
HAL Id: inria-00619225
https://inria.hal.science/inria-00619225

Submitted on 5 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of XML Schema Evolution
Pierre Genevès, Nabil Layaïda, Vincent Quint

To cite this version:
Pierre Genevès, Nabil Layaïda, Vincent Quint. Impact of XML Schema Evolution. ACM Transactions
on Internet Technology, 2011, 11 (1), pp.4:1-4:27. �10.1145/1993083.1993087�. �inria-00619225�

https://inria.hal.science/inria-00619225
https://hal.archives-ouvertes.fr

Impact of XML Schema Evolution

Pierre Genevès

CNRS

Nabil Layäıda

INRIA

and

Vincent Quint

INRIA

We consider the problem of XML Schema evolution. In the ever-changing context of the web,
XML schemas continuously change in order to cope with the natural evolution of entities they

describe. Schema changes have important consequences. First, existing documents valid with
respect to the original schema are no longer guaranteed to fulfill the constraints described by the
evolved schema. Second, the evolution also impacts programs manipulating documents whose

structure is described by the original schema.
We propose a unifying framework for determining the effects of XML Schema evolution both

on the validity of documents and on queries. The system is very powerful in analyzing various

scenarios in which forward/backward compatibility of schemas is broken, and in which the result
of a query may not be anymore what was expected. Specifically, the system offers a predicate

language which allows one to formulate properties related to schema evolution. The system then
relies on exact reasoning techniques to perform a fine-grained analysis. This yields either a formal
proof of the property or a counter-example that can be used for debugging purposes. The system

has been fully implemented and tested with real-world use cases, in particular with the main
standard document formats used on the web, as defined by W3C. The system identifies precisely
compatibility relations between document formats. In case these relations do not hold, the system

can identify queries that must be reformulated in order to produce the expected results across
successive schema versions.

Categories and Subject Descriptors: D.3.4 [Software]: Programming Languages—Processors;
D.2.4 [Software]: Engineering—Software/Program Verification

General Terms: Languages, Standardization, Verification

Additional Key Words and Phrases: XML, Schemas, Queries, Web Document Formats, Schema
Evolution

1. INTRODUCTION

XML is now commonplace on the web and in many information systems where it
is used for representing all kinds of information resources, ranging from simple text
documents such as RSS or Atom feeds to highly structured databases. In these
dynamic environments, not only data are changing steadily but their schemas also
get modified to cope with the evolution of the real world entities they describe.

Schema changes raise the issue of data consistency. Existing documents and
data that were valid with a certain version of a schema may become invalid on a
new version of the schema (forward incompatibility). Conversely, new documents
created with the latest version of a schema may be invalid on some previous versions
(backward incompatibility).

ACM Journal Name, Vol. 2, No. 3, 09 2001, Pages 1–0??.

2 · Pierre Genevès et al.

In addition, schemas may be written in different languages, such as DTD, XML
Schema, or Relax-NG, to name only the most popular ones. And it is common
practice to describe the same structure, or new versions of a structure, in different
schema languages. Document formats developed by W3C provide a variety of
examples: XHTML 1.0 has both DTDs and XML Schemas, while XHTML 2.0 has
a Relax-NG definition; the schema for SVG Tiny 1.1 is a DTD, while version 1.2 is
written in Relax-NG; MathML 1.01 has a DTD, MathML 2.0 has both a DTD and
an XML Schema, and MathML 3.0 is developed with a Relax-NG schema and also
published with a DTD and an XML Schema. An issue then is to make sure that
schemas written in different languages are equivalent, i.e. they describe the same
structure, possibly with some differences due to the expressivity of the language
[Murata et al. 2005]. Another issue is to clearly identify the differences between
two versions of the same schema expressed in different languages. Moreover, the
issues of forward and backward compatibility of instances obviously remain when
schema languages change from a version to another.
Validation, and then compatibility, is not the only purpose of a schema. Valida-

