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Abstract

Transfer reinforcement learning (RL) methods leveragehenexperience col-
lected on a set of source tasks to speed-up RL algorithmanplsiand effective
approach is to transfer samples from source tasks and mthen in the train-
ing set used to solve a target task. In this paper, we instithe theoretical
properties of this transfer method and we introduce noggrithms adapting the
transfer process on the basis of the similarity betweencgoand target tasks.
Finally, we report illustrative experimental results inantinuous chain problem.

1 Introduction

The objective of transfer in reinforcement learning (R3][ to speed-up RL algorithms by reusing
knowledge (e.g., samples, value function, features, petens) obtained from a set of source tasks.
The underlying assumption of transfer methods is that thecgotasks (or a suitable combination
of these) are somehow similar to the target task, so thatansferred knowledge can be useful in
learning its solution. A wide range of scenarios and mettiodgransfer in RL have been studied
in the last decade (see [14, 9] for a thorough survey). Inghjger, we focus on the simple transfer
approach where trajectory samples are transferred fromceddDPs to increase the size of the
training set used to solve the target MDP. This approach iiscpéarly suited in problems (e.g.,
robotics, applications involving human interaction) wdnéiis not possible to interact with the envi-
ronment long enough to collect samples to solve the taskrat.Hasamples are available from other
sources (e.g., simulators in case of robotic applicatiahg) solution of the target task can benefit
from a larger training set that includes also some sourcekmnThis approach has been already
investigated in the case of transfer between tasks witkrdifft state-action spaces in [13], where the
source samples are used to build a model of the target tagkewbethe number of target samples is
not large enough. A more sophisticated sample-transfenadds proposed in [8]. The authors in-
troduce an algorithm which estimates the similarity betwseurce and target tasks and selectively
transfers from the source tasks which are more likely to idgamples similar to those generated
by the target MDP. Although the empirical results are enagimyg, the proposed method is based
on heuristic measures and no theoretical analysis of ifeeance is provided. On the other hand,
in supervised learning a number of theoretical works ingastd the effectiveness of transfer in
reducing the sample complexity of the learning processomain adaptation, a solution learned on
a source task is transferred to a target task and its perfare@epends on hosimilar the two tasks
are. In [2] and [10] different distance measures are prapasé are shown to be connected to the
performance of the transferred solution. The case of teadfsamples from multiple source tasks
is studied in [3]. The most interesting finding is that thensfer performance benefits from using a
larger training set at the cost of an additional error duéaénaverage distance between source and
target tasks. This implies the existence afamnsfer tradeoffoetween transferring as many samples
as possible and limiting the transfer to sources which andasi to the target task. As a result, the



transfer of samples is expected to outperform single-tagkning wheneveanegativetransfer (i.e.,
transfer from source tasks far from the target task) is &dhit.r.t. to the advantage of increasing the
size of the training set. This also opens the question whéttsegpossible to design methods able to
automatically detect the similarity between tasks and tttiegptransfer process accordingly.

In this paper, we investigate the transfer of samples in Rinfa more theoretical perspective w.r.t.
previous works. The main contributions of this paper canumrearized as follows:

e Algorithmic contribution We introduce three sample-transfer algorithms based ed @t
iteration [4]. The first algorithmASTin Section 3) simply transfers all the source samples.
We also design two adaptive metho®AT andBTT in Section 4 and 5) whose objective
is to solve the transfer tradeoff by identifying the best bamation of source tasks.

e Theoretical contributionWe formalize the setting of transfer of samples and we dexive
finite-sample analysis of AST which highlights the impodarof theaverageMDP ob-
tained by the combination of the source tasks. We also reperanalysis for BAT which
shows both the advantage of identifying the best combinatf@ource tasks and the addi-
tional cost in terms of auxiliary samples needed to comphéesimilarity between tasks.

e Empirical contribution.We report results (in Section 6) on a simple chain problenctvhi
confirm the main theoretical findings and support the ideaghmple transfer can signifi-
cantly speed-up the learning process and that adaptiveoaietire able to solve the transfer
tradeoff and avoid negative transfer effects.

The rest of the paper is organized as follows. In Section 2niveduce the notation and we define
the transfer problem. Section 3 reports the theoreticdyaisaof AST. BAT is described in Section 4
along with its theoretical analysis. A more challengingisgtis introduced in Section 5 together
with BTT. Section 6 reports the experimental results andi®e@ concludes the paper. Finally, in
the appendix we report the proofs and some additional exertal analysis.

2 Preliminaries

In this section we introduce the notation and the transfelblem considered in the rest of the paper.

Notation for MDPs. We define a discounted Markov decision process (MDP) as & tupl=
(X, A, R,P,~) where the state space is a bounded closed subset of the Euclidean spdds,a
finite (/A| < oo) action space, the deterministieward functiorR : X x A — R is uniformly
bounded byR,,.x, the transition kerneP is such that for all: € X anda € A, P(:|z,a) is

a distribution overt, andy € (0,1) is a discount factor. We denote (X x .A) the set of
probability measures ovéf x A and byB(X x A; Vinax= ’ffj;x ) the space of bounded measurable
functions with domain¥’ x .4 and bounded if—Vi,ax, Vinax). We define the optimal action-value
function Q* as the unique fixed-point of the optimal Bellman opergfor B(X x A; Vipax) —
B(X x A; Vinax) defined by

(TQ)(w.) = R(z.a) +7 | maxQy.a')P(dyr.a).

Notation for function spaces. For any measurg € S(X x .A) obtained from the combination
of a distributionp € S(X) and a uniform distribution over the discrete sétand a measurable
functionf : X x A — R, we define theLz(u)-norm of f as|| f|[}; = g Y oea Jx f(2,a)*p(d).

The supremum norm of is defined as|f||oc = sup,cx |f(x)|. Finally, we define the standard
Ly-norm for a vector € R? as||a]|? = Y%, a?. We denote by(-,-) = (¢1(--), - .-, pal-, ~))T

a feature vector with features : X x A — [—C,C], and byF = {f.(-,-) = ¢(,) " a} the linear
space of action-value functions spanned by the basis fumethg. Given a set of state-action pairs
{(Xp, A, let® = [¢p(X1,41) ;... ;0(X1, AL) 7] be the corresponding feature matrix. We
define the orthogonal projection operaidr: B(X x A; Vinax) — F asllQ = argminger ||Q —
fll.- Finally, byT'(Q) we denote the truncation of a functighin the rangg—Vinax, Vinax)-

The extension to stochastic reward functions is straigwded.



