
HAL Id: inria-00618037
https://inria.hal.science/inria-00618037v2

Submitted on 1 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transfer from Multiple MDPs
Alessandro Lazaric, Marcello Restelli

To cite this version:
Alessandro Lazaric, Marcello Restelli. Transfer from Multiple MDPs. [Technical Report] 2011. �inria-
00618037v2�

https://inria.hal.science/inria-00618037v2
https://hal.archives-ouvertes.fr


Transfer from Multiple MDPs

Alessandro Lazaric
INRIA Lille - Nord Europe, Team SequeL, France

alessandro.lazaric@inria.fr

Marcello Restelli
Department of Electronics and Informatics, Politecnico diMilano, Italy

restelli@elet.polimi.it

Abstract

Transfer reinforcement learning (RL) methods leverage on the experience col-
lected on a set of source tasks to speed-up RL algorithms. A simple and effective
approach is to transfer samples from source tasks and include them in the train-
ing set used to solve a target task. In this paper, we investigate the theoretical
properties of this transfer method and we introduce novel algorithms adapting the
transfer process on the basis of the similarity between source and target tasks.
Finally, we report illustrative experimental results in a continuous chain problem.

1 Introduction

The objective of transfer in reinforcement learning (RL) [12] is to speed-up RL algorithms by reusing
knowledge (e.g., samples, value function, features, parameters) obtained from a set of source tasks.
The underlying assumption of transfer methods is that the source tasks (or a suitable combination
of these) are somehow similar to the target task, so that the transferred knowledge can be useful in
learning its solution. A wide range of scenarios and methodsfor transfer in RL have been studied
in the last decade (see [14, 9] for a thorough survey). In thispaper, we focus on the simple transfer
approach where trajectory samples are transferred from source MDPs to increase the size of the
training set used to solve the target MDP. This approach is particularly suited in problems (e.g.,
robotics, applications involving human interaction) where it is not possible to interact with the envi-
ronment long enough to collect samples to solve the task at hand. If samples are available from other
sources (e.g., simulators in case of robotic applications), the solution of the target task can benefit
from a larger training set that includes also some source samples. This approach has been already
investigated in the case of transfer between tasks with different state-action spaces in [13], where the
source samples are used to build a model of the target task whenever the number of target samples is
not large enough. A more sophisticated sample-transfer method is proposed in [8]. The authors in-
troduce an algorithm which estimates the similarity between source and target tasks and selectively
transfers from the source tasks which are more likely to provide samples similar to those generated
by the target MDP. Although the empirical results are encouraging, the proposed method is based
on heuristic measures and no theoretical analysis of its performance is provided. On the other hand,
in supervised learning a number of theoretical works investigated the effectiveness of transfer in
reducing the sample complexity of the learning process. In domain adaptation, a solution learned on
a source task is transferred to a target task and its performance depends on howsimilar the two tasks
are. In [2] and [10] different distance measures are proposed and are shown to be connected to the
performance of the transferred solution. The case of transfer of samples from multiple source tasks
is studied in [3]. The most interesting finding is that the transfer performance benefits from using a
larger training set at the cost of an additional error due to the average distance between source and
target tasks. This implies the existence of atransfer tradeoffbetween transferring as many samples
as possible and limiting the transfer to sources which are similar to the target task. As a result, the
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transfer of samples is expected to outperform single-task learning whenevernegativetransfer (i.e.,
transfer from source tasks far from the target task) is limited w.r.t. to the advantage of increasing the
size of the training set. This also opens the question whether it is possible to design methods able to
automatically detect the similarity between tasks and adapt the transfer process accordingly.

In this paper, we investigate the transfer of samples in RL from a more theoretical perspective w.r.t.
previous works. The main contributions of this paper can be summarized as follows:

• Algorithmic contribution.We introduce three sample-transfer algorithms based on fitted Q-
iteration [4]. The first algorithm (ASTin Section 3) simply transfers all the source samples.
We also design two adaptive methods (BAT andBTT in Section 4 and 5) whose objective
is to solve the transfer tradeoff by identifying the best combination of source tasks.

• Theoretical contribution.We formalize the setting of transfer of samples and we derivea
finite-sample analysis of AST which highlights the importance of theaverageMDP ob-
tained by the combination of the source tasks. We also reportthe analysis for BAT which
shows both the advantage of identifying the best combination of source tasks and the addi-
tional cost in terms of auxiliary samples needed to compute the similarity between tasks.

• Empirical contribution.We report results (in Section 6) on a simple chain problem which
confirm the main theoretical findings and support the idea that sample transfer can signifi-
cantly speed-up the learning process and that adaptive methods are able to solve the transfer
tradeoff and avoid negative transfer effects.

The rest of the paper is organized as follows. In Section 2 we introduce the notation and we define
the transfer problem. Section 3 reports the theoretical analysis of AST. BAT is described in Section 4
along with its theoretical analysis. A more challenging setting is introduced in Section 5 together
with BTT. Section 6 reports the experimental results and Section 7 concludes the paper. Finally, in
the appendix we report the proofs and some additional experimental analysis.

2 Preliminaries

In this section we introduce the notation and the transfer problem considered in the rest of the paper.

Notation for MDPs. We define a discounted Markov decision process (MDP) as a tuple M =
〈X ,A,R,P , γ〉 where the state spaceX is a bounded closed subset of the Euclidean space,A is a
finite (|A| < ∞) action space, the deterministic1 reward functionR : X ×A → R is uniformly
bounded byRmax, the transition kernelP is such that for allx ∈ X anda ∈ A, P(·|x, a) is
a distribution overX , andγ ∈ (0, 1) is a discount factor. We denote byS(X ×A) the set of
probability measures overX ×A and byB(X ×A;Vmax=

Rmax

1−γ ) the space of bounded measurable
functions with domainX ×A and bounded in[−Vmax, Vmax]. We define the optimal action-value
functionQ∗ as the unique fixed-point of the optimal Bellman operatorT : B(X ×A;Vmax) →
B(X ×A;Vmax) defined by

(T Q)(x, a) = R(x, a) + γ

∫

X

max
a′∈A

Q(y, a′)P(dy|x, a).

Notation for function spaces. For any measureµ ∈ S(X ×A) obtained from the combination
of a distributionρ ∈ S(X ) and a uniform distribution over the discrete setA, and a measurable
functionf : X ×A → R, we define theL2(µ)-norm off as||f ||2µ = 1

|A|

∑
a∈A

∫
X
f(x, a)2ρ(dx).

The supremum norm off is defined as||f ||∞ = supx∈X |f(x)|. Finally, we define the standard

L2-norm for a vectorα ∈ R
d as||α||2 =

∑d
i=1 α

2
i . We denote byφ(·, ·) =

(
ϕ1(·, ·), . . . , ϕd(·, ·)

)⊤

a feature vector with featuresϕi : X ×A → [−C,C], and byF = {fα(·, ·) = φ(·, ·)⊤α} the linear
space of action-value functions spanned by the basis functions inφ. Given a set of state-action pairs
{(Xl, Al)}Ll=1, let Φ = [φ(X1, A1)

⊤; . . . ;φ(XL, AL)
⊤] be the corresponding feature matrix. We

define the orthogonal projection operatorΠ : B(X ×A;Vmax) → F asΠQ = argminf∈F ||Q −
f ||µ. Finally, byT (Q) we denote the truncation of a functionQ in the range[−Vmax, Vmax].

