a forest. These
The LHS of each instantiated clause shows the instantiatioindividual forests may share subparts but their roots dre al
of its LHS symbols. The RHS is the corresponding sequencelifferent. In order to have a true forest, we introduce a
of instantiated predicates. The number of daughters of eachew root, thesuper-rootwhose daughters are the individual
square node is the number of its RHS instantiated predicatesorests.

a™b"c™(X1.ay) = a"b"cly 4y a0l gy

a*bnc?l.A) anbnctl.A)

a™b"c"(X(1..ay) = by gy a™b"c" (X(1.a)) = a"by 4

o
o

b (b3 X(a.3) ca.a)) = 0"z || a"b"(aq.2) X(2.9) bea..a)) = @bl)

i
)

| ann(E<3_‘3>)—>E | | a"b"(6<2,,2>)—>6 |

Figure 2: Parse forest for the input DA®G|bc.

is a transition ind. The variable symbolX can The idea of the forest filtering algorithm
be instantiated by the rang@x..qx)p only if is to first compute the DAGs associated with
(px..qx)p is valid. each argument of each instantiated predicate

during a bottom-up walk. These DAGs are
calleddecorations This processing will perform
DAG compositions (including intersections, as
suggested above), and will erase clauses in which
empty intersections occur. If the DAG associated
Juith the single argument of the super-root is
empty, then parsing failed.

3.3 Forest Filtering

We assume here that for a given PRCGwe
have built the parse forest of an input DAG as
explained above and that each instantiated clau
of that forest contains the rangex..qx)p of
each of its instantiated symbals. We have seen Otherwise, a top-down walk is launched
in Example 1 that this parse forest is validifis (see below), which may also erase non-valid
linear but may well be unvalid i€ is non-linear. instantiated clauses. If necessary, the algorithm
In that latter case, this happens because the ranggcompleted by a classical CFG algorithm which
(px..qx)p of each instantiation of the non-linear erase non productive and unreachable symbols
variable X selects the whole sub-DA®,,, .., leaving areducedgrammar/forest.
while each instantiation should only select a sub-
language oL (D .qy)). FOT €ach 0CCUITence of o e that the PRCGs are non-combinatorial
X in the LHS or RHS of a non—Ilnear. clause, its | bottom-up non-erasing. However, we
sub-languages could of course be dlffere_nt fromcan note that the following algorithm can be
_the othe_rs. n fac?t,' we are interested in the'rgeneralized in order to handle combinatorial
mt_er_sectlons: If their mt_ersec.tlons are non em|o.tyPRCGS and in particular with overlapping
this is the Ianguage_z Wh'.Ch W'!I pe assom_ated W'thargument§. Moreover, we will assume that the
{px--ax)p, otherwise, if their intersections are ¢ o 1o o0 cyclic (or equivalently that all cycles
empty, then the instantiation of the con&deret{mve previously been removeld).
clause fails and must thus be removed from the
forest. Of course, we will consider that the
language (a finite number of strings) associated—; . : ,

. . : For example the non-linear combinatorial clause
with each occurrence of each instantiated symbolxy z) s B(xY) B(Y Z) has overlapping arguments.
is represented by a DAG. 9By a classical algorithm from the CFG technology.

In order to simplify our presentation we will

3.3.1 The Bottom-Up Walk concatenation of the DAGs associated with

For this principle algorithm, we assume that for ~ the symbolsXj, ..., X7, ... andX;, .
each instantiated clause in the forest, a DAG
will be associated with each occurrence of each
instantiated symbol. More precisely, for a given
instantiated4,-clause, the DAGs associated with
the RHS symbol occurrences are composed (see
below) to build up DAGs which will be associated
with each argument of its LHS predicate. For each
LHS argument, this composition is directed by the
sequence of symbols in the argument itself.

The forest is walked bottom-up starting from its

leaves. The constraint being that an instantiatedhis bottom-up walk ends on the super-root with a
clause is visited if and only if all its RHS final decoration say. In fact, during this bottom-
instantiated predicates have already all beemp walk, we have computed the intersection of the
visited (computed). This constraint can belanguages defined by the input DAG and by the
satisfied for any non-cyclic forest. PRCG (i.e., we hav&(R) = £(D) N L(G)).