tion is usually the first step for safe processing of documents and data. It makes
sure that documents and data are structured as expected and can then be processed
safely. The next step is to actually access and select the various parts to be handled
in each phase of an application. For this, query languages play a key role. As an
example, when transforming a document with XSL, XPath queries are paramount
to locate in the original document the data to be produced in the transformed
document.
Queries are affected by schema evolutions. The structures they return may

change depending on the version of the schema used by a document. When chang-
ing schema, a query may return nothing, or something different from what was
expected, and obviously further processing based on this query is at risk.
These observations highlight the need for evaluating precisely and safely the

impact of schema evolutions on existing and future instances of documents and
data. They also show that it is important for software engineers to precisely know
what parts of a processing chain have to be updated when schemas change. In
this paper we focus on the XPath query language which is used in many situations
while processing XML documents and data. The XSL transformation language was
already mentioned, but XPath is also present in XLink and XQuery for instance.
A part of this work concerning the impact of schema changes on XPath queries

was presented at the ACM International Conference on Functional Programming
(ICFP), 2009, [Genevès et al. 2009]. The present article aims at covering the more
general issue of schema evolution by taking into account the impact on the validity
of documents as well. In particular, we identify criteria for the evolution of standard
XML Schemas. We present a framework for checking these criteria with the schemas
specifying the main standard documents formats used on the web, as defined by
W3C (see Section 5).

Outline

We first introduce the framework from a high-level perspective in Section 2: we
describe how the whole system is assembled, and which XML schemas and queries
are supported. In Section 3, we provide a more in-depth understanding of the

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 3

underlying logic on which the system is built; in particular we explain how XML
constructs are mapped to this logical representation. Based on this logical encod-
ings, Section 4 introduces a predicate language specifically designed for assessing
the impact of schema evolutions. The following sections respectively focus on ap-
plying the framework for studying the impact of schema evolutions on the validity
of documents (Section 5) and on queries (Section 6). The full implementation of
the system is presented in Section 7. Finally, we discuss related work in Section 8
before concluding in Section 9.

2. ANALYSIS FRAMEWORK

The main contribution of this paper is a unifying framework that allows the auto-
matic verification of properties related to XML schema evolution and its impact on
the validity of documents and on queries. In particular, it offers the possibility of
checking fine-grained properties of the behavior of queries with respect to successive
versions of a given schema. The system can be used for checking relations between
schemas and whether schema evolutions require a particular query to be updated.
Whenever schema evolutions may induce query malfunctions, the system is able to
generate annotated XML documents that exemplify bugs, with the goal of helping
the programmer to understand and properly overcome undesired effects of schema
evolutions.
The system relies on a predicate language (presented in Section 4) specifically

designed for studying schema and query compatibility issues when schemas evolve.
Specifically, predicates allow characterizing in a precise manner nodes subject to
evolution. For instance, predicates allow to distinguish new nodes selected by the
query after a schema change from new nodes that appear in the modified schema.
Predicates also allow to describe nodes that appear in new regions of a schema
compared to its original version, or even in a new context described by a particular
XPath expression. Predicates, together with the composition language provided in
the system allow to express and analyze complex settings.
The system has been fully implemented [Genevès and Layäıda 2009] and is out-

lined in Figure 1. It is composed of a parser for reading the text file description
of the problem (which in turn uses specific parsers for schemas, queries, logical
formulas, and predicates), compilers for translating schemas and queries into their
logical representations, a solver for checking satisfiability of logical formulas, and a
counter example XML tree generator (described in [Genevès et al. 2008]).

We first introduce the data model we consider for XML documents, schemas and
queries.

2.1 XML Trees with Attributes

An XML document is considered as a finite tree of unbounded depth and arity, with
two kinds of nodes respectively named elements and attributes. In such a tree, an
element may have any number of children elements, and may carry zero, one or
more attributes. Attributes are leaves. Elements are ordered whereas attributes
are not, as illustrated on Figure 4. In this paper, we focus on the nested structure
of elements and attributes, and ignore XML data values.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

4 · Pierre Genevès et al.

select("a//b[ancestor::e]",

type("XHTML1-strict.dtd",

"html"))

XML Problem Description (Text
File)

Parsing and
Compilation

let $X=e & <1>$X...