1The extension to stochastic reward functions is straightforward.
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Input: Linear spaceF = span{ϕi, 1 ≤ i ≤ d}, initial functionQ̃0 ∈ F

for k = 1, 2, . . . do
Build the training set{(Xl, Al, Yl, Rl)}

L
l=1 [according torandomtasks design]

Build the feature matrixΦ = [φ(X1, A1)
⊤; . . . ;φ(XL, AL)

⊤]

Compute the vectorp ∈ R
L with pl = Rl + γmaxa′∈A Q̃k−1(Yl, a

′)

Compute the projection̂αk = (Φ⊤Φ)−1Φ⊤p and the function̂Qk = fα̂k

Return the truncated functioñQk = T (Q̂k)
end for

Figure 1: A pseudo-code for All-Sample Transfer (AST) Fitted Q-iteration.

Problem setup.We consider the transfer problem in whichM tasks{Mm}Mm=1 are available and
the objective is to learn the solution for the target taskM1 transferring samples from the source
tasks{Mm}Mm=2. We define an assumption on how the training sets are generated.

Definition 1. (Random Tasks Design) An input set{(Xl, Al)}Ll=1 is built with samples drawn from
an arbitrary sampling distributionµ ∈ S(X × A), i.e. (Xl, Al) ∼ µ. For each taskm, one
transition and reward sample is generated in each of the state-action pairs in the input set, i.e.
Y m
l ∼ P(·|Xl, Al), andRm

l = R(Xl, Al). Finally, we define the random sequence{Ml}Ll=1 where
the indexesMl are drawn i.i.d. from a multinomial distribution with parameters(λ1, . . . , λM ). The
training set available to the learner is{(Xl, Al, Yl, Rl)}Ll=1 whereYl = Yl,Ml

andRl = Rl,Ml
.

This is an assumption on how the samples are generated but in practice, a single realization of
samples and task indexesMl is available. We consider the case in whichλ1 ≪ λm (m = 2, . . . ,M ).
This condition implies that (on average) the number of target samples is much less than the source
samples and it is usually not enough to learn an accurate solution for the target task. We will also
consider thepure transfercase in whichλ1 = 0 (i.e., no target sample is available). Finally, we
notice that Def. 1 implies the existence of a generative model for all the MDPs, since the state-
action pairs are generated according to an arbitrary sampling distributionµ.

3 All-Sample Transfer Algorithm

We first consider the case when the source samples are generated beforehand according to Def. 1
and the designer has no access to the source tasks. We study the algorithm calledAll-Sample
Transfer (AST) (Fig. 1) which simply runs FQI with a linear spaceF on the whole training set
{(Xl, Al, Yl, Rl)}Ll=1. At each iterationk, given the result of the previous iteratioñQk−1 =

T (Q̂k−1), the algorithm returns

Q̂k = argmin
f∈F

1

L

L∑

l=1

(
f(Xl, Al)− (Rl + γmax

a′∈A
Q̃k−1(Yl, a

′))

)2

. (1)

In the case of linear spaces, the minimization problem is solved in closed form as in Fig. 1. In the
following we report a finite-sample analysis of the performance of AST. Similar to [11], we first
study the prediction error in each iteration and we then propagate it through iterations.

3.1 Single Iteration Finite-Sample Analysis

We define theaverageMDP Mλ as the average of theM MDPs at hand. We define its reward
functionRλ and its transition kernelPλ as the weighted average of reward functions and transition
kernels of the basic MDPs with weights determined by the proportionsλ of the multinomial distribu-
tion in the definition of the random tasks design (i.e.,Rλ =

∑M
m=1 λmRm, Pλ =

∑M
m=1 λmPm).

The resulting average Bellman operator is

(T λQ)(x, a) =
( M∑

m=1

λmT mQ
)
(x, a) = R(x, a) + γ

∫

X

max
a′

Q(y, a′)P(dy|x, a). (2)
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In the random tasks design, the average MDP plays a crucial role since the implicit target function
of the minimization of the empirical loss in Eq. 1 is indeedT λQ̃k−1. At each iterationk, we prove
the following performance bound for AST.

Theorem 1. LetM be the number of tasks{Mm}Mm=1, with M1 the target task. Let the training
set{(Xl, Al, Yl, Rl)}Ll=1 be generated as in Def. 1, with a proportion vectorλ = (λ1, . . . , λM ). Let
fαk

∗

= ΠT1Q̃k−1 = arg inff∈F ||f − T1Q̃k−1||µ, then for any0 < δ ≤ 1, Q̂k (Eq. 1) satisfies

||T (Q̂k)− T1Q̃k−1||µ ≤ 4||fαk
∗

− T1Q̃k−1||µ + 5

√
Eλ(Q̃k−1)

+ 24(Vmax + C||αk
∗ ||)
√

2

L
log

9

δ
+ 32Vmax

√
2

L
log

(
27(12Le2)2(d+1)

δ

)
.

with probability1− δ (w.r.t. samples), where||ϕi||∞≤C andEλ(Q̃k−1) = ‖(T1 − T λ)Q̃
k−1‖2µ.

Remark 1 (Analysis of the bound).We first notice that the previous bound reduces (up to constants)
to the standard bound for FQI whenM = 1 (see Section B). The bound is composed by three main
terms: (i) approximation error,(ii) estimation error, and(iii) transfer error. The approximation
error||fαk

∗

− T1Q̃k−1||µ is the smallest error of functions inF in approximating the target function

T1Q̃k−1 and it is independent from the transfer algorithm. The estimation error (third and fourth
terms in the bound) is due to the finite random samples used to learnQ̂k and it depends on the
dimensionalityd of the function space and it decreases with the total number of samplesL with the
fast rate of linear spaces (O(d/L) instead ofO(

√
d/L)). Finally, the transfer errorEλ accounts for

the difference between source and target tasks. In fact, samples from source tasks different from the
target might biaŝQk towards a wrong solution, thus resulting in a poor approximation of the target
functionT1Q̃k−1. It is interesting to notice that the transfer error dependson the difference between
the target task and the average MDPMλ obtained by taking a linear combination of the source tasks
weighted by the parametersλ. This means that even when each of the source tasks is very different
from the target, if there exists a suitable combination which is similar to the target task, then the
transfer process is still likely to be effective. Furthermore,Eλ considers the difference in the result
of the application of the two Bellman operators to a given functionQ̃k−1. As a result, when the two
operatorsT1 andT λ have the same reward functions, even if the transition distributions are different
(e.g., the total variation||P1(·|x, a)−Pλ(·|x, a)||TV is large), their corresponding averages ofQ̃k−1

might still be similar (i.e.,
∫
maxa′ Q̃(y, a′)P1(dy|x, a) similar to

∫
maxa′ Q̃(y, a′)Pλ(dy|x, a)).