To be more precise, consider an instantiatio
¢, = Ao(po) — Ai(p1) ... Ay(pp) of the clause
c = Ap(ap) = Ai(ar)... An (o), we perform

b
the following sequence: @@
1. If the clause is not top-down linear (i.e., b

there exist multiple occurrences of the same
variables in its RHS arguments), for such
variable X let the range(px..qx) be its . _
instantiation (by definition, all occurrences With the PRCG of Example 1 and the input
are instantiated by the same range), wePAG of Figure 3, we get the parse forest of
perform the intersection of the DAGs Figure 4 whose transitions are decorated by the

associated with each instantiated predicatd®AGS computed by the bottom-up algorithhn.
argumentX. If one intersection results in 1he crucial point to note here is the intersection

an empty DAG, the instantiated clause isWhiCh
removed from the forest. Otherwise, we iS Performed betweefubc, be} and {abc, ab} on
perform the following steps. a™b"c"(X1..4y) — a*b”c?L4> “nbnc?1..4> . The

Here each LHS argument of is associated
with a non empty DAG, we then report
the individual contribution ofc, into the
(already computed) DAGs associated with
the arguments of its LHSly(py). The DAG
associated with thé" argument of4q () is
the union (or a copy if it is the first time) of its
previous DAG value with the DAG associated
with thei™ argument of the LHS of,.

r\Example 2.

Figure 3: Input DAG associated wittbc|ab|be.

non-empty sefabc} is the final result assigned to
the instantiated start symbol. Since this result is
non empty, it shows that the input DAG s rec-
ognized byG. More precisely, this shows that the
sub-language ofD which is recognized by- is

2. IfaRHS variabl€ is linear, it occurs once in
the ;" argument of predicatd;. We perform
a brand new copy of the DAG associated with
the ;" argument of the instantiation of;.

3. At that moment, all instantiated variables {%0¢}-
which occur inc, are associated with a DAG. However, as shown in the previous example, the
For each occurrence of a terminal symbol (undecorated) parse forest is not the forest built
in the LHS arguments we associate a (newfor the DAG £(D) N L(G) since it may contain
DAG whose only transition i¢p, t, q) where non-valid parts (e.g., the transitions labellgd}

p andq are brand new states with, of course,or {ab} in our example). In order to get the

pP<q For readability reasons these DAGs are represented by

. . their languages (i.e., set of strings). Bottom-up traosgi

4. Here, all symbols (terminals or variables) arefrom instantiated clauses to instantiated predicatesctsfle
associated with disjoints DAGs. For eachthe computations performed by that instantiated clause

oo i i i while bottom-up transitions from instantiated predicaties

LHS argumentag [Z] = Xl ct Xj T Xpi’ instantiated clauses are the union of the DAGs entering that

we associate a new DAG which is the instantiated predicate.

{abc}

a"b"c"(Xq..4y) = a*b”c?l"@ anbnc?l..@

abc bC} {abc ab}

{bct {ab} \
¢

a*b"c n X(l .4) —>b c (1..4) {abC} a™b" X<1 4) — a”bl, (1..4) {abc}

))

a*b” ”(a<1 .2) X(g 4>) — CL*an’?Q 4) nbn *(X<1 3>

>) — a"bnc*1 3)

{bc} {abc {ab} {abc}

{bc}

b™c™ (bea..3) X(3..3) 0(3.‘4>) —b" C<3“3>

"b"(a<1_,2> X2.2) b<2..4>) —a b(z,g)

a*b"c"(X<2 4)) — b"c"

a™b"e" (X 3)) — a”biy g

™~
{bC} {ab}
u ey G o
{bc}
)
bncn(b@“g) X<3“3> C(3..4)) — " C<3”3> a™b" ((1(1 .2) X (2..2) b) —a b<2 2)
D) ¢
{e} {e}

{e} {e}
| bncn(€<3“3)) — £ || a"b"(a(zg)) — € |

Figure 4: Bottom-up decorated parse forest for the input DdGab|bc.

right forest (i.e., to get a PRCG parser — not
a recognizer — which accepts a DAG as input)
we need to perform another walk on the previous
decorated forest.

3.3.2 The Top-Down Walk

The idea of the top-down walk on the parse
forest decorated by the bottom-up walk is to
(re)compute all the previous decorations starting
from the bottom-up decoration associated with
the instantiated start predicate. It is to be noted
that (the language defined by) each top-down
decoration is a subset of its bottom-up counterpart.
However, when a top-down decoration becomes
empty, the corresponding subtree must be erased
from the forest. If the bottom-up walk succeeds,
we are sure that the top-down walk will not
result in an empty forest. Moreover,
perform a new bottom-up walk on this reduced
forest, the new bottom-up decorations will denote
the same language as their top-down decorations
counterpart.

The forest is walked top-down starting from
the super-root.

if we 4,

argumeml.3 Thus, each instantiated LHS

symbol occurrence is decorated by its own
DAG. If the considered clause has several
occurrences of the same variable in the LHS
arguments (i.e., is bottom-up non-linear),
we perform the intersection of these DAGs
in order to leave a single decoration per
instantiated variable. If an intersection results
in an empty DAG, the current clause is erased
from the forest.