Input: Linear spaceF = spa{y;, 1 < i < d}, initial functionQ° € F

for k=1,2,...do
Build the training se{ (X;, A, Y, R;) }1—, [according torandomtasks design]
Build the feature matrid® = [¢(X1, A1) ;.. ;6(Xr, AL) "]
Compute the vectgs € R” with p; = R, + v maxae4 Q¥ (Y1,a')
Compute the projection = (&7 &)~ '@ p and the functiorQ” = f,«
Return the truncated functiag® = 7'(Q*)

end for

Figure 1: A pseudo-code for All-Sample Transfer (AST) Fit@-iteration.

Problem setup. We consider the transfer problem in whigh tasks{ M,,,}M_, are available and
the objective is to learn the solution for the target tdgk transferring samples from the source
tasks{ M., }M_,. We define an assumption on how the training sets are gederate

Definition 1. (Random Tasks Design) An input set{ (X, 4;)}~_, is built with samples drawn from
an arbitrary sampling distribution, € S(X x A), i.e. (X;, A;) ~ p. For each taskm, one
transition and reward sample is generated in each of theesgation pairs in the input set, i.e.
Y™ ~ P(-| X1, A;), and R* = R(X, A;). Finally, we define the random sequerdé, } -, where
the indexed\/; are drawn i.i.d. from a multinomial distribution with paraters(\, ..., A\y). The
training set available to the learner i§X;, 4;,Y;, R;)}., whereY; =Yy, andR; = Ry .

This is an assumption on how the samples are generated buadtiqe, a single realization of
samples and task indexé# is available. We consider the case in which< A, (m = 2,..., M).
This condition implies that (on average) the number of tesgenples is much less than the source
samples and it is usually not enough to learn an accuratéicolior the target task. We will also
consider thepure transfercase in which\; = 0 (i.e., no target sample is available). Finally, we
notice that Def. 1 implies the existence of a generative rhfideall the MDPs, since the state-
action pairs are generated according to an arbitrary samglstributiony.

3 All-Sample Transfer Algorithm

We first consider the case when the source samples are gehéefbrehand according to Def. 1
and the designer has no access to the source tasks. We swadygtrithm calledAll-Sample
Transfer (AST) (Fig. 1) which simply runs FQI with a linear spagéon the whole training set

{(Xl,Al,Yl,Rl)}lL:l. At each iterationk, given the result of the previous iteratic@n’“—1 =
T(QF1), the algorithm returns
1 L 2
Sk . Ak—1 1
= — X1, A — Y, . 1
@ =iy 7 > (/XA ~ (R + o @ () )

=
In the case of linear spaces, the minimization problem igesbin closed form as in Fig. 1. In the

following we report a finite-sample analysis of the perfonmaof AST. Similar to [11], we first
study the prediction error in each iteration and we then ggaye it through iterations.

3.1 Single Iteration Finite-Sample Analysis

We define theaverageMDP M, as the average of th&/ MDPs at hand. We define its reward
functionR, and its transition kernégP, as the weighted average of reward functions and transition
kernels of the basic MDPs with weights determined by the priopns) of the multinomial distribu-
tion in the definition of the random tasks design (iR, = fo:l AmRm, Pr = 2%21 AmPm)-

The resulting average Bellman operator is

M S
@) = (30 AaT"Q)(w0) = Riaa) +7 [ maxQly.a/Pldle.). @)



In the random tasks design, the average MDP plays a crud@ésimace the implicit target function

of the minimization of the empirical loss in Eq. 1 is indeTEQ@k_l. At each iteratiork, we prove
the following performance bound for AST.

Theorem 1. Let M be the number of tasksM,,, }M_ | with M, the target task. Let the training

m=1’

set{(X;, A;, Y, R;)} £, be generated as in Def. 1, with a proportion vectoe (A1, ..., Ayr). Let
for = OTIQF 1 = arginf e 7 || f — T1QF|,., then foranyd < 6 < 1, Q* (Eq. 1) satisfies

IT(QF) = TiQ M|,y < 4l fur — TIQ Y| + 5/ Ex(QF1)

i [2 9 2 27(12Le2)2(d+1)
+24(Vmax+c||ai||) Zlogg +32‘/ma)(\/z IOg (%)

with probability1 — & (w.r.t. samples), whergy;||.. <C and&x(Q*1) = ||(T: — 7A)@k*1|\i.

Remark 1 (Analysis of the bound).We first notice that the previous bound reduces (up to cotsgtan
to the standard bound for FQI whéid = 1 (see Section B). The bound is composed by three main
terms: (i) approximation error(ii) estimation error, andiii) transfer error. The approximation
error|| for — 7'1@’“*1”“ is the smallest error of functions i in approximating the target function
T:Q% ! and it is independent from the transfer algorithm. The ediiom error (third and fourth
terms in the bound) is due to the finite random samples useelam@k and it depends on the
dimensionalityd of the function space and it decreases with the total numisaroplesl. with the

fast rate of linear space®(d/L) instead ofO(,/d/L)). Finally, the transfer erraf, accounts for
the difference between source and target tasks. In facplsarfrom source tasks different from the
target might bias@"’ towards a wrong solution, thus resulting in a poor approxiomeof the target
function7; @’“‘1. Itis interesting to notice that the transfer error dependthe difference between
the target task and the average MPB#P, obtained by taking a linear combination of the source tasks
weighted by the parameteks This means that even when each of the source tasks is vésyedit
from the target, if there exists a suitable combination Wwhgsimilar to the target task, then the
transfer process is still likely to be effective. Furthema@) considers the difference in the result
of the application of the two Bellman operators to a givercfion @’“*1. As aresult, when the two
operatorg/; and7 , have the same reward functions, even if the transitioniigions are different
(e.g., the total variatiof{P: (|, a) — P (-|z, a)||7v is large), their corresponding average€t !
might still be similar (i.e.,/ max, Q(y, a')Py(dy|x, a) similar to [ max,/ Q(y, a')Px(dy|z, a)).