Remark 2 (Comparison to single-task learning).Let Q̂k
s be the solution obtained by solving one

iteration of FQI with only samples from the source task, the performance bounds of̂Qk andQ̂k
s can

be written as (up to constants and logarithmic factors)

‖T (Q̂k)− T1Q̃k−1‖µ ≤ ||fαk
∗

− T1Q̃k−1||µ + (Vmax + C||αk
∗ ||)
√

1

L
+ Vmax

√
d

L
+
√
Eλ ,

‖T (Q̂k
s)− T1Q̃k−1‖µ ≤ ||fαk

∗

− T1Q̃k−1||µ + (Vmax + C||αk
∗ ||)
√

1

N1
+ Vmax

√
d

N1
,

with N1 = λ1L (on average). Both bounds share exactly the same approximation error. The main
difference is that̂Qk

s uses onlyN1 samples and, as a result, has a much bigger estimation error than
Q̂k, which takes advantage of all theL samples transferred from the source tasks. At the same time,
Q̂k suffers from an additional transfer error which does not exist in the case of̂Qk

s . Thus, we can
conclude that AST is expected to perform better than single-task learning whenever the advantage
of using more samples is greater than the bias due to samples coming from tasks different from the
target task. This introduces atransfer tradeoffbetween including many source samples, so as to
reduce the estimation error, and finding source tasks whose combination leads to a small transfer
error. In Section 4 we show how it is possible to define an adaptive transfer algorithm which selects
proportionsλ so as to keep the transfer errorEλ as small as possible. Finally, in Section 5 we
consider a different setting where the maximum number of samples in each source is fixed.
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3.2 Propagation Finite-Sample Analysis

We now study how the previous error is propagated through iterations. Letν be the evaluation norm
(i.e., in general different from the sampling distributionµ). We first report two assumptions.2

Assumption 1. [11] Givenµ, ν, p ≥ 1, and an arbitrary sequence of policies{πp}p≥1, we assume
that the future-state distributionµP1

π1
· · · P1

πp
is absolutely continuous w.r.t.ν. We assume that

c(p) = supπ1···πp
||d(µP1

π1
· · · P1

πp
)/ν||∞ satisfiesCµ,ν = (1 − γ2)2

∑
p pγ

p−1c(p) < ∞.

We also need the featuresϕi to be linearly independent w.r.t.µ.

Assumption 2. LetG ∈ R
d×d be the Gram matrix with[G]ij =

∫
ϕi(x, a)ϕj(x, a)µ(dx, a). We

assume that its smallest eigenvalueω is strictly positive (i.e.,ω > 0).

Using the two previous assumptions we derive the following performance bound for AST.

Theorem 2. Let Assumptions 1 and 2 hold and the setting be as in Theorem 1.AfterK iterations,
AST returns an action-value functioñQK , whose corresponding greedy policyπK satisfies

||Q∗ −QπK ||ν ≤ 2γ

(1− γ)3/2

√
Cµ,ν

[
4 sup
g∈F

inf
f∈F

||f − T1g||µ + 5 sup
α

‖(T1 − T λ)T (fα)‖µ

+ 56(Vmax +
Vmax√

ω
)

√
2

L
log

9K

δ
+ 32Vmax

√
2

L
log

(
27K(12Le2)2(d+1)

δ

)
+

2Vmax√
Cµ,ν

γK

]
.

Remark (Analysis of the bound). The bound reported in the previous theorem displays few dif-
ferences w.r.t. to the single-iteration bound. The additional termO(γK) accounts for the error
due to the finite number of iterations of FQI and it decreases exponentially with baseγ. The ap-
proximation error is nowsupg inff ||f − T 1g||µ. This term is referred to as theinherent Bellman
error [11] of the spaceF and it is related to how well the Bellman images of functions in F can
be approximated byF itself. It is possible to show that for particular classes ofMDPs (e.g., Lips-
chitz), if a large enough number of carefully designed features is available, then this term is small.
In the estimation error, the norm||αk

∗ || is bounded using the linear independency between features
(Assumption 2) and the boundedness of the functionsQ̃k returned at each iteration. The resulting
term has an inverse dependency on the smallest eigenvalueω which tends to be small whenever the
Gram matrix is not well-defined (i.e., the features are almost linearly dependent). The transfer er-
ror supα ‖(T1 − T λ)T (fα)‖µ characterizes the difference between the target and average Bellman
operators through the spaceF . As a result, even MDPs with significantly different rewardsand tran-
sitions might have a small transfer error because of the functions inF . This introduces a tradeoff
in the design ofF between a “large” enough space containing functions able toapproximateT1Q
(i.e., small approximation error) and a small function space where the Q-functions induced byT1
andT λ can be closer (i.e., small transfer error). This term also displays interesting similarities with
the notion ofdiscrepancyintroduced in [10] in domain adaptation.

4 Best Average Transfer Algorithm

As discussed in the previous section, the transfer errorEλ plays a crucial role in the comparison with
single-task learning. In particular,Eλ is related to the proportionsλ inducing the average Bellman
operatorT λ which defines the target function approximated at each iteration. We now consider
the case where the designer has direct access to the source tasks (i.e., it is possible to choose how
many samples to draw from each source) and can define an arbitrary proportionλ. In particular, we
propose a method that adaptsλ at each iteration so as to minimize the transfer errorEλ.

We consider the case in whichL is fixed as a parameter of the algorithm andλ1 = 0 (i.e.,
no target samples are used in the learning training set). At each iterationk, we need to esti-
mate the quantityEλ(Q̃k−1). We assume that for each task additional samples available.Let
{(Xs, As, Rs,1, . . . , Rs,M )}Ss=1 be anauxiliary training set where(Xs, As) ∼ µ andRs,m =

2We refer to [11] for a thorough explanation of the concentrability terms.
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Input: SpaceF = span{ϕi, 1 ≤ i ≤ d}, initial functionQ̃0 ∈ F , number of samplesL

Build the auxiliary set{(Xs, As, Rs,1, . . . , Rs,M}Ss=1 and{Y t
s,1,. . ., Y

t
s,M}Tt=1 for eachs

for k = 1, 2, . . . do
Computêλk = argminλ∈Λ Êλ(Q̃

k−1)

Run one iteration of AST (Fig. 1) usingL samples generated according toλ̂k

end for

Figure 2: A pseudo-code for the Best Average Transfer (BAT) algorithm.

Rm(Xs, As). In each state-action pair, we generateT next states for each task, that isY t
s,m ∼

Pm(·|Xs, As) with t = 1, . . . , T . Thus, for any functionQ we define the estimated transfer error as

Êλ(Q)=
1

S

S∑

s=1

[
Rs,1−

M∑

m=2

λmRs,m +
γ

T

T∑

t=1

(
max
a′

Q(Y t
s,1, a

′)−

M∑

m=2

λm max
a′

Q(Y t
s,m, a

′)
)]2

. (3)

At each iteration, the algorithmBest Average Transfer(BAT) (Fig. 2) first computeŝλk =

argminλ∈Λ Êλ(Q̃k−1), whereΛ is the(M -2)-dimensional simplex, and then runs an iteration of
AST with samples generated according to the proportionsλ̂k. We denote byλk

∗ the best combina-
tion at iterationk, that is

λk
∗ = argmin

λ∈Λ
Eλ(Q̃k−1) = argmin

λ∈Λ
Eµ

[( M∑

m=2

λm(T mQ̃k−1)(x, a) − (T 1Q̃k−1)(x, a)
)2
]
. (4)

The following performance guarantee can be proved for BAT.

Lemma 1. Let {(Xs, As, R
1
s, . . . , R

M
s )}Ss=1 be a training set where(Xs, As)

iid∼ µ andRm
s =

Rm(Xs, As) and for each state-action pair and for each taskm, T next statesY m
s,t ∼ Pm(·|Xs, As)

with t = 1, . . . , T are available. For any fixed bounded functionQ ∈ B(X × A;Vmax), the λ̂
returned by minimizing Eq. 3 is such that

Eλ̂(Q)− Eλ∗
(Q) ≤ 2Vmax

√
(M − 2) log 4S/δ

S
+ 16V 2

max

log 4SM/δ

T
(5)

with probability1− δ.