Logical formula
over binary trees
with attributes

Satisfiability
Test

Unsatisfiable (property proved)

Satisfiable
Synthesis

Satisfying
binary tree
with
attributes

binary to
n-ary

Sample XML
document
inducing a bug

Fig. 1. Framework Overview.
.

2.2 Type Constraints

Our tree type expressions capture most of the schemas in use today either written
using DTD, XML Schema, Relax NG, etc. Users may thus define constraints over
XML documents with the language of their choice, and, more importantly, they
may refer to most existing schemas for use with the system. Instead of having one
parser/compiler per schema language, we rely on a common intermediate language
in which all these languages are compiled. For the intermediate language we con-
sider the standard class of regular tree grammars, commonly found in the literature
[Hosoya et al. 2005], to which we have added the support of constraints over XML
attributes (whose efficiency is further discussed in section 3.3). In terms of expres-
sive power, regular tree grammars support constraints over trees which are more
expressive than local tree grammars (DTDs) and single-type tree grammars (XML
schemas), capturing exactly the class of Relax NG schemas, and, more fundamen-
tally finite tree automata (see [Murata et al. 2005] for a formal characterization of
the respective expressive power of these languages). In practice, we have imple-
mented parsers that produce this intermediate representation from a given DTD,
XML Schema, or Relax NG schema. We have implemented one compiler from this
representation into the logic. An advantage of this approach is that it is extensible:
it is easy to know the supported features since (1) the intermediate language is well-
characterized and made explicit, and (2) extending the system with new schema
languages is easy since one does not need to implement new compilers into the logic
(and prove soundness, completeness and polynomial-time translation), but rather
simply express the new considered constraints in the intermediate language.

Specifically, our unifying internal representation for tree grammars is made of
regular tree type expressions, extended with constraints over attributes. Assuming

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 5

a set of variables ranged over by x, we define a tree type expression as follows:

τ ::= tree type expression
∅ empty set
() empty sequence
τ | τ disjunction
τ, τ concatenation
l(a)[τ] element definition
x variable
let x = τ in τ binder

The let construct allows binding one or more variables to associated formulas.
Since several variables can be bound at a time, the notation x = τ is used for
denoting a vector of variable bindings (possibly with mutual recursion).

We impose a usual restriction on the recursive use of variables: we allow un-
guarded (i.e. not enclosed by a label) recursive uses of variables, but restrict them
to tail positions1. With that restriction, tree types expressions define regular tree
languages. In addition, an element definition may involve simple attribute expres-
sions that describe which attributes the defined element may (or may not) carry:

a ::= attribute expression
() empty list
list | a disjunction

list ::= attribute list
list , list commutative concatenation
l? optional attribute
l required attribute
¬l prohibited attribute

We use the usual semantics of regular tree types found in [Hosoya et al. 2005]
and [Genevès et al. 2008].

2.3 Queries

The set of XPath expressions we consider is given by the syntax shown on Figure 2.
The semantics of XPath expressions is described in [Clark and DeRose 1999], and
more formally in [Wadler 2000]. We observed that, in practice, many XPath expres-
sions contain syntactic sugars that can also fit into this fragment. Figure 3 presents
how our XPath parser rewrites some commonly found XPath patterns into the
fragment of Figure 2, where the notation (axis::nt)k stands for the composition of
k successive path steps of the same form: axis::nt/.../axis::nt

︸ ︷︷ ︸

k steps

.

The next Section presents the logic underlying the predicate language.