. The LHS instantiated variable decorations

are propagated to the RHS arguments. This
propagation may result in DAG concatena-
tions when a RHS argument is made up of
several variables (i.e., is combinatorial).

At last, we associate to each argument
of A;(p;) a new decoration which is

computed as the union of its previous top-
down decoration with the decoration just
computed.

The constraint being that arExample 3. When we apply the previous al-

instantiated4(ﬁ)-clause is visitgd If and onIy if all gorithm to the bottom-up parse forest of Exam-
the occurrences afl(p) occurring in the RHS of ple 2, we get the top-down parse forest of Fig-
instantiated clauses have all already been visitedire 5. In this parse forest, erased parts are
This constraint can be satisfied for any non-cyclicjaid out in light gray. The more noticable points

forest. w.r.t. the bottom-up forest are the decorations be-

Initially, we assume that each argument of eaCheen| a"bmc (X, 4) — a*bc? ,, ab c*
. . . . (1.4) (1..4) (1..4)
instantiated predicate has an empty decoration,

except for the argument of the super-root which isand its RHS predicate and

decorated by the DA® computed by the bottom-

up pass. which are changed both thubc}
Now, assume that a top-down decoration has

been (fully) computed for each argument ofinstead of{abe,bc} and {abe,ab}. These two

the instantiated predicatel(gy). For each changes induce the indicated erasings.

instantiated clause of the form, = Ag(py) —

A1(p1) ... Ai(pi) - .. Am(pm), we perform the

following sequencé?

BAssume thaps[k] = (p..q) p, that the decoration DAG
ass/ociated with t,hécth alrgutnent ofAo(po) is D/me =
(Q@uq)’Z(I)~~f1>75(puq>’p 7F<p~q>) (we have‘c(D<p~q>) <
L(D¢p..4))) and thatoy [k] = o, X, and that(i..j) p is the
1. We perform the intersection of the top-downinstantiation of the symbakK in c,. Our goal is to extract

; - : from D/ the decoration DAGD’; ., associated with
.. (i-.5) !
decoration of each argument ﬂf)(po) with that instantiated occurrence af. This cjomputatlon can be

the decoration computed by the bottom-uphelped if we maintain, associated with each decoration DAG
pass for the same argument of the LHSa function, sayd, which maps each state of the decoration

. . . DAG to a set of states (bounds) of the input DAG If, as we
predicate Ofcp' If the result is emptyg, I have assumed) is minimal, each set of states is a singleton,
erased from the forest.

we can writed(p') = p, d(f') = qforall f' € F, ,
and more generallyi(i') € Q if i/ € Q'. Letl’ = {i’ |
2. For each LHS argument, the previous results’ € Q, , A d(i') = i} andJ" = {j" | j' € Q) o A

are dispatched over the symbols of this?(;') = j}. The decoration DAGDY; ; is such that
E(D@“j)) = Ui'er,jfew{f” | «is a path from’ to j'}.
Of course, together with the construction &f), ., its
associated functiod must also be built.

2The decoration of each argument df,(5;) is either
initially empty or has already been partially computed.

a™b"c™(X(1..4y) = @by 4y @bl gy

N
Co¥etg 3 .

{abc}

{abc} {abc}

{abc} {abc}
a*b"c"(ag1..2y X(2.49) = a*b"cly 4 a"b"c" (X 1.3 C3.a)) = a"b"cly 3
l l
{abc} {abc}
{bc} {ab}

a™b"c" (X(2..2y) = bl 4y a"b"c"(X(1.3)) = a"by 3
N)
{bct {ab}
{bC} {ab}
.)
b ™ (bea..3) X(s.3) cz.0)) = D" cl5 3 a"b"(aq1.2) X(2.2) bi2..3)) = a”bi
D) (
{e} {e} -
{e} {e}
N p

| b"c”(&‘(g“g))—)a || a"b"(e(gug>)—>€ |

Figure 5: Top-down decorated parse forest for the input b&ab|be.

3.4 Time and Space Complexities non-linear as well. It is not difficult to see that
In this Section we study the time and sizedecorations needs only to be computed if they are
complexities of the forest filtering algorithm. associated with a non-linear predicate argument. It
Let us consider the sub-DA@, , of the is possible to compute those non-linear predicate
D--q

minimal input DAG D and consider any (finite) arguments statically (when building the parser)
regular languaged, C £(D,,.,), and letD;, be when the PRCG is defined within a single module.
= p..q))

the minimal DAG s.t.£(Dy) = L. We show, on prever, if Fhe PRCG is_ givgn in several modgles,
an example, thatD; | may be an exponential w.r.t. this full stgtlc comput.atlon is no longer possible.
Doy The_ non_-I.|near predlcate_ arguments must thus
be identified at parse time, when the whole
e grammar is available. This rather trivial algorithm
will not be described here, but it should be
noted that it is worth doing since in practice it
prevents decoration computations which can take
an exponential time.