From the previous lemma the approximation performance of BAT at each iteration follows.

Theorem 3. Let Q̃k−1 be the function returned at the previous iteration andQ̂k
BAT the function

returned by the BAT algorithm (Fig. 2). Then for any0 < δ ≤ 1, Q̂k
BAT satisfies

||T (Q̂k
BAT)− T1Q̃k−1||µ ≤ 4||fαk

∗

− T1Q̃k−1||µ + 5
√
Eλk

∗

(Q̃k−1)

+ 5
√
2Vmax

(
(M − 2) log 8S/δ

S

)1/4

+ 20Vmax

√
log 8SM/δ

T

+ 24(Vmax + C||αk
∗ ||)
√

2

L
log

18

δ
+ 32Vmax

√
2

L
log

(
54(12Le2)2(d+1)

δ

)
.

with probability1− δ.

Remark 1 (Comparison with AST and single-task learning). The analysis of the bound shows
that BAT outperforms AST whenever the advantage in achieving the smallest possible transfer error
Eλk

∗

is larger than the additional estimation error due to the auxiliary training set. It is also interesting
to compare BAT to single-task learning. In fact, BAT performs better than single-task learning
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whenever the best possible combination of source tasks has asmall transfer error and the additional
estimation error related to the auxiliary training set is smaller than the estimation error in single-
task learning. In particular, this means thatO((M/S)1/4) + O((1/T )1/2) should be smaller than
O((d/N)1/2) (with N the number of target samples). The number of calls to the generative model
for BAT is ST . In order to have a fair comparison with single-task learning we setS = N2/3 and
T = N1/3, then we obtain the conditionM ≤ d2N−4/3 that constrains the number of tasks to
be smaller than the dimensionality of the function spaceF . We remark that the dependency of the
auxiliary estimation error onM is due to the fact that theλ vectors (over which the transfer error is
optimized) belong to the simplexΛ of dimensionalityM -2. Hence, the previous condition suggests
that, in general, adaptive transfer methods may significantly improve the transfer performance (i.e.,
in this case a smaller transfer error) at the cost of additional sources of errors which depend on the
dimensionality of the search space used to adapt the transfer process (i.e., in this caseΛ).

Remark 2 (Iterations). BAT recomputes the proportionŝλk at each iterationk. In fact a combina-
tion λ1 approximating well the reward functionR1 at the first iteration (i.e.,R1 ≈ Rλ1 ) does not
necessarily have a small transfer error||(T1 − Tλ1)Q̃1||µ at the second iteration. We further investi-
gate how the best source combination changes through iterations in the experiments of Section 6.

Remark 3 (Best source combination).The previous theorem shows that BAT achieves the smallest
transfer errorEλk

∗

(Q̃k−1) at the cost of an additional estimation error which scales with the size of the

auxiliary training set asO((M/S)1/4)+O((1/T )1/2). We notice that the first term of the estimation
error depends on how well theµ is approximated by using a finite numberS of state-action pairs
and it has a slower rate w.r.t. the other terms. The second term depends on the number of next states
T simulated at each state-action pair which are used to estimate the value of the Bellman operators.
As a result, in order to reduce the estimation error we need toincrease bothS and the number of
next statesT in each state-action pair. It is interesting to notice that similar estimation errors appear
in FVI [11] where the optimal Bellman operator is approximated by Monte-Carlo estimation.

Remark 4 (Training set). The implicit assumption in the definition of the auxiliary training set is
that it is possible to generate a series of next states and rewards for all the tasks at the same state-
action pairs. If the source training sets are fixed in advanceand the designer has no access to the
source tasks, then this assumption is not verified and it is not possible to test the similarity between
the MDPM and the target task. Nonetheless, if the generative model for the source tasks is available
at learning time, the auxiliary training set could be generated before the learning phase actually
begins. Furthermore, in the theoretical analysis, BAT doesnot use the samples in the auxiliary
training set at learning time. A trivial improvement is to include the auxiliary samples to the training
set.

Remark 5 (Comparison to other transfer methods). In [8] a method to compute the similarity
between MDPs is proposed. In particular, the authors introduce the definition ofcomplianceas the
average probability of the target samples to be generated from an sample-based estimation of the
source MDPs. The compliance is later used to determine the proportion of samples to be transferred
from each of the source tasks. Although this algorithm shares a similar objective as BAT, they use
different notions of similarity. In particular, the methodin [8] tries to identify source tasks which
areindividually similar to the target task, while the transfer error minimized in BAT considers the
averageMDP obtained by the transfer process. Furthermore, the notion of compliance tries to
measures the overall distance between two MDPs, whileEλ(Q) always measures the distance of the
images of a functionQ through two different Bellman operators.

Remark 6 (Computational complexity). Finally, we notice that the minimization of̂Eλ is a con-
vex quadratic problem since the objective function is convex in λ andλ belongs to the(M -2)-
dimensional simplex.

5 Best Transfer Trade-off Algorithm

The previous algorithm is proved to successfully estimate the combination of source tasks which
better approximates the Bellman operator of the target task. Nonetheless, BAT relies on the implicit
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Input: Linear spaceF = span{ϕi, 1 ≤ i ≤ d}, initial function Q̃0 ∈ F , maximum
number of samples available for each taskNm, transfer parameterc

Build a training set{Xs, As, R
1
s , . . . , R

M
s }Ss=1 and the next states{Y 1

s,t, . . . , Y
M
s,t }

T
t=1 for

each state-action pair

for k = 1, 2, . . . do
Computeβ̂ = argminβ∈[0,1]M Êβ + c

√
d∑

M
m=1

βmNm

Run one iteration of AST (Fig. 1) usingL samples generated according toβ̂
end for

Figure 3: A pseudo-code for Best Tradeoff Transfer (BTT).

assumption thatL samples can always be generated from any source task3 and it cannot be applied
to the case where the number of source samples is limited. Here we consider the more challenging
case where the designer has still access to the source tasks but only a limited number of samples
is available in each of them. In this case, an adaptive transfer algorithm should solve a tradeoff
between selecting as many samples as possible, so as to reduce the estimation error, and choosing
the proportion of source samples properly, so as to control the transfer error. The solution of this
tradeoff may return non-trivial results, where source tasks similar to the target task but with few
samples are removed in favor of a pool of tasks whose average roughly approximate the target task
but can provide a larger number of samples.

Here we introduce theBest Tradeoff Transfer(BTT) algorithm (see Figure 3). Similar to BAT, it
relies on an auxiliary training set to solve the tradeoff. Wedenote byNm the maximum number of
samples available for source taskm. Let β ∈ [0, 1]M be a weight vector, whereβm is the fraction
of samples from taskm used in the transfer process. We denote byEβ (Êβ) the transfer error
(the estimated transfer error) with proportionsλ whereλm = (βmNm)/

∑
m′(βm′Nm′). At each

iterationk, BTT returns the vectorβ which optimizes the tradeoff between estimation and transfer
errors, that is

β̂k = arg min
β∈[0,1]M

(
Êβ(Q̃k−1) + τ

√
d

∑M
m=1 βmNm

)
, (6)

whereτ is a parameter. While the first term accounts for the transfererror induced byβ, the second
term is the estimation error due to the total amount of samples used by the algorithm.