3. LOGICAL SETTING

It is well-known that there exist bijective encodings between unranked trees (trees
of unbounded arity) and binary trees [Thomas 1990]. Owing to these encodings

1For instance, “let x = l(a)[τ], x | () in x” is allowed.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

6 · Pierre Genevès et al.

query ::=
/path absolute path
path relative path
query | query union

query ∩ query intersection
path ::=

path/path path composition

path[qualifier] qualified path
axis::nt step

qualifier ::=

qualifier and qualifier conjunction
qualifier or qualifier disjunction
not(qualifier) negation
path path
path/@nt attribute path
@nt attribute step

nt ::= node test
σ node label

∗ any node label
axis ::= tree navigation axis

self | child | parent

descendant | ancestor
descendant-or-self
ancestor-or-self
following-sibling
preceding-sibling
following | preceding

Fig. 2. XPath Expressions.

nt [position() = 1] nt [not(preceding-sibling::nt)]

nt [position() = last()] nt [not(following-sibling::nt)]

nt [position() = k
︸︷︷︸

k>1

] nt [(preceding-sibling::nt)k−1]

count(path) = 0 not(path)

count(path) > 0 path

count(nt) > k
︸︷︷︸

k>0

 nt/(following-sibling::nt)k

preceding-sibling::∗[position() = last() and qualifier]

 preceding-sibling::∗[not(preceding-sibling::∗) and qualifier]

Fig. 3. Syntactic Sugars and their Rewritings.

binary trees may be used instead of unranked trees without loss of generality. In
the sequel, we rely on a simple “first-child & next-sibling” encoding of unranked
trees. In this encoding, the first child of an element node is preserved in the binary
tree representation, whereas siblings of this node are appended as right successors
in the binary representation. Attributes are left unchanged by this encoding. For
instance, Figure 5 presents how the sample tree of Figure 4 is mapped.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 7

<r c=" " a=" " b=" ">
<s d=" ">
<v/><w/><x e=" "/>

</s>
<t/>
<u/>

</r>

XML Notation

a
b c

d

e

r

s t u

v w x

Fig. 4. Sample XML Tree with Attributes.

a
b c

d

e

r

s

t

u

v

w

x

Fig. 5. Binary Encoding of Tree of Figure 4.

The logic we introduce below, used as the core of our framework, operates on
such binary trees with attributes.

3.1 Logical Formulas

The concrete syntax of logical formulas is shown on Figure 6, where the meta-
syntax 〈X〉� means one or more occurences of X separated by commas. The
user can directly encode formulas with this syntax in text files to be used with
the system [Genevès and Layäıda 2009]. This concrete syntax is used as a single
unifying notation throughout all the paper.
The semantics of logical formulas corresponds to the classical semantics of a µ-

calculus interpreted over finite tree structures. A formula is satisfiable iff there
exists a finite binary tree with attributes for which the formula holds at some node.
This is formally defined in [Genevès et al. 2007], and we review it informally below
through a series of examples.
There is a difference between an element name and an atomic proposition2: an

element has one and only one element name, whereas it can satisfy multiple atomic
propositions. We use atomic propositions to attach specific information to tree
nodes, not related to their XML labeling. For example, the start context (a reserved
atomic proposition) is used to mark the starting context nodes for evaluating XPath

2In practice, an atomic proposition must start with a “ ”.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

8 · Pierre Genevès et al.

ϕ ::= formula
T true
F false
l element name

p atomic proposition
start context
ϕ | ϕ disjunction

ϕ & ϕ conjunction
ϕ => ϕ implication
ϕ <=> ϕ equivalence

(ϕ) parenthesized formula
ϕ̃ negation
<p>ϕ existential modality
<l>T attribute named l
$X variable
let 〈$X = ϕ〉� in ϕ binder for recursion
predicate predicate (See Section 4)

p ::= program inside modalities

1 first child
2 next sibling
-1 parent

-2 previous sibling

Fig. 6. Concrete Syntax of Formulas.

