Characterizing E-Science File Access Behavior via Latent Dirichlet Allocation

Yusik Kim 1, 2, * Cecile Germain-Renaud 1, 2
* Auteur correspondant
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : E-science is moving from grids to clouds. Getting the best of both worlds needs to build on the experience gained by the steady operation of production grids since some years. With the Grid Observatory initiative, trace data are publicly available to the computer science and engineering community and can be used for dimensioning and optimizing infrastructure. This paper proposes a new approach for analyzing behavioral traces: as most of them are indeed text documents, state of the art techniques in text mining, and specifically Latent Dirichlet Allocation, can be exploited. The advantages are twofold: providing some level of explanation inferred from the data; and a relatively scalable way to capture the temporal variability of the behavior of interest, while retaining the full dimensionality of the problem at hand. We experiment the text mining analogy approach by characterizing file access behavior. We validate the resulting probabilistic model by showing that it is capable of generating synthetic traces statistically consistent with the real ones.
Type de document :
Communication dans un congrès
4th IEEE International Conference on Utility and Cloud Computing (UCC 2011), Dec 2011, Melbourne, Australia. IEEE, 2011
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00617914
Contributeur : Cecile Germain <>
Soumis le : mardi 30 août 2011 - 23:48:49
Dernière modification le : jeudi 5 avril 2018 - 12:30:12

Fichier

uccKimGermainSubmit.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00617914, version 1

Collections

Citation

Yusik Kim, Cecile Germain-Renaud. Characterizing E-Science File Access Behavior via Latent Dirichlet Allocation. 4th IEEE International Conference on Utility and Cloud Computing (UCC 2011), Dec 2011, Melbourne, Australia. IEEE, 2011. 〈inria-00617914〉

Partager

Métriques

Consultations de la notice

371

Téléchargements de fichiers

136