Unlike AST and BAT, BTT is a heuristic algorithm motivated bythe performance bound in Theo-
rem 1 and we do not provide any theoretical guarantee about its performance. The main technical
difficulty w.r.t. the previous algorithms is that the setting considered here does not match the random
task design assumption (see Def. 1) since the number of source samples is constrained byNm. As
a result, given a proportion vectorλ, we cannot assume samples to be drawn at random according
to a multinomial of parametersλ. Without this assumption, it is an open question whether a similar
bound to AST and BAT could be derived. Nonetheless, the experimental results reported in Section 6
show the effectiveness of BTT in solving the transfer tradeoff.

6 Experiments

In this section, we report and discuss preliminary experimental results of the transfer algorithms
introduced in the previous sections. The main objective is to illustrate the functioning of the algo-
rithms and compare their results with the theoretical findings. Thus, we focus on a simple problem
and we leave more challenging problems for future work.

We consider a continuous extension of the 50-state variant of the chain walk problem proposed in [6].
The state space is described by a continuous state variablex and two actions are available: one that

3If λm = 1 for taskm, then the algorithm would generate all theL training samples from taskm.
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Table 1: Parameters for the first set of tasks

tasks p l η Reward

M1 0.9 1 0.1 +1 in [−11,−9] ∪ [9, 11]

M2 0.9 2 0.1 −5 in [−11,−9] ∪ [9, 11]
M3 0.9 1 0.1 +5 in [−11,−9] ∪ [9, 11]
M4 0.9 1 0.1 +1 in [−6,−4] ∪ [4, 6]
M5 0.9 1 0.1 −1 in [−6,−4] ∪ [4, 6]

Table 2: Parameters for the second set of tasks

tasks p l η Reward

M1 0.9 1 0.1 +1 in [−11,−9] ∪ [9, 11]

M6 0.7 1 0.1 +1 in [−11,−9] ∪ [9, 11]
M7 0.1 1 0.1 +1 in [−11,−9] ∪ [9, 11]
M8 0.9 1 0.1 −5 in [−11,−9] ∪ [9, 11]
M9 0.7 1 0.5 +5 in [−11,−9] ∪ [9, 11]
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Figure 4: Transfer fromM2, M3, M4, M5. Left: Comparison between single-task learning, AST
with L = 10000, BAT with L = 1000, 5000, 10000. Right: Source task probabilities estimated by
BAT algorithm as a function of FQI iterations.

moves towardleft and the other towardright. With probabilityp each action makes a step of lengthl,
affected by a noiseη, in the intended direction, while with probability1− p it moves in the opposite
direction. For the target taskM1, the state–transition model is defined by the following parameters:
p = 0.9, l = 1, andη is uniform in the interval[−0.1, 0.1]. The reward function provides+1
when the system state reaches the regions[−11,−9] and[9, 11] and0 elsewhere. Furthermore, to
evaluate the performance of the transfer algorithms previously described, we considered eight source
tasks{M2, . . . ,M9} whose state–transition model parameters and reward functions are reported
in Tab. 1 and 2. To approximate the Q-functions, we use a linear combination of 20 radial basis
functions. In particular, for each action, we consider9 Gaussians with means uniformly spread in
the interval[−20, 20] and variance equal to16, plus a constant feature. The number of iterations for
the FQI algorithm has been empirically fixed to13. Samples are collected through a sequence of
episodes, each one starting from the statex0 = 0 with actions chosen uniformly at random. For all
the experiments, we average over100 runs and we report standard deviation error bars.

We first consider thepuretransfer problem where no target samples are actually used in the learning
training set (i.e.,λ1 = 0). The objective is to study the impact of the transfer error due to the use
of source samples and the effectiveness of BAT in finding a suitable combination of source tasks.
The left plot in Fig. 4 compares the performances of FQI with and without the transfer of samples
from the first four tasks listed in Tab. 1. In case of single-task learning, the number of target samples
refers to the samples used at learning time, while for BAT it represents the sizeS of the auxiliary
training set used to estimate the transfer error. Thus, while in single-task learning the performance
increases with the target samples, in BAT they just make estimation of Eλ more accurate. The
number of source samples added to the auxiliary set for each target sample was empirically fixed
to one (T = 1). We first run AST withL = 10000 andλ2 = λ3 = λ4 = λ5 = 0.25 (which
on average corresponds to 2500 samples from each source). Asit can be noticed by looking at the
models in Tab. 1, this combination is very different from thetarget model and AST does not learn
any good policy. On the other hand, even with a small set of auxiliary target samples, BAT is able to
learn good policies. Such result is due to the existence of linear combinations of source tasks which
closely approximate the target taskM1 at each iteration of FQI. An example of the proportion
coefficients computed at each iteration of BAT is shown in theright plot in Fig. 4. At the first
iteration, FQI produces an approximation of the reward function. Given the first four source tasks,
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Figure 5: Transfer fromM6, M7, M8, M9. Left: Comparison between single-task learning and
BAT with L = 1000, 5000, 10000. Right: Comparison between single-task learning, BAT with
L = 1000, 10000 in addition to the target samples, and BTT (τ = 0.75) with 5000 and10000
samples for each source task. To improve readability, the plot is truncated at 5000 target samples.

BAT finds a combination (λ ≃ (0.2, 0.4, 0.2, 0.2)) that produces the same reward function asR1.
However, after a few FQI iterations, such combination is no more able to accurately approximate
functionsT1Q̃. In fact, the state–transition model of taskM2 is different from all the other ones
(the step length is doubled). As a result, the coefficientλ2 drops to zero, while a new combination
among the other source tasks is found. Note that BAT significantly improves single-task learning, in
particular when very few target samples are available.

In the general case, the target task cannot be obtained as anycombination of the source tasks, as it
happens by considering the second set of source tasks (M6, M7, M8, M9). The impact of such
situation on the learning performance of BAT is shown in the left plot in Fig. 5. Note that, when
a few target samples are available, the transfer of samples from a combination of the source tasks
using the BAT algorithm is still beneficial. On the other hand, the performance attainable by BAT is
bounded by the transfer error corresponding to the best source task combination (which in this case
is large). As a result, single-task FQI quickly achieves a better performance.

Results presented so far for the BAT transfer algorithm assume that FQI is trained only with the
samples obtained through combinations of source tasks. Since a number of target samples is already
available in the auxiliary training set, a trivial improvement is to include them in the training set
together with the source samples (selected according to theproportions computed by BAT). As
shown in the plot in the right side of Fig. 5 this leads to a significant improvement. From the behavior
of BAT it is clear that with a small set of target samples, it isbetter to transfer as many samples as
possible from source tasks, while as the number of target samples increases, it is preferable to reduce
the number of samples obtained from a combination of source tasks that actually does not match the
target task. In fact, forL = 10000, BAT has a much better performance at the beginning but it is
then outperformed by single-task learning. On the other hand, forL = 1000 the initial advantage is
small but the performance remains close to single-task FQI for large number of target samples. This
experiment highlights the tradeoff between the need of samples to reduce the estimation error and
the resulting transfer error when the target task cannot be expressed as a combination of source tasks
(see Section 5). BTT algorithm provides a principled way to address such tradeoff, and, as shown
by the right plot in Fig. 5, it exploits the advantage of transferring source samples when a few target
samples are available, and it reduces the weight of the source tasks (so as to avoid large transfer
errors) when samples from the target task are enough. It is interesting to notice that increasing the
number of samples available for each source task from5000 to 10000 improves the performance
in the first part of the graph, while keeping unchanged the final performance. This is due to the
capability of the BTT algorithm to avoid the transfer of source samples when there is no need for
them, thus avoidingnegative transfereffects.