Remark 2 (Comparison to single-task learning).Let @’; be the solution obtained by solving one

iteration of FQI with only samples from the source task, tagfgrmance bounds a@k and@’; can
be written as (up to constants and logarithmic factors)

N ~ ~ 1 d
IT(@Q%) = hQ* "l < |l far = T Q" 1||u+(unax+c||a’:||)\/;+unax\/;+ Ex,

~ ~ o 1 d
IT(@Q) = TiQ* Ml < Max = TiQ™ Ml + (Vinax + ClladINy /57 + Vinaxy | 75
1 1

with N; = A\ L (on average). Both bounds share exactly the same appraaimeator. The main
difference is thaQ)* uses onlyN; samples and, as a result, has a much bigger estimation learor t
QF, which takes advantage of all tiesamples transferred from the source tasks. At the same time,
@"’ suffers from an additional transfer error which does nosteixi the case o@’; Thus, we can
conclude that AST is expected to perform better than siteg&-learning whenever the advantage
of using more samples is greater than the bias due to sangigag from tasks different from the
target task. This introducesteansfer tradeoffbetween including many source samples, so as to
reduce the estimation error, and finding source tasks whasdioation leads to a small transfer
error. In Section 4 we show how it is possible to define an adaptnsfer algorithm which selects
proportions\ so as to keep the transfer er&; as small as possible. Finally, in Section 5 we
consider a different setting where the maximum number ofodasrin each source is fixed.



3.2 Propagation Finite-Sample Analysis

We now study how the previous error is propagated througatitens. Letv be the evaluation norm
(i.e., in general different from the sampling distributigp We first report two assumptiorss.

Assumption 1. [11] Givenp, v, p > 1, and an arbitrary sequence of polici¢s, },>1, we assume
that the future-state distributiopP}. - - ~P,1rp is absolutely continuous w.rtv. We assume that

c(p) = Sy, ..., [|[d(uP7, -~ PL ) /|| SatisfiesC),, = (1 —4%)? 3, py?~le(p) < oo.

We also need the features to be linearly independent w.r .

Assumption 2. LetG € R%*? be the Gram matrix withG];; = [ ¢i(z,a)p;(z, a)pu(dz,a). We
assume that its smallest eigenvalués strictly positive (i.e.w > 0).

Using the two previous assumptions we derive the followiaggrmance bound for AST.

Theorem 2. Let Assumptions 1 and 2 hold and the setting be as in Theoréftelr. X iterations,
AST returns an action-value functigh,, whose corresponding greedy policy satisfies

+ _ Orx 2y
Q" —@Q ||V§m\/cu,u

Voo 2. 0K 2 (2TK(120e2)2W@+DN  2Wiar «
56(Vinas J 2 10g 22 4 30V [ 21 .
+56(Vinax + —7722) 7 log =5~ + \/LOg( 5 ol

Remark (Analysis of the bound). The bound reported in the previous theorem displays few dif-
ferences w.r.t. to the single-iteration bound. The add#ldermO(~X) accounts for the error
due to the finite number of iterations of FQI and it decreasg®mrentially with base,. The ap-
proximation error is nowup,, infy || f — 7" gl|,.. This term is referred to as thieherent Bellman
error [11] of the spaceF and it is related to how well the Bellman images of functiomsFi can

be approximated by itself. It is possible to show that for particular classedidPs (e.g., Lips-
chitz), if a large enough number of carefully designed fesgtiis available, then this term is small.

In the estimation error, the norffo|| is bounded using the linear independency between features

(Assumption 2) and the boundedness of the functi@fiseturned at each iteration. The resulting
term has an inverse dependency on the smallest eigenvaildnch tends to be small whenever the
Gram matrix is not well-defined (i.e., the features are afrtinsarly dependent). The transfer er-
ror sup,, ||(71 — 7)T'(fa)l|. characterizes the difference between the target and av@&wltman
operators through the spage As a result, even MDPs with significantly different rewaaasl tran-
sitions might have a small transfer error because of thetfwmgin 7. This introduces a tradeoff
in the design ofF between a “large” enough space containing functions abépproximate/; @
(i.e., small approximation error) and a small function spadere the Q-functions induced By
andT , can be closer (i.e., small transfer error). This term alspldiys interesting similarities with
the notion ofdiscrepancyntroduced in [10] in domain adaptation.

dsup inf [[f — Tiglly +5sup [(T1 = TA)T(fa)ll,
geF fEF @

4 Best Average Transfer Algorithm

As discussed in the previous section, the transfer éiyq@iays a crucial role in the comparison with
single-task learning. In particulaf, is related to the proportionsinducing the average Bellman
operator7 , which defines the target function approximated at eachtitera We now consider
the case where the designer has direct access to the sosksdita., it is possible to choose how
many samples to draw from each source) and can define areaylpnoportion\. In particular, we
propose a method that adaptat each iteration so as to minimize the transfer e€sor

We consider the case in which is fixed as a parameter of the algorithm akd = 0 (i.e.,
no target samples are used in the learning training set). ash éterationk, we need to esti-
mate the quantityy (Q*~'). We assume that for each task additional samples availalodst.
{(XS,AS,RSJ,...,RsM)}SS:1 be anauxiliary training set wherd X, A;) ~ p and R, =

2\We refer to [11] for a thorough explanation of the concerititglierms.



Input: SpaceF = spaf;, 1 < i < d}, initial function @0 € F, number of samples

Build the auxiliary se{ (X, As, Ro.1,. .., Renr}omy and{Y?,,..., Y 1/, for eachs
fork=1,2,...do

ComputeX* = arg miny e E@* Y
Run one iteration of AST (Fig. 1) usinf samples generated accordinghfo
end for

Figure 2: A pseudo-code for the Best Average Transfer (BAgQr@thm.

Rm(Xs, As). In each state-action pair, we generditenext states for each task, that)i’§m ~
P (+| Xs, As) with ¢ = 1,...,T. Thus, for any functior) we define the estimated transfer error as

M M

s T 2
:%g 51— Z)\mRS,er%Z(maXQ 515 @ )Z)""II}I‘E}XQ(Y;W@’))}. 3)

m=2 t=1 m=2

At each iteration, the algorithnBest Average TransfefBAT) (Fig. 2) first computesX"’ =
argminyep Ex(QF~1), whereA is the (M-2)-dimensional simplex, and then runs an iteration of

AST with samples generated according to the proportf(fnsWe denote by\* the best combina-
tion at iterationk, that is

M
A = argmin€3(Q" 1) = argminkE, [( ZZQAm<Tm@k-1>(z,a> - (Tlék*)(x,a))ﬂ @

The following performance guarantee can be proved for BAT.

Lemma 1. Let {(X,, A,, RL,..., RM)}S_, be a training set wher¢X,, A,) %  and R™
R™(Xs, As) and for each state-action pair and for each task7’ next stateg’”; ~ P (- |XS, As
with¢ = 1,...,T are available. For any fixed bounded functich € B(X X A; Viax), the A
returned by minimizing Eq. 3 is such that

yZ |l

E5(Q) . (Q) < Wiy LL=2I0BISNE 1 logdSM)b ®
with probability1 — 6.

From the previous lemma the approximation performance af 8#each iteration follows.