expressions.
The logic uses modalities for navigating in binary trees. A modality <p>ϕ can

be read as follows: “there exists a successor node by program p such that ϕ holds
at this successor”. As shown on Figure 6, a program p is simply one of the four
basic programs {1, 2, -1, -2}. Program 1 allows navigating from a node down to
its first successor, and program 2 allows navigating from a node down to its second
successor. The logic also features converse programs -1 and -2 for navigating
upward in binary trees, respectively from the first successor to its parent and from
the second successor to its previous sibling. Table I gives some simple formulas
using modalities for navigating in binary trees, together with sample satisfying
trees, in binary and unranked tree representations.
The logic allows expressing recursion in trees through the recursive binder. For

example the recursive formula:

let $X = b | <2>$X in $X

means that either the current node is named b or there is a sibling of the current
node which is named b. For this purpose, the variable $X is bound to the subformula
b | <2>$X which contains an occurence of $X (therefore defining the recursion).
The scope of this binding is the subformula that follows the “in” symbol of the
formula, that is $X. The entire formula can thus be seen as a compact recursive
notation for a infinitely nested formula of the form:

b | <2>(b | <2>(b | <2>(...)))

Recursion allows expressing global properties. For instance, the recursive formula:

~ let $X = a | <1>$X | <2>$X in $X

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 9

Sample Formula Tree XML

a & <1>b

a

b <a>

a & <1>(b & <2>c)

a

b

c <a><c/>

e & <-1>(d & <2>g)

d

e g
<d><e/></d><g/>

f & <-2>(g & ~<2>T) none none

Table I. Sample Formulas and Satisfying Trees.

expresses the absence of nodes named a in the whole subtree of the current node
(including the current node). Furthermore, the fixpoint operator makes possible to
bind several variables at a time, which is specifically useful for expressing mutual
recursion. For example, the mutually recursive formula:

let

$X = (a & <2>$Y) | <1>$X | <2>$X,

$Y = b | <2>$Y

in $X

asserts that there is a node somewhere in the subtree such that this node is named a

and it has at least one sibling which is named b. Binding several variables at a time
provides a very expressive yet succinct notation for expressing mutually recursive
structural patterns (that are common in XML Schemas, for instance).
From a theoretical perspective, the recursive binder let $X = ϕ in ϕ corresponds

to the fixpoint operators of the µ-calculus. It is shown in [Genevès et al. 2007] that
the least fixpoint and the greatest fixpoint operators of the µ-calculus coincide over
finite tree structures, for a restricted class of formulas called cycle-free formulas.

3.2 Queries

The logic is expressive enough to capture the set of XPath expressions presented in
Section 2.3. For example, Figure 7 illustrates how the sample XPath expression:

child::r[child::w/@att]

is expressed in the logic. From a given context in an XML document, this expression
selects all r child nodes which have at least one w child with an attribute att.
Figure 7 shows how it is expressed in the logic, on the binary tree representation.
The formula holds for r nodes which are selected by the expression. The first part
of the formula, ϕ, corresponds to the step child::r which selects candidates r

nodes. The second part, ψ, navigates downward in the subtrees of these candidate
nodes to verify that they have at least one immediate w child with an attribute att.

This example illustrates the need for converse programs inside modalities. The
translated XPath expression only uses forward axes (child and attribute), neverthe-

ACM Journal Name, Vol. 2, No. 3, 09 2001.

10 · Pierre Genevès et al.

att

#

r ϕ

s

r

v

w

ϕ∧ψ

Translated Query: child::r[child::w/@att]

Translation:

r & (let $X=<-1># | <-2>$X)
︸ ︷︷ ︸

ϕ

& <1>let $Y=w & <att>T | <2>$Y
︸ ︷︷ ︸

ψ

Fig. 7. XPath Translation Example.