10



7 Conclusions

In this paper, we formalized and studied the sample-transfer problem. We first derived a finite-
sample analysis of the performance of a simple transfer algorithm which includes all the source
samples into the training set used to solve a given target task. At the best of our knowledge, this
is the first theoretical result for a transfer algorithm in RLshowing the potential benefit of transfer
over single-task learning. Then, in the case when the designer has direct access to the source tasks,
we introduced an adaptive algorithm which selects the proportion of source tasks so as to minimize
the bias due to the use of source samples. Finally, we considered a more challenging setting where
the number of samples available in each source task is limited and a tradeoff between the amount
of transferred samples and the similarity between source and target tasks must be solved. For this
setting, we proposed a principled adaptive algorithm. Finally, we report a detailed experimental
analysis on a simple problem which confirms and supports the theoretical findings.

This work opens several directions for future work.

• Transfer with transformations.In many problems, there exist simple transformations to the
source tasks dynamics and reward which would increase theirsimilarity w.r.t. the target
task, thus making the transfer process more effective. How affine transformations could be
used in the adaptive transfer algorithms presented in this paper is an interesting direction
for future work. In particular, it is an open question whether the cost (in terms of samples)
of finding a suitable transformation would be effectively counter-balanced by transferring
more similar samples.

• Transfer between tasks with different state-action spaces. In many real applications source
and target tasks might have a different number of state variables and different actions. Thus,
the current work should be extended to the more general case of tasks with different state-
action spaces and it should be integrated with inter-task mapping transfer methods (see
[14]).

• Transfer with fixed tasks design.Definition 1 prescribes the process used to generate the
training set used in learning the target task. At each state-action pair, the sample is gener-
ated from a source task chosen at random according to a multinomial distribution. When
the designer has no access to the source tasks and their samples are generated beforehand,
this generative model is not reasonable. A different model (fixed tasks design) should be
defined where each sample is coming from a specific source which is fixed in advance. An
interesting direction for future work is to understand how this different generative model af-
fects the performance of the transfer algorithm and whetherit is possible to define effective
adaptive algorithms for this case.
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Input: Linear spaceF = span{ϕi, 1 ≤ i ≤ d}, initial functionQ̃0

for k = 1, 2, . . . do
Draw training samples{(Xn, An, Yn, Rn)}

N
n=1

Build the feature matrixΦ = [φ(X1, A1)
⊤; . . . ;φ(Xn, An)

⊤]

Compute the vectorpn = Rn + γmaxa′∈A Q̃k−1(Yn, a
′)

Compute the projection̂αk = (Φ⊤Φ)−1Φ⊤p

Return the truncated functioñQk = T (fα̂k
)

end for

Figure 6: A pseudo-code for Fitted Q-iteration.

A Additional Notation

Besides the notation introduced in Section 2, here we introduce additional symbols used in the
proofs. We define two empirical norms on functions and vectors. Given a set ofN state-action pairs
{(Xn, An)}Nn=1 drawn i.i.d. fromµ we define the empirical norm||f ||µ̂ as

||f ||2µ̂ =
1

N

N∑

n=1

f(Xn, An)
2.

Similarly, given a vectory ∈ R
N we define the empirical norm||y||N as

||y||2N =
1

N

N∑

n=1

y2n.

Given a set ofN state-action pairs{(Xn, An)}Nn=1, let Φ = [φ(X1, A1)
⊤; . . . ;φ(XN , AN )⊤] be

the feature matrix defined at the states{(Xn, An)}Nn=1, andFn = {Φα, α ∈ R
d} ⊂ R

N be the
corresponding vector space. We denote byΠ̂ : RN → FN the empirical orthogonal projection onto
FN , defined by

Π̂y = argmin
z∈FN

||y − z||N . (7)

Note that the orthogonal projection̂Πy of anyy ∈ R
N always exists and is unique.

B Fitted Q-iteration with Linear Spaces

Although fitted iterative methods have been already analyzed in detail in [11] and [1], at the best
of our knowledge no explicit finite-sample bounds for FQI with linear spaces is available. Since at
each iteration, FQI solves an explicit regression problem,the derivation is mostly a straightforward
application of regression bounds for linear spaces and quadratic loss. Here we just report the result
and the proof of the single iteration error for the so-calledfixed and random samples design settings.

In Algorithm 6 we report the structure of the algorithm.

B.1 Fixed Samples Design

Similar to the analysis of LSTD in [7] we first derive the fixed design bound (i.e., the performance
is evaluated exactly on the states in the training set).

Theorem 4. Let F = {φ(·, ·)⊤α, α ∈ R
d} be a d-dimensional linear space. Let

{(xn, an, Yn, Rn)}Nn=1 be the training set where{(xn, an)}Nn=1 is an arbitrary sequence of state-
action pairs,Yn ∼ P(·|xn, an), andRn = R(xn, an). Given a functionQ ∈ B(X ×A, Vmax), let
q ∈ R

N be the vector whose components areqn = (T Q)(xn, an) and q̂ be the solution of a single
iteration of fitted value iteration. Then with probability1 − δ (w.r.t. the random next statesYn), q̂
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ξ̂

Fn

u = Π̂q

q

p

q̂ = Π̂p

ξ

Figure 7: This figure shows that the vectors used in the proof of Theorem 4.

satisfies

||q̂ − q||N ≤ ||Π̂q − q||N + 4Vmax

√
2

N
log

(
3(9Ne2)d+1

δ

)
. (8)

Proof. We denote byu ∈ R
N the orthogonal projection of the target vectorq onto the vector space

FN , that isu = Π̂q. By the definition of orthogonal projection and the Pythagorean theorem we
decompose the error||q̂ − q||N as

||q̂ − q||2N = ||q̂ − u||2N + ||u− q||2N , (9)

where the first term represents the estimation error and the second term is the approximation error
(see Fig. 7). We denote byξn = pn − qn the noise in the observationsp w.r.t. q. It is easy to notice
that

E [ξn] = EY∼P(·|xn,an)

[
R(xn, an, Y ) + γmax

a′∈A
Q(Y, a′)

]
− (T Q)(xn, an) = 0, (10)

and that|ξn| ≤ 2Vmax. We also define the projected noiseξ̂n = q̂n − un, that isξ̂ = Π̂ξ. Thus, we
can rewrite the estimation error as

||q̂ − u||2N = ||ξ̂||2N = 〈ξ̂, ξ̂〉 = 〈ξ, ξ̂〉, (11)

where the last equality follows from the fact thatξ̂ is the orthogonal projection ofξ. Sinceξ̂ ∈ FN ,
let fβ ∈ F be any function such thatfβ(xn, an) = ξ̂n, and by a straightforward application of a
variation of Pollard’s inequality [5] we obtain

〈ξ, ξ̂〉 = 1

N

N∑

n=1

ξnfβ(xn, an) ≤ 4Vmax

(
1

N

N∑

n=1

fβ(xn, an)
2

)1/2√
2

N
log

(
3(9Ne2)d+1

δ

)

= 4Vmax||ξ̂||N

√
2

N
log

(
3(9Ne2)d+1

δ

)
(12)

with probability1− δ. Thus from equation 11 we bound the estimation error by

||q̂ − u||N ≤ 4Vmax

√
2

N
log

(
3(9Ne2)d+1

δ

)
. (13)

Putting together the estimation error bound and the approximation error term, the statement of the
theorem follows.