Theorem 3. Let Q%! be the function returned at the previous iteration a@@m the function
returned by the BAT algorithm (Fig. 2). Then for ahy: § < 1, Q& 7 satisfies

17(Qfan) = Tl < 4l far = TiQ ! |lu + 51/ Ex (QF1)

)1 5 log 8GN /6
B W) ) 20 B
2 1 2 4(12Le2)2(d+1)
+ 24(Vanax + Clla1]) 7 log ; n 32‘/‘“”\/3 log (%)

with probability1 — 4.

Remark 1 (Comparison with AST and single-task learning) The analysis of the bound shows
that BAT outperforms AST whenever the advantage in achgethie smallest possible transfer error
Exx is larger than the additional estimation error due to thelauy training set. Itis also interesting

to compare BAT to single-task learning. In fact, BAT perfarimetter than single-task learning



whenever the best possible combination of source tasks $mslatransfer error and the additional
estimation error related to the auxiliary training set isafiar than the estimation error in single-
task learning. In particular, this means tidat(1//S)'/*) + O((1/T)'/?) should be smaller than
O((d/N)'/?) (with N the number of target samples). The number of calls to thergéwe model
for BAT is ST. In order to have a fair comparison with single-task leagnire setS = N2/3 and

T = N'/3, then we obtain the conditioh/ < d>N—*/3 that constrains the number of tasks to
be smaller than the dimensionality of the function spacaNVe remark that the dependency of the
auxiliary estimation error ot/ is due to the fact that the vectors (over which the transfer error is
optimized) belong to the simplex of dimensionalityl/-2. Hence, the previous condition suggests
that, in general, adaptive transfer methods may signifigémprove the transfer performance (i.e.,
in this case a smaller transfer error) at the cost of additisaurces of errors which depend on the
dimensionality of the search space used to adapt the trgmsfeess (i.e., in this case).

Remark 2 (lterations). BAT recomputes the proportiond at each iteratior. In fact a combina-
tion \; approximating well the reward functioR; at the first iteration (i.e’R; ~ R 1) does not

necessarily have a small transfer efié7; — Ty )@1||# at the second iteration. We further investi-
gate how the best source combination changes throughdtesan the experiments of Section 6.

Remark 3 (Best source combination)The previous theorem shows that BAT achieves the smallest
transfer errof» (Q*~!) at the cost of an additional estimation error which scaléis thie size of the

auxiliary training set a®((M/S)/4)+0((1/T)'/?). We notice that the first term of the estimation
error depends on how well theis approximated by using a finite numbgrof state-action pairs
and it has a slower rate w.r.t. the other terms. The seconddepends on the number of next states
T simulated at each state-action pair which are used to estithe value of the Bellman operators.
As a result, in order to reduce the estimation error we neédct@ase botty and the number of
next stateq” in each state-action pair. It is interesting to notice tlivaflar estimation errors appear
in FVI [11] where the optimal Bellman operator is approxietby Monte-Carlo estimation.

Remark 4 (Training set). The implicit assumption in the definition of the auxiliarpiming set is
that it is possible to generate a series of next states aratdevior all the tasks at the same state-
action pairs. If the source training sets are fixed in advamkthe designer has no access to the
source tasks, then this assumption is not verified and ittipossible to test the similarity between
the MDPM and the target task. Nonetheless, if the generative modtidsource tasks is available
at learning time, the auxiliary training set could be getesidbefore the learning phase actually
begins. Furthermore, in the theoretical analysis, BAT doasuse the samples in the auxiliary
training set at learning time. A trivial improvement is texinde the auxiliary samples to the training
set.

Remark 5 (Comparison to other transfer methods). In [8] a method to compute the similarity
between MDPs is proposed. In particular, the authors initedhe definition oEomplianceas the
average probability of the target samples to be generated & sample-based estimation of the
source MDPs. The compliance is later used to determine toption of samples to be transferred
from each of the source tasks. Although this algorithm sharsimilar objective as BAT, they use
different notions of similarity. In particular, the methad[8] tries to identify source tasks which
areindividually similar to the target task, while the transfer error minietizn BAT considers the
averageMDP obtained by the transfer process. Furthermore, theomaif compliance tries to
measures the overall distance between two MDPs, whi(€)) always measures the distance of the
images of a functio) through two different Bellman operators.

Remark 6 (Computational complexity). Finally, we notice that the minimization &%, is a con-
vex quadratic problem since the objective function is canve\ and A\ belongs to the(M-2)-
dimensional simplex.

5 Best Transfer Trade-off Algorithm

The previous algorithm is proved to successfully estimagedombination of source tasks which
better approximates the Bellman operator of the target tdsketheless, BAT relies on the implicit



Input: Linear spaceF = spafy;,1 < ¢ < d}, initial function Q° € F, maximum
number of samples available for each taék, transfer parameter

Build a training se{ X, A,, R:, ..., RY}5_, and the next state,, ..., Y1}/, for
each state-action pair

for k=1,2,...do

Computes = arg minﬁeloyl]M 5ﬁ +c,/ m

Run one iteration of AST (Fig. 1) usinfj samples generated accordingxo
end for

Figure 3: A pseudo-code for Best Tradeoff Transfer (BTT).

assumption that, samples can always be generated from any sourcé st it cannot be applied

to the case where the number of source samples is limitece Werconsider the more challenging
case where the designer has still access to the source tatskalp a limited number of samples
is available in each of them. In this case, an adaptive tearadforithm should solve a tradeoff
between selecting as many samples as possible, so as te ribduestimation error, and choosing
the proportion of source samples properly, so as to cortfimtriansfer error. The solution of this
tradeoff may return non-trivial results, where source sasiknilar to the target task but with few
samples are removed in favor of a pool of tasks whose avecamghly approximate the target task
but can provide a larger number of samples.

Here we introduce th8est Tradeoff TransfefBTT) algorithm (see Figure 3). Similar to BAT, it
relies on an auxiliary training set to solve the tradeoff. #émote byN,,, the maximum number of
samples available for source task Let 3 € [0,1] be a weight vector, wherg,, is the fraction
of samples from taskn used in the transfer process. We denotefhy(Eg) the transfer error
(the estimated transfer error) with proportionsvhereX,, = (B, Nim)/ >,/ (B Niwr). At €ach
iterationk, BTT returns the vectos which optimizes the tradeoff between estimation and temsf
errors, that is

N ~ o~ d
F—arg min (& i I . , 6
B =arg min (£5(Q") S ) (6)

wherer is a parameter. While the first term accounts for the traresfer induced bys, the second
term is the estimation error due to the total amount of sasyed by the algorithm.