less both forward and backward modalities are required for its logical translation.
Without converse programs we would have been unable to differentiate selected
nodes from nodes whose existence is simply tested. More generally, properties
must often be stated on both the ancestors and the descendants of the selected
node. Equipping the logic with both forward and converse programs is therefore
crucial. Logics without converse programs may only be used for solving XPath
emptiness but cannot be used for solving other decision problems such as contain-
ment efficiently.
A systematic translation of XPath expressions into the logic is given in [Genevès

et al. 2007]. In this paper, we extended it to deal with attributes. We implemented
a compiler that takes any expression of the fragment of Figure 2 and computes its
logical translation. With the help of this compiler, we extend the syntax of logical
formulas with a logical predicate select("query", ϕ). This predicate compiles the
XPath expression query given as parameter into the logic, starting from a context
that satisfies ϕ. The XPath expression to be given as parameter must match the
syntax of the XPath fragment shown on Figure 2 (or Figure 3). In a similar manner,
we introduce the predicate exists("query", ϕ) which tests the existence of query
from a context satisfying ϕ, in a qualifier-like manner (without moving to its re-
sult). Additionally, the predicate select("query") is introduced as a shortcut for
select("query", #), where # simply marks the initial context node of the XPath
expression3. The predicate exists("query") is a shortcut for exists("query", T).
These syntactic extensions of the logic allow the user to easily embed XPath ex-
pressions and formulate decision problems out of them (like e.g. containment or any
other boolean combination). In the next sections we explain how the framework
allows combining queries with schema information for formulating problems.

3.3 Tree Types

Tree type expressions are compiled into the logic in two steps: the first stage
translates them into binary tree type expressions, and the second step actually

3This mark is especially useful for comparing two or more XPath expressions from the same
context.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 11

compiles this intermediate representation into the logic. The translation procedure
from tree type expressions to binary tree type expressions is well-known and detailed
in [Genevès 2006]. The syntax of output expressions follows:

τ ::= binary tree type expression
∅ empty set
() empty tree
τ | τ disjunction
l(a)[x, x] element definition
let x = τ in τ binder

Attribute expressions are not concerned by this transformation to binary form:
they are simply attached, unchanged, to new (binary) element definitions. Finally,
binary tree type expressions are compiled into the logic. This translation step was
introduced and proven correct in [Genevès et al. 2007]. Originally, the translation
takes a tree type expression τ and returns the corresponding logical formula. Here,
we extend it slightly but crucially: the logical translation of an expression τ is given
by the function tr(τ)ψϕ defined below, that takes additional arguments ϕ and ψ:

tr(τ)ψϕ
def

= F for τ = ∅, ()

tr(τ1 | τ2)
ψ
ϕ

def

= tr(τ1)
ψ
ϕ | tr(τ2)

ψ
ϕ

tr(l(a)[x1, x2])
ψ
ϕ

def

= (l & ϕ & tra(a) & s1(x1) & s2(x2)) | ψ

tr(let xi = τi in τ)ψϕ
def

= let $Xi = tr(τi)
ψ
ϕ in tr(τ)ψϕ

The addition of ϕ and ψ (respectively in a new conjunction and a new disjunction)
is a key element for the definition of predicates in Section 4. More precisely, this
allows marking type sub-expressions so that they can be distinguished in predicates,
as explained in Section 3.4. In addition, ϕ and ψ are either true, false, or simple
atomic propositions. Thus, it is worth noticing that their addition does not affect
the linear complexity of tree type translation. The function s ·(·) describes the type
for each successor:

sp(x) =







˜<p>T if x is bound to ()

˜<p>T | <p>$X if nullable(x)
<p>$X if not nullable(x)

according to the predicate nullable(x) which indicates whether the type T 6= ()

bound to x contains the empty tree.

The function tra(a) compiles attribute expressions associated with element defi-

ACM Journal Name, Vol. 2, No. 3, 09 2001.