B.2 Random Samples Design

While in the previous section we analyzed the performance ofFQI on the very same state-action
pairs in the training set, we now focus on the generalization(i.e., prediction) performance on the
whole state-action space.

Let Q̂ be any functionfα̂ ∈ F satisfyingΦα̂ = q̂, whereq̂ is the vector defined in the previous
section. Then we derive the following theorem.
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Theorem 5. Let F = {φ(·, ·)⊤α, α ∈ R
d} be a d-dimensional linear space. Let

{(Xn, An, Yn, Rn)}Nn=1 be the training set where(Xn, An)
iid∼ µ, Yn ∼ P(·|Xn, An), and

Rn = R(Xn, An). Given a functionQ ∈ B(X ×A, Vmax), let Q̂ be the solution of a single it-
eration of fitted value iteration. Then with probability1− δ (w.r.t. the samples and the next states),
Q̂ satisfies

||T (Q̂)− T Q||µ ≤ 4 inf
fα∈F

||fα − T Q||µ

+ 24(Vmax + L||α∗||)
√

2

N
log

9

δ

+ 32Vmax

√
2

N
log

(
27(12Ne2)2(d+1)

δ

)
. (14)

Proof. The proof mainly relies on the application of concentrationof measures inequalities for linear
spaces to the deterministic design bound in Theorem 4.

Let fα̂∗
∈ F be any function such thatfα̂∗

(Xn) = (Π̂q)n, thus the approximation error||Π̂q− q||N
can be rewritten as||fα̂∗

− T Q||µ̂. Furthermore we denote byfα∗
= Π(T Q), that is the best

approximation of the target functionT Q ontoF w.r.t. the distributionµ. Sincefα̂∗
is the minimizer

of the empirical squared error, any function inF different fromfα̂∗
has a bigger empirical loss, thus

we obtain

||fα̂∗
− T Q||µ̂ ≤ ||fα∗

− T Q||µ̂ ≤ 2||fα∗
− T Q||µ + 12(Vmax + L||α∗||)

√
2

N
log

3

δ′
, (15)

with probability1− δ′, where the second inequality is an application of a variation of Theorem 11.2
in [5] with a bound||fα∗

− T Q||∞ ≤ Vmax + L||α∗||. Similar, we notice that the left hand side of
Eq. 8 is||q̂ − q||N = ||Q̂− T ∗Q||µ̂ and we obtain

2||Q̂− T Q||µ̂ ≥ 2||T (Q̂)− T Q||µ̂ ≥ ||T (Q̂)− T Q||µ − 24Vmax

√
2

N
log

(
9(12eN)2(d+1)

δ′

)

(16)

with probability1− δ′, where the second inequality is an application of a variation of Theorem 11.2
in [5]. Putting together Eqs 8, 15, and 16 we obtain

||T (Q̂)− T Q||µ ≤2

(
2||fα∗

− T Q||µ + 12(Vmax + L||α∗||)
√

2

N
log

3

δ′
+

+ 4Vmax

√
2

N
log

(
3(9Ne2)d+1

δ′

))
+ 24Vmax

√
2

N
log

(
9(12eN)2(d+1)

δ′

)

Finally, by settingδ = 3δ′ the statement follows.

C Analysis of AST

C.1 Proof of Theorem 1

Proof. Since the proof follows similar steps as in the proof of Theorem 5, we discuss here only
the fixed samples design bound. We define the vectorp ∈ R

L such that for anyl = 1, . . . , L,
pl =

∑M
m=1 I {Ml = m} (Rm

l + γmaxa′ Q(Y m
l , a′)). The target vectorq ∈ R

L is the image of the
functionQ through the average optimal Bellman operator. In fact, by defining ql = (T λQ)(Xl, Al)
we obtain a zero-mean noise vectorξl = pl − ql such thatE [ξl] = 0 and|ξl| ≤ 2Vmax. 4

4The expectation is taken w.r.t. both the random realizationof the rewardRm
l and next stateY m

l and task
indexMl.
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The statement of the theorem simply follows by decomposing the prediction error of̂Q as

‖T (Q̂)− T1Q‖µ ≤ ‖T (Q̂)− T λQ‖µ + ‖T λQ− T1Q‖µ. (17)

By substituting‖T (Q̂)− T λQ‖µ with a FQI bound w.r.t. the target functionT λQ we obtain

‖T (Q̂)− T1Q‖µ ≤ 4||fα − T λQ||µ + ‖T λQ − T1Q‖µ (18)

+ 24(Vmax + C||α||)
√

2

L
log

9

δ

+ 32Vmax

√
2

L
log

(
27(12Le2)2(d+1)

δ

)
. (19)

By rewriting the approximation error as||fα − T λQ||µ ≤ ||fα − T 1Q||µ + ||T 1Q − T λQ||µ and
usingα = α∗ the final bound follows.

C.2 Proof of Theorem 2

Proof. [Sketch]The main structure of the proof is exactly the same as in [11].The main differences
are due to the use of linear spaces and the transfer error. Following the passages in the proof of
Theorem 2 in [11], we obtain

||Q∗ −QπK ||ν ≤ 2γ

(1− γ)3/2

[
√
Cµ,ν max

k
||T (Q̂k)− T 1Q̃k||µ + 2Vmaxγ

K

]
.

Thus, we need to study all the terms in the statement of Theorem 1 affected by the maximization
over the iterations.

Approximation error.The approximation term becomes

max
k

min
f∈F

||f − T 1Q̃k||µ ≤ sup
g∈F

min
f∈F

||f − T 1g||µ.

This term is referred to as the inherent Bellman error of the spaceF and it is related to how well the
Bellman images of functions inF can be approximated byF itself.

Estimation error.The second relevant term is the term||αk
∗ || appearing in the estimation error. We

recall thatfαk
∗

= ΠT1Q̃k−1 is the projection onF of the Bellman image of the function returned

at the previous iteration. The functioñQk−1 is truncated in the interval[−Vmax, Vmax] and its
Bellman imageT1Q̃k−1 is still bounded in the same interval. Since the projection operatorΠ is a
non-expansion, we finally have that||fαk

∗

||∞ ≤ Vmax. Using Assumption 2, for anyfα ∈ F , it is
possible to relate the norm of the function to the norm of the vectorα as

||fα||2µ = ||φ⊤α||2µ = α⊤Gα ≥ ωα⊤α = ω||α||2.
By combining the bound onα with the bound onfα, we obtain that

max
k

||αk
∗ || ≤ max

k

||fαk
∗

||µ√
ω

≤ Vmax√
ω

Transfer error.SinceQ̃k is the truncation of a functionfα̂k = Q̂k belonging toF , the transfer error
is

max
k

||(T1 − T λ)Q̃
k||µ = sup

α
‖(T1 − T λ)T (fα)‖µ.