Unlike AST and BAT, BTT is a heuristic algorithm motivated the performance bound in Theo-
rem 1 and we do not provide any theoretical guarantee ab®peiformance. The main technical
difficulty w.r.t. the previous algorithms is that the sedticonsidered here does not match the random
task design assumption (see Def. 1) since the number of ssaroples is constrained BY,,. As

a result, given a proportion vectar we cannot assume samples to be drawn at random according
to a multinomial of parameters Without this assumption, it is an open question whethemelai
boundto AST and BAT could be derived. Nonetheless, the éxgertal results reported in Section 6
show the effectiveness of BTT in solving the transfer trdfleo

6 Experiments

In this section, we report and discuss preliminary expeniaeresults of the transfer algorithms
introduced in the previous sections. The main objective iflustrate the functioning of the algo-
rithms and compare their results with the theoretical figdirirhus, we focus on a simple problem
and we leave more challenging problems for future work.

We consider a continuous extension of the 50-state varfahé@hain walk problem proposed in [6].
The state space is described by a continuous state vatiavd two actions are available: one that

3If A = 1 for taskm, then the algorithm would generate all theraining samples from task.



Table 1: Parameters for the first set of tasks Table 2: Parameters for the second set of tasks

tasks p l n Reward tasks p l n Reward

M; 09 1 01 H41lin[-11,-9]U]9,11] Mi 09 1 01 41lin[-11,-9JU]9,11]
My 09 2 01 —5in[-11,-9]U][9,11] Mg 07 1 0.1 41lin[-11,-9JU]9,11]
Mz 09 1 01 +5in[-11,-9]U9,11] M7z 01 1 01 +1lin[-11,-9]U9,11]
My 09 1 0.1 +1in [—6, —4] U [4, 6] Mg 09 1 01 —5in[-11,-9]U9,11]
Ms 09 1 0.1 —1in [—6, —4] U [4, 6] Mo 0.7 1 0.5 +5in[—11,-9]U[9,11]
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Figure 4: Transfer froriMy, M3, M4, Ms5. Left: Comparison between single-task learning, AST
with L = 10000, BAT with L = 1000, 5000, 10000. Right: Source task probabilities estimated by
BAT algorithm as a function of FQI iterations.

moves towardeft and the other towandght. With probabilityp each action makes a step of length
affected by a noise, in the intended direction, while with probability— p it moves in the opposite
direction. For the target taskt,, the state—transition model is defined by the following paeters:

p = 0.9,1 = 1, andn is uniform in the interva[—0.1,0.1]. The reward function provides1
when the system state reaches the regjerid, —9] and[9, 11] and0 elsewhere. Furthermore, to
evaluate the performance of the transfer algorithms ptsiadescribed, we considered eight source
tasks{Ma, ..., Mgy} whose state—transition model parameters and reward &unsctire reported

in Tab. 1 and 2. To approximate the Q-functions, we use atinembination of 20 radial basis
functions. In particular, for each action, we consiflgsaussians with means uniformly spread in
the interval—20, 20] and variance equal tt5, plus a constant feature. The number of iterations for
the FQI algorithm has been empirically fixed18. Samples are collected through a sequence of
episodes, each one starting from the state= 0 with actions chosen uniformly at random. For all
the experiments, we average ouéf runs and we report standard deviation error bars.

We first consider thpuretransfer problem where no target samples are actually ngbé iearning
training set (i.e.\; = 0). The objective is to study the impact of the transfer ernge tb the use
of source samples and the effectiveness of BAT in finding taklé combination of source tasks.
The left plot in Fig. 4 compares the performances of FQI with aithout the transfer of samples
from the first four tasks listed in Tab. 1. In case of singlektizarning, the number of target samples
refers to the samples used at learning time, while for BAEBfiresents the siz& of the auxiliary
training set used to estimate the transfer error. Thusewhikingle-task learning the performance
increases with the target samples, in BAT they just makenasibn of £, more accurate. The
number of source samples added to the auxiliary set for eagettsample was empirically fixed
to one " = 1). We first run AST withL = 10000 and X2 = A3 = Ay = As = 0.25 (which
on average corresponds to 2500 samples from each sourcé)caksbe noticed by looking at the
models in Tab. 1, this combination is very different from theget model and AST does not learn
any good policy. On the other hand, even with a small set offianxtarget samples, BAT is able to
learn good policies. Such result is due to the existenceneéli combinations of source tasks which
closely approximate the target tagid; at each iteration of FQI. An example of the proportion
coefficients computed at each iteration of BAT is shown intiigat plot in Fig. 4. At the first
iteration, FQI produces an approximation of the reward fiomc Given the first four source tasks,
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Figure 5: Transfer frora\g, M~, Mg, Mg. Left: Comparison between single-task learning and
BAT with L = 1000, 5000, 10000. Right: Comparison between single-task learning, BAT with
L = 1000, 10000 in addition to the target samples, and BTAd £ 0.75) with 5000 and 10000
samples for each source task. To improve readability, thieiptruncated at 5000 target samples.

BAT finds a combinationX ~ (0.2,0.4,0.2,0.2)) that produces the same reward functiori&s
However, after a few FQI iterations, such combination is raremable to accurately approximate

functions7:Q. In fact, the state—transition model of tagK; is different from all the other ones
(the step length is doubled). As a result, the coefficlentrops to zero, while a new combination
among the other source tasks is found. Note that BAT sigmifigémproves single-task learning, in
particular when very few target samples are available.

In the general case, the target task cannot be obtained aoarhination of the source tasks, as it
happens by considering the second set of source tasks (M7, Mg, My). The impact of such
situation on the learning performance of BAT is shown in tfé plot in Fig. 5. Note that, when
a few target samples are available, the transfer of sampdasd combination of the source tasks
using the BAT algorithm is still beneficial. On the other hathe: performance attainable by BAT is
bounded by the transfer error corresponding to the bestsdask combination (which in this case
is large). As a result, single-task FQI quickly achieves tebg@erformance.