12 · Pierre Genevès et al.

nitions as follows:

tra(())
def

= notothers(())

tra(list | a)
def

= tra(list) & notothers(list)

tra(list , list ′)
def

= tra(list) & tra(list ′)

tra(l?)
def

= l |˜l

tra(l)
def

= l

tra(¬l)
def

=˜l

In usual schemas (e.g. DTDs, XML Schemas) when no attribute is specified for a
given element, it simply means no attribute is allowed for the defined element. This
convention must be explicitly stated in the logic. This is the role of the function
“notothers(list)” which returns the negated disjunction of all attributes not present
in list . As a result, taking attributes into account comes at an extra-cost. The above
translation appends a (potentially very large) formula in which all attributes occur,
for each element definition. In practice, a placeholder atomic proposition is inserted
until the full set of attributes involved in the problem formulation is known. When
the whole formula has been parsed, placeholders are replaced by the conjunction of
negated attributes they denote. This extra-cost can be observed in practice, and the
system allows two modes of operations: with or without attributes4. Nevertheless
the system is still capable of handling real world DTDs (such as the DTD of XHTML
1.0 Strict) with attributes. This is due to (1) the limited expressive power of
languages such as DTD that do not allow for disjunction over attribute expressions
(like “list | a”); and, more importantly, (2) the satisfiability-testing algorithm
which is implemented using symbolic techniques [Genevès et al. 2008].
Tree type expressions form the common internal representation for a variety of

XML schema definition languages. In practice, the logical translation of a tree type
expression τ are obtained directly from a variety of formalisms for defining schemas,
including DTD, XML Schema, and Relax NG. For this purpose, the syntax of logical
formulas is extended with a predicate type(" · ", ·). The logical translation of an
existing schema is returned by type("f ", l) where f is a file path to the schema file
and l is the element name to be considered as the entry point (root) of the given
schema. Any occurence of this predicate will parse the given schema, extract its
internal tree type representation τ , compile it into the logic and return the logical
formula tr(τ)FT.

3.4 Type Tagging

A tag (or “color”) is introduced in the compilation of schemas with the purpose
of marking all node types of a specific schema. A tag is simply a fresh atomic
proposition passed as a parameter to the translation of a tree type expression. For
example: tr(τ)Fxhtml is the logical translation of τ where each element definition is
annotated with the atomic proposition “xhtml”. With the help of tags, it becomes
possible to refer to the element types in any context. For instance, one may formu-

4The optional argument “-attributes” must be supplied for attributes to be considered.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 13

late tr(τ)Fxhtml | tr(τ ′)Fsmil for denoting the union of all τ and τ ′ documents, while
keeping a way to distinguish element types; even if some element names are shared
by the two type expressions.
Tagging becomes even more useful for characterizing evolutions between succes-

sive versions of a single schema. In this setting, we need a way to distinguish nodes
allowed by a newer schema version from nodes allowed by an older version. This
distinction must not be based only on element names, but also on content models.
Assume for instance that τ ′ is a newer version of schema τ . If we are interested in
the set of trees allowed by τ ′ but not allowed by τ then we may formulate:

tr(τ ′)FT &˜tr(τ)FT

If we now want to check more fine-grained properties, we may rather be interested
in the following (tagged) formulation:

tr(τ ′)Fall &˜tr(τ)
˜ old complement
T

In this manner, we can distinguish elements that were added in τ ′ and whose
names did not occur in τ , from elements whose names already occured in τ but
whose content model changed in τ ′, for instance.

In practice, a type is tagged using the predicate type("f ", l, ϕ, ϕ′) which parses
the specified schema, converts it into its logical representation τ and returns the
formula tr(τ)ϕ

′

ϕ . This kind of type tagging is useful for studying the consequences
of schema updates over queries, as presented in the next sections.

4. ANALYSIS PREDICATES

This section introduces the basic analysis tasks offered to XML application designers
for assessing the impact of schema evolutions. In particular, we propose a means
for identifying the precise reasons for type mismatches or changes in query results
under type constraints.
For this purpose, we build on our query and type expression compilers, and

define additional predicates that facilitate the formulation of decision problems
at a higher level of abstraction. Specifically, these predicates are introduced as
logical macros with the goal of allowing system usage while focusing (only) on
the XML-side properties, and keeping underlying logical issues transparent for the
user. Ultimately, we regard the set of basic logical formulas (such as modalities and
recursive binders) as an assembly language, into which predicates are translated.
We illustrate this principle with two simple predicates designed for checking

backward-compatibility of schemas, and query satisfiability in the presence of a
schema.