Consider, for a giverh > 0, the language
(a|b)®. We know that this language can b
represented by the minimal DAG with+ 1 states
of Figure 6.

Assume thath = 2k and consider the
sub-language Ly, of (alb)?* (nested well-

parenthesized strings) which is defined by 4 Conclusion

1. Ly = {aa,bb}; In this paper we have shown how PRCGs can

2. k> 1, Loy, = {aza,bab | © € Loj_s}, handle DAGs as an input. If we consider the linear
PRCG, the one equivalent to LCFRS, the parsing
It is not difficult to see that the DAG in Figure 7 time remains polynomial. Moreover, input DAGs
definesLo;, and is minimal, but its size**2 — 2 necessitate only rather cosmetic modifications in
is an exponential in the siz& + 1 of the minimal the standard parser.
DAG for the languagéa|b)?*. In the non-linear case, the standard parser may
This results shows that, there exist cases iproduce illegal parses in its output shared parse
which some minimal DAGSD’ that define sub- forest. It may even produce a (non-empty) shared
languages of minimal DAGsSD may have a parse forest though no sentences of the input DAG
exponential size (i.e[D'| = O(2/P!). In other are in the language defined by our non-linear
words, when, during the bottom-up or top-downPRCG. We have proposed a method which uses
walk, we compute union of DAGs, we may fall the (slightly modified) standard parser but prunes,
on these pathologic DAGs that will induce a within extra passes, its output forest and leaves all
combinatorial explosion in both time and space. and only valid parses. During these extra bottom-
. up and top-down walks, this pruning involves
3.5 Implementation Issues the computation of finite languages by means of
Of course, many improvements may be broughtoncatenation, union and intersection operations.
to the previous principle algorithms in practical The sentences of these finite languages are always
implementations. Let us cite two of them. First it substrings of the words of the input DA®.
is possible to restrict the number of DAG copies:We choose to represent these intermediate finite
a DAG copy is not useful if it is the last reference languages by DAGs instead of sets of strings
to that DAG. because the size of a DAG is, at worst, of the same
We shall here develop the second point on @rder as the size of a set of strings but it could, in
little more: if an argument of a predicate is neversome cases, be exponentially smaller.
usedin an clause involving non-linearity, itisonly =~ However, the time taken by this extra pruning
a waste of time to compute its decoration. Wepass cannot be guaranteed to be polynomial,
say thatA*, the k" argument of the predicatd as expected from previously known complexity
is anon-linear predicate argumerit there exists results (Bertsch and Nederhof, 2001). We have
a clausec in which A occurs in the RHS and shown an example in which pruning takes an
whose k" argument has at least one commonexponential time and space in the sizelaf The
variable another argumet®” of some predicate deep reason comes from the fact thatLifis a
B of the RHS (if B = A, then of course: and finite (regular) language defined by some minimal
h must be different). It is clear thaB” is then DAG D, there are cases where a sub-language of

a a _ a
—@ 0 e -0

Figure 6: Input DAG associated with the langudg)”, h > 0.

IS}

S

e

Figure 7: DAG associated with the language of nested webihesized strings of lengftk.

L may require to be defined by a DAG whose sizeleffrey D. Hopcroft and John E. Ullman. 1979.
is an exponential in the size @. Of course this Introduction to Automata Theory, Languages, and
combinatorial explosion is not a fatality, and we COMPutation Addison-Wesley, Reading, Mass.

may wonder whether, in the particular case of NLPBernard Lang. 1994. Recognition can be harder than
it will practically occur? parsing. Computational Intelligenge10(4):486—
494,

K. Vijay-Shanker, David Weir, and Aravind K.
References Joshi. 1987. Characterizing structural descriptions
produced by various grammatical formalisms. In
Franois Barthélemy, Pierre Boullier, Philippe De- Proceedings of the 25th Meeting of the Association
schamp, andric de la Clergerie. 2001. Guided for Comput. Linguist. (ACL'87) pages 104-111,
parsing of range concatenation languages Prio- Stanford University, CA.
ceedings of the 39th Annual Meeting of the Associ-
ation for Comput. Linguist. (ACL'01pages 42-49,
University of Toulouse, France.

Eberhard Bertsch and Mark-Jan Nederhof. 2001. On
the complexity of some extensions of rcg parsing. In
Proceedings of IWPT'QBeijing, China.

Pierre Boullier, 2004. New Developments in Pars-
ing Technology volume 23 of Text, Speech and
Language Technologychapter Range Concatena-
tion Grammars, pages 269-289. Kluwer Academic
Publishers, H. Bunt, J. Carroll, and G. Satta edition.