Results presented so far for the BAT transfer algorithm mgsthat FQI is trained only with the
samples obtained through combinations of source taskse &inumber of target samples is already
available in the auxiliary training set, a trivial improvent is to include them in the training set
together with the source samples (selected according t@nbgortions computed by BAT). As
shown in the plot in the right side of Fig. 5 this leads to a gigant improvement. From the behavior
of BAT it is clear that with a small set of target samples, ib&tter to transfer as many samples as
possible from source tasks, while as the number of targeplesmcreases, it is preferable to reduce
the number of samples obtained from a combination of soastestthat actually does not match the
target task. In fact, fol. = 10000, BAT has a much better performance at the beginning but it is
then outperformed by single-task learning. On the othedhfam L. = 1000 the initial advantage is
small but the performance remains close to single-task BQafge number of target samples. This
experiment highlights the tradeoff between the need of $erp reduce the estimation error and
the resulting transfer error when the target task cannoxpeessed as a combination of source tasks
(see Section 5). BTT algorithm provides a principled wayddrass such tradeoff, and, as shown
by the right plot in Fig. 5, it exploits the advantage of tf@nsng source samples when a few target
samples are available, and it reduces the weight of the sdasks (so as to avoid large transfer
errors) when samples from the target task are enough. Itéseisting to notice that increasing the
number of samples available for each source task 5661 to 10000 improves the performance
in the first part of the graph, while keeping unchanged thd fieaformance. This is due to the
capability of the BTT algorithm to avoid the transfer of soeisamples when there is no need for
them, thus avoidingegative transfeeffects.
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7 Conclusions

In this paper, we formalized and studied the sample-transfgblem. We first derived a finite-
sample analysis of the performance of a simple transferigfgo which includes all the source
samples into the training set used to solve a given targlt tasthe best of our knowledge, this
is the first theoretical result for a transfer algorithm in Biowing the potential benefit of transfer
over single-task learning. Then, in the case when the deshus direct access to the source tasks,
we introduced an adaptive algorithm which selects the ptapoof source tasks so as to minimize
the bias due to the use of source samples. Finally, we caesidemore challenging setting where
the number of samples available in each source task is tinaitel a tradeoff between the amount
of transferred samples and the similarity between sourddanget tasks must be solved. For this
setting, we proposed a principled adaptive algorithm. IBinee report a detailed experimental
analysis on a simple problem which confirms and supportdberetical findings.

This work opens several directions for future work.

e Transfer with transformationdn many problems, there exist simple transformations to the
source tasks dynamics and reward which would increase shmilarity w.r.t. the target
task, thus making the transfer process more effective. Hiimearansformations could be
used in the adaptive transfer algorithms presented in #gieipis an interesting direction
for future work. In particular, it is an open question whettiee cost (in terms of samples)
of finding a suitable transformation would be effectivelyoter-balanced by transferring
more similar samples.

e Transfer between tasks with different state-action spdoe®any real applications source
and target tasks might have a different number of statebl@dand different actions. Thus,
the current work should be extended to the more general ¢ddaasks with different state-
action spaces and it should be integrated with inter-tasgping transfer methods (see
[14]).

e Transfer with fixed tasks desigiefinition 1 prescribes the process used to generate the
training set used in learning the target task. At each stetien pair, the sample is gener-
ated from a source task chosen at random according to a wwith distribution. When
the designer has no access to the source tasks and theilessamplgenerated beforehand,
this generative model is not reasonable. A different mofiletdtasks design) should be
defined where each sample is coming from a specific sourcdnighfixed in advance. An
interesting direction for future work is to understand hbig different generative model af-
fects the performance of the transfer algorithm and whetliepossible to define effective
adaptive algorithms for this case.
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Input: Linear spaceF = spaf{y;, 1 < i < d}, initial function Q°

for k=1,2,...do
Draw training sample$(X.,., An, Y, Rn)}o2y
Build the feature matrid® = [¢(X1, A1) ;... ; 6(Xn, An) "]
Compute the vectas, = R, +ymax,c4 Q" ' (Yn,a')
Compute the projectiof” = (&7®)"'®Tp
Return the truncated functiog® = T(fay)

end for

Figure 6: A pseudo-code for Fitted Q-iteration.

A Additional Notation

Besides the notation introduced in Section 2, here we ingedadditional symbols used in the
proofs. We define two empirical norms on functions and vectGiven a set o state-action pairs
{(Xy, Ap) Y, drawn i.i.d. fromyu we define the empirical norf||; as

1 N
||f||i: Y f(XmAn)Q-
p3

Similarly, given a vectoy € RY we define the empirical nory|| v as

N
1
Iyllf = < D v
n=1

Given a set ofV state-action pair§(X,,, 4,)}Y_,, let® = [¢(X1, A1) ";...;0(Xn, Ax) "] be

n=1:

the feature matrix defined at the sta{és(,,, 4,)}Y_,, and F,, = {®a, o € R?} c RY be the

corresponding vector space. We denotdlbyRY — F, the empirical orthogonal projection onto
Fn, defined by

fly = argmin|Jy — 2]|. )
z€

FN

Note that the orthogonal projectidfy of anyy € RY always exists and is unique.

B Fitted Q-iteration with Linear Spaces

Although fitted iterative methods have been already andlyzeletail in [11] and [1], at the best
of our knowledge no explicit finite-sample bounds for FQIlwlinear spaces is available. Since at
each iteration, FQI solves an explicit regression problmderivation is mostly a straightforward
application of regression bounds for linear spaces andrgtiadboss. Here we just report the result
and the proof of the single iteration error for the so-cafieeld and random samples design settings.

In Algorithm 6 we report the structure of the algorithm.

B.1 Fixed Samples Design

Similar to the analysis of LSTD in [7] we first derive the fixeesign bound (i.e., the performance
is evaluated exactly on the states in the training set).

Theorem 4. Let F = {é(-,-)"a,a € R?} be a d-dimensional linear space. Let
{(zn, an, Yn, Ry)}N_, be the training set wheré(z.,, a,,)}}\_, is an arbitrary sequence of state-
action pairs,Y,, ~ P(-|zn, a,), andR,, = R(zn, ay). Given a functior € B(X x A, Vinax), let
q € RY be the vector whose components gye= (7 Q)(z,, a,,) andg be the solution of a single
iteration of fitted value iteration. Then with probability— ¢ (w.r.t. the random next statés,), 4
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Figure 7: This figure shows that the vectors used in the prb®heorem 4.

satisfies

(8)

4]

j ; 2 3(9Ne2)d+1
||q - q||N < ||Hq - q||N + 4VmaX\/N 10g <¥) .