Finally, the statement of the theorem follows by taking a union bound overK iterations.
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D Analysis of BAT

D.1 Proof of Theorem 3

Lemma 2. Let {(Xs, As, R
1
s, . . . , R

M
s )}Ss=1 be a training set where(Xs, As)

iid∼ µ andRm
s =

Rm(Xs, As) and for each state-action pair and for each taskm, T next statesY m
s,t ∼ Pm(·|Xs, As)

with t = 1, . . . , T are available. For any fixed bounded functionQ ∈ B(X × A;Vmax), the λ̂
returned by minimizing Eq. 3 is such that

Eλ̂(Q)− Eλ∗
(Q) ≤ 2Vmax

√
(M − 2) log 4S/δ

S
+ 16V 2

max

log 4SM/δ

T
(20)

with probability1− δ.

Proof. [Lemma 2]

The sketch of the proof is as follows. For any state-action pair Xs, As, we define

Êλ(Xs, As) = R1
s −

M∑

m=2

λmRm
s + γ

1

T

T∑

t=1

(
max
a′

Q̃k−1(Y 1
s,t, a

′)−
M∑

m=2

λm max
a′

Q̃k−1(Y m
s,t, a

′)
)
,

and

Eλ(Xs, As) = (T1Q̃k−1)(Xs, As)−
M∑

m=2

λm(T mQ̃k−1)(Xs, As).

As a result,Eλ = Eµ

[
Eλ(x, a)2

]
and Êλ = 1

S

∑S
s=1 Êλ(Xs, As)

2. By Pollard’s inequality on the
(M -2)-dimensional simplexΛ, we have for anyλ ∈ Λ

|Eµ

[
Eλ(x, a)2

]
− 1

S

S∑

s=1

Eλ(Xs, As)
2| ≤ Vmax

√
(M − 2) logS/δ′

S
(21)

with probability1 − δ′. Using Chernoff-Hoeffding inequality we now bound the distance between
the true Bellman operators inEλ(Xs, As) and their estimates in̂Eλ(Xs, As). By triangle inequality
and the previous definitions, we obtain the following seriesof inequlities

| 1
S

S∑

s=1

Eλ(Xs, As)
2 − 1

S

S∑

s=1

Êλ(Xs, As)
2| ≤ | 1

S

S∑

s=1

(Eλ(Xs, As)− Êλ(Xs, As))
2|

≤ max
s

(
Eλ(Xs, As)−

1

S

S∑

s=1

Êλ(Xs, As)
)2

≤ 2max
s

max
m

(
(T mQ̃k−1)(Xs, Ax)−Rm

s − γ
1

T

T∑

t=1

max
a′

Q(Y m
s,t, a

′)
)2

≤ 2

(
2Vmax

√
logSM/δ′

T

)2

(22)

By using Eqs 21 and 22, we have for anyλ ∈ Λ

|Eλ − Êλ| ≤ Vmax

√
(M − 2) logS/δ′

S
+ 8V 2

max

logSM/δ′

T
,

with probability1− 2δ′. Finally, we can prove the following sequence of inequalities

Eλ̂ − Eλ∗
= Eλ̂ − Êλ̂ + Êλ̂ − Êλ∗

+ Êλ∗
− Eλ∗

≤ 2 sup
λ∈Λ

|Eλ − Êλ| ≤ 2Vmax

√
(M − 2) logS/δ′

S
+ 16V 2

max

logSM/δ′

T
,

with probability1− 4δ′. By settingδ = 4δ′ the statement follows.
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Figure 8: Percentage of samples for each task as selected by BTT as a function of FQI iterations
when5000 samples are available for each source task.Left: 100 target samples available.Right:
10000 target samples available.

E Additional Experimental Analysis

In this section, we provide additional experimental results related to the BTT algorithm.

E.1 Analysis of parametersβ

In order to have a better understanding on how BTT trades off between the need for samples and
the risk of introducing a large transfer error, in Figure 8 weshow the values of parametersβ (which
represent the percentage of samples transferred from each task) as optimized by the BTT algo-
rithm at each FQI iteration. The tasks considered are the target taskM1 and the source tasks
M6,M7,M8,M9, each one with5000 samples available. Figure 8 compares the values ofβ in
two scenarios: when the available target samples are100 (left pane) and10000 (right pane). Obvi-
ously, BTT always exploits all the target samples (β1 = 1). When few target samples are available,
BTT transfers high percentages of samples from the source tasks. In particular, it transfers all the
samples available from taskM9 in each iteration, and also the percentage of samples taken from
taskM8 is almost constant (about0.7). The percentage of samples transferred from tasksM6 and
M7 starts from100% and decreases (with different rates) through iterations reaching zero after it-
eration 10. This behavior can be explained by the attempt to include as many samples as possible
at the earlier iterations when it is still possible to find combinations of sources with a small transfer
error. As the iterations continue, no suitable combinationof sources is possible and the algorithm
is forced to reduce the number of samples from the more different source tasks. On the other hand,
when the number of target samples is large enough, we notice that the percentage of samples trans-
ferred from all the source tasks drop down after the first FQI iterations. In fact, in this case, BTT
exploits a lot of source samples to produce a more accurate approximations only when a very small
error is introduced. On the other hand, as the iterations progress, the samples from the source tasks
(even when optimally combined) provide a poor approximation of the Q-functions and, as a result,
BTT, given the large number of target samples (10000), prefers to reduce the number of samples
transferred from the source tasks.

In Figure 9 we show the proportionsλ induced by the weightsβ computed by BTT. When only100
target samples are available, BTT tries to compensate the lack of target samples by transferring a
large amount of samples from a suitable combination of source tasks, while, when many target sam-
ples are available, it considers source samples only when they can guarantee a good approximation
of the target Q-functions, otherwise the proportions are changed in favor of the target samples.

Finally, in Figure 10, we consider the total number of samples used to train FQI at each iteration
under the two scenarios. As expected, at the first iterations, due to the similarity between source
tasks and target task, the number of samples provided to FQI by BTT is very large and then it
decreases through iterations. It is interesting to notice that the total number of samples selected in
the two scenarios are quite similar (in particular startingfrom the third iteration), which is an effect
of the tradeoff realized by the BTT algorithm.
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Figure 9: Proportions in the combination of task samples induced by BTTβ parameters as a function
of FQI iterations.Left: 100 target samples available.Right: 10000 target samples available.
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Figure 10: Number of samples actually used at each iteration(after the transfer) by FQI.Left: 100
target samples available.Right: 10000 target samples available.

E.2 Analysis of parameterτ

The tradeoff realized by the BTT algorithm is tuned by the parameterτ multiplying the estimation
error. In Figure 11 we analyze the effect ofτ on the learning performances. Different values of
the tradeoff parameter have been tried (τ = 0.25, 0.50, 0.75, 1.0) when both5000 samples (left
pane) and10000 samples (right pane) are available for each source task. As we can notice, BTT is
quite robust w.r.t. the choice of the tradeoff parameter. The main differences appear when a small
number of target samples is available. In this case, low values ofτ make BTT more concerned
about the transfer error and, as a result, it tends to avoid transferring source samples, even if target
samples are not enough. On the other hand, with high values ofτ , BTT is pushed to use more source
samples, and this may negatively affect the performance when several target tasks are available and
no combination of source tasks provides a good target approximation.
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Figure 11: Comparison of the performance of FQI using BTT algorithm with different values of the
tradeoff parameterτ . Left: 5000 samples available for each source.Right: 10000 samples available
for each source.
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