Proof. We denote by, € RY the orthogonal projection of the target vecgasnto the vector space
Fn, thatisu = Ilg. By the definition of orthogonal projection and the Pythagor theorem we
decompose the errdlig — ¢|| v as

G —ally = 11d = ullX + [lu — qllx, )
where the first term represents the estimation error andetbensl term is the approximation error

(see Fig. 7). We denote gy, = p,, — ¢, the noise in the observatiopav.r.t. q. It is easy to notice
that

E [¢n] = Eyop(|zn,an) R(wman,YvalgﬁQ(Y,a’) —(TQ)(wpn,an) =0,  (10)

and thatl¢,,| < 2Vi.x. We also define the projected noge= G, — u,, thatis¢ = I1¢. Thus, we
can rewrite the estimation error as

1d —ullR = 1I€l1% = (€,€) = (£,), (11)

where the last equality follows from the fact tiais the orthogonal projection @f Sinceé € Fy,

let fg € F be any function such thaftz(x,,, a,) = £., and by a straightforward application of a
variation of Pollard’s inequality [5] we obtain

Ll e Er 3(9Ne2)d+1
(€,6) = N ;gnfﬁ(znaan) < 4Vinax <N;fﬁ(xnaan)2> Nlog <(+)>

. 2 3(9Ne2)d+1
:4Vmax||§||N\/N log (%) (12)
with probability1l — §. Thus from equation 11 we bound the estimation error by
R 2 3(9Ne2)d+1
||q_u||N S 4Vmax\/N 1Og (%) (13)
Putting together the estimation error bound and the appration error term, the statement of the
theorem follows. O

B.2 Random Samples Design

While in the previous section we analyzed the performandeQifon the very same state-action
pairs in the training set, we now focus on the generalizafi@n, prediction) performance on the
whole state-action space.

Let Q be any functionf; € F satisfying®@ = ¢, whereg is the vector defined in the previous
section. Then we derive the following theorem.
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Theorem 5. Let F = {¢(-,-)"a,a € R?} be a d-dimensional linear space. Let
{(Xn, An, Yo, Ry)}Y_, be the training set wheréX,,, A,,) (S w, Yo ~ P(|X,,A), and
R, = R(X,, A,). Given a function € B(X x A, Viax), let Q be the solution of a single it-
eration of fitted value iteration. Then with probability— ¢ (w.r.t. the samples and the next states),

@ satisfies

IT(@) = TQllu <4 inf_[Ifa = TQll,

)
+ 24(Vinas + Dl - log 3

2 (27(12Ne2)2(d+D)
4 32V \/N log (%) . (14)

Proof. The proof mainly relies on the application of concentratibmeasures inequalities for linear
spaces to the deterministic design bound in Theorem 4.

Let f4. € F be any function such that, (X,,) = (Ilq),, thus the approximation errglilq — ¢/ v
can be rewritten af f4, — 7Q||;. Furthermore we denote bf,, = II(7Q), that is the best
approximation of the target functioh@ ontoF w.r.t. the distributionu. Sincefs, is the minimizer
of the empirical squared error, any functionfidifferent fromfs, has a bigger empirical loss, thus
we obtain
2
1fa. = TQllg < lfa. — TQlls < 2 fa. — TQlly + 12(Vinas + Lllasl)y/ xclog 5, (15)

with probability1l — ¢’, where the second inequality is an application of a vametiol heorem 11.2
in [5] with a bound||fo, — TQ||co < Vimax + L||a]||. Similar, we notice that the left hand side of

Eq.8is||¢ — gl[x = [|Q — T*Ql|, and we obtain

0 5 A 2(d+1)
210 - TQll = 2T(@ - Tally > IT(Q) - Tl — 24vmax\/% o (L2220)

(16)

with probability1l — ¢’, where the second inequality is an application of a vanmetiol heorem 11.2
in [5]. Putting together Egs 8, 15, and 16 we obtain

~ 2 3
IT(Q) — TRl <2 <2||fa* = TQllu + 12(Vinax + Llle[[)4/ 57 log 5+

2 3(9Ne2)d+1 2 9(12eN)2(d+1)
+ 4Vmax \/N log (T + 24Vmax N 10g #

Finally, by settingd = 34’ the statement follows. O

C Analysis of AST

C.1 Proof of Theorem 1

Proof. Since the proof follows similar steps as in the proof of Tleaor5, we discuss here only
the fixed samples design bound. We define the vegeter R” such that for any = 1,...,L,

P = Zﬁf:l I{M; = m} (R™ +~ymax, Q(Y;™,d’)). The target vectog € R” is the image of the
function through the average optimal Bellman operator. In fact, Hintey ¢; = (7,Q)(X;, A;)
we obtain a zero-mean noise vec{pr= p; — ¢; such thatt [¢] = 0 and|¢| < 2Vinax. ¢

“The expectation is taken w.r.t. both the random realizatfthe rewardR;" and next stat&;™ and task
index M.
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The statement of the theorem simply follows by decompogiagtediction error o@ as

IT(@) = TiQll < IT(@Q) = TaQlly + IITAQ = TiQll - (17)
By substituting|7(Q) — T Q|| with a FQI bound w.r.t. the target functioh, @ we obtain
IT(@) = TiQllu < 4l fa = TAQllu + IT7Q = TiQl, (18)
2 9
+24(‘/max+c||a||) Zlogg
2)2(d+1)
+ 32Vmax\/ % log (%) : (19)

By rewriting the approximation error 8, — T2Q||, < [|fa — T'Qll, + ||T*Q — T»Q||,, and
usinga = «a, the final bound follows.

O

C.2 Proof of Theorem 2

Proof. [Sketch]The main structure of the proof is exactly the same as in [Lh§ main differences
are due to the use of linear spaces and the transfer errdowkiand the passages in the proof of
Theorem 2 in [11], we obtain

* TK 2’7 "k A
Q" —Q ||u§m \/Cu.,um]?XHT(Qk)*TleHu*QVmaﬂK :

Thus, we need to study all the terms in the statement of Thedraffected by the maximization

over the iterations.

Approximation error.The approximation term becomes
maxmin || f — T QF||, < supmin || f — T* .
wxain |/ = 7' Q"u < supmin If = Tgll
This term is referred to as the inherent Bellman error of lees.F and it is related to how well the

Bellman images of functions i can be approximated by itself.

Estimation error. The second relevant term is the tefim”|| appearing in the estimation error. We
recall thatf,» = II7,Q*~! is the projection orF of the Bellman image of the function returned

at the previous iteration. The functiafi\’“*1 is truncated in the intervdlVi,ax, Vinax] @and its

Bellman imagé]}@’“*l is still bounded in the same interval. Since the projectiparatorIl is a
non-expansion, we finally have thaf,« |[cc < Vinax. Using Assumption 2, for any, € F, itis
possible to relate the norm of the function to the norm of thetera as

2 _ T 2 _ T T . _ 2
fallz = ¢ el = o Ga > wa' a = w|laf|".
By combining the bound oa with the bound ory,,, we obtain that

||fa§ 12 Vmax
Jo = Vo

max | ||| < max
k k
Transfer error.Since@’“ is the truncation of a functiofiy» = @’“ belonging taF, the transfer error
is

max||(71 — TR Nl = sup (T = TA)T(fo)

Finally, the statement of the theorem follows by taking soarhound overs iterations.
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D Analysis of BAT

D.1 Proof of Theorem 3

Lemma 2. Let {(X,, A,, R}, ..., RM)}S_, be a training set wheréX,, A,) “ ;i and R™
R™(X,, As) and for each state-action pair and for each task7" next state’]"; ~ P (- |X§, A,
with¢ = 1,...,T are available. For any fixed bounded functiGh € B(X X A; Viax), the A
returned by minimizing Eq. 3 is such that

E5(Q) — £0.(Q) < Wi LL2UOBISN gz JowSMJD

with probability1 — .

yZ_

Proof. [Lemma 2]

The sketch of the proof is as follows. For any state-actidn fia, A, we define

5 (Xs, As) Z)\ R +~v= Z(maXQk 5ta Z)\ maka Yym ot /)),

and
SA(XS,AS) = (Tlék_l)(XSaAS) - Z Am(lrmék_l)(XSvAS)-

As aresulté, = E, [Ex(z,a)?] and&, = 3 Zle E\(X,, A,)2. By Pollard’s inequality on the
(M-2)-dimensional simpleX, we have for any\ € A

M —2)1 !
B, [Ex (2, )?] ——Z&XS,A |§Vmax\/% (21)

with probability1 — ¢’. Using Chernoff-Hoeffding inequality we now bound the diste between
the true Bellman operators &), (X, A5) and their estimates ifi\ (X, A;). By triangle inequality
and the previous definitions, we obtain the following seaesequlities

S S

1 ~ ~
|— ZS/\ (X, Ay)° T 5 En(Xs, As)? < | (Ex(Xs, As) — Ex(Xs, Ag))?|

T
§2mgxmrgx((7m@k (X, Ag) Z aXQ s @ ))2

2
!
<9 <2VW1 / %) (22)

By using Egs 21 and 22, we have for ahyg A

= (M — 2)log S/d' 5 logSM/¢
_ < RSttt =Rt Al —
|5)\ 5/\| >~ ‘/max\/ g 8Vmax T )

with probability1 — 24’. Finally, we can prove the following sequence of inequesiti
5x—5,\* =5x—gx+gx—§,\* +§,\* —5,\*

~ _ / !
<2sup |y — &y < QVmaX\/W 16‘/1121&)(M,
AEA S T
with probability 1 — 4¢’. By settings = 46’ the statement follows. O
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Figure 8: Percentage of samples for each task as selected by8a function of FQI iterations
when5000 samples are available for each source tdst: 100 target samples availabl&ight:
10000 target samples available.

E Additional Experimental Analysis
In this section, we provide additional experimental restéfated to the BTT algorithm.

E.1 Analysis of parameterss

In order to have a better understanding on how BTT tradesadiffiben the need for samples and
the risk of introducing a large transfer error, in Figure 8shew the values of parametegtgwhich
represent the percentage of samples transferred from aakh das optimized by the BTT algo-
rithm at each FQI iteration. The tasks considered are thgetaask M; and the source tasks
Mg, M7, Mg, Mg, each one witlb000 samples available. Figure 8 compares the values iof
two scenarios: when the available target sampled @d€left pane) and 0000 (right pane). Obvi-
ously, BTT always exploits all the target samplgs & 1). When few target samples are available,
BTT transfers high percentages of samples from the sousks.tdn particular, it transfers all the
samples available from task!y in each iteration, and also the percentage of samples taken f
task My is almost constant (aboQt7). The percentage of samples transferred from tagisand
M starts froml00% and decreases (with different rates) through iteratioashimg zero after it-
eration 10. This behavior can be explained by the attemptdinde as many samples as possible
at the earlier iterations when it is still possible to find donations of sources with a small transfer
error. As the iterations continue, no suitable combinatibeources is possible and the algorithm
is forced to reduce the number of samples from the more diftesource tasks. On the other hand,
when the number of target samples is large enough, we nbititete percentage of samples trans-
ferred from all the source tasks drop down after the first E€htions. In fact, in this case, BTT
exploits a lot of source samples to produce a more accurgr@@mations only when a very small
error is introduced. On the other hand, as the iterationgrpss, the samples from the source tasks
(even when optimally combined) provide a poor approxintatibthe Q-functions and, as a result,
BTT, given the large number of target sampl@8000), prefers to reduce the number of samples
transferred from the source tasks.

In Figure 9 we show the proportionsnduced by the weights computed by BTT. When onl}00
target samples are available, BTT tries to compensate tkedftarget samples by transferring a
large amount of samples from a suitable combination of sotagks, while, when many target sam-
ples are available, it considers source samples only whenddin guarantee a good approximation
of the target Q-functions, otherwise the proportions aanged in favor of the target samples.

Finally, in Figure 10, we consider the total number of sarsplsed to train FQI at each iteration
under the two scenarios. As expected, at the first iteratidnes to the similarity between source
tasks and target task, the number of samples provided to F@TT is very large and then it
decreases through iterations. It is interesting to notie¢ the total number of samples selected in
the two scenarios are quite similar (in particular starfiogn the third iteration), which is an effect
of the tradeoff realized by the BTT algorithm.
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Figure 9: Proportions in the combination of task sampleaded by BTTj parameters as a function
of FQI iterations.Left: 100 target samples availablRight: 10000 target samples available.
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Figure 10: Number of samples actually used at each iteréaifter the transfer) by FQLeft: 100
target samples availablRight: 10000 target samples available.

E.2 Analysis of parameterr

The tradeoff realized by the BTT algorithm is tuned by theapagterr multiplying the estimation
error. In Figure 11 we analyze the effectofon the learning performances. Different values of
the tradeoff parameter have been tried€ 0.25,0.50,0.75, 1.0) when both5000 samples (left
pane) and 0000 samples (right pane) are available for each source task.eAsaw notice, BTT is
quite robust w.r.t. the choice of the tradeoff parametele fitain differences appear when a small
number of target samples is available. In this case, loweshfr make BTT more concerned
about the transfer error and, as a result, it tends to avaitsterring source samples, even if target
samples are not enough. On the other hand, with high valuesB¥T is pushed to use more source
samples, and this may negatively affect the performancesbeeral target tasks are available and
no combination of source tasks provides a good target appetion.
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Figure 11: Comparison of the performance of FQI using BT Datgm with different values of the
tradeoff parameter. Left: 5000 samples available for each sour&8ght: 10000 samples available
for each source.
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