—The predicate backward incompatible(τ, τ ′) takes two type expressions as pa-
rameters, and assumes τ ′ is an altered version of τ . This predicate is unsatisfiable
iff all instances of τ ′ are also valid against τ . Any occurrence of this predicate in
the input formula will automatically be compiled as tr(τ ′)FT &˜tr(τ)FT.

—The predicate non empty("query", τ) takes an XPath expression (with the syntax
defined on Figure 2) and a type expression as parameters, and is unsatisfiable iff
the query always returns an empty set of nodes when evaluated on an XML doc-
ument valid against τ . This predicate compiles into select("query", tr(τ)FT & #)

ACM Journal Name, Vol. 2, No. 3, 09 2001.

14 · Pierre Genevès et al.

where the top-level predicate select("query", ϕ) compiles the XPath expression
query into the logic, starting from a context that satisfies ϕ, as explained in Sec-
tion 3.2. This can be used to check whether the modification of the schema does
not contradict any part of the query.

Notice that the predicate non empty("query", τ) can be used for checking whether
a query that is valid5 against a schema remains valid with an updated version of
a schema. In other terms, this predicate allows determining whether a query that
must always return a non-empty result (whatever the tree on which it is evaluated)
keeps verifying the same property with a new version of a schema.

A second, more-elaborate, class of predicates allows formulating problems that
combine both a query query and two type expressions τ, τ ′ (where τ ′ is assumed to
be a evolved version of τ):

—new element name("query", τ, τ ′) is satisfied iff the query query selects elements
whose names did not occur at all in τ . This is especially useful for queries whose
last navigation step contains a “*” node test and may thus select unexpected
elements. This predicate is compiled into:

ẽlement(τ) & select("query", tr(τ ′)FT)

where element(τ) is another predicate that builds the disjunction of all element
names occuring in τ . In a similar manner, the predicate attribute(ϕ) builds
the logical disjunction of all attribute names used in ϕ.

—new region("query", τ, τ ′) is satisfied iff the query query selects elements whose
names already occurred in τ , but such that these nodes now occur in a new
context in τ ′. In this setting, the path from the root of the document to a node
selected by the XPath expression query contains a node whose type is defined in
τ ′ but not in τ as illustrated below:

node
selected by
query

path from
root to
selected node
contains node
in τ ′ \ τ

XML document valid against τ ′

but not against τ

5We say that a query is valid iff its negation is unsatisfiable.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 15

The predicate new region("query", τ, τ ′) is logically defined as follows:

new region("query", τ, τ ′)
def

=

select("query", tr(τ ′)Fall &˜tr(τ)˜ old complement
T)

&˜added element(τ, τ ′)

& ancestor(old complement)

&˜descendant(old complement)

&˜following(old complement)

&˜preceding(old complement)

The previous definition heavily relies on the partition of tree nodes defined by
XPath axes, as illustrated by Figure 8. The definition of new region("query", τ, τ ′)
uses an auxiliary predicate added element(τ, τ ′) that builds the disjunction of
all element names defined in τ ′ but not in τ (or in other terms, elements that
were added in τ ′). In a similar manner, the predicate added attribute(ϕ,ϕ′)
builds the disjunction of all attribute names defined in τ ′ but not in τ . The pred-

self

an
ces
tor

descendant

p
re
ce
d
in
g

fo
llo
w
in
g

following-sibling

preceding-sibling

child

parent

Fig. 8. XPath axes: partition of tree nodes.

icate new region("query", τ, τ ′) is useful for checking whether a query selects a
different set of nodes with τ ′ than with τ because selected elements may occur
in new regions of the document due to changes brought by τ ′.

—new content("query", τ, τ ′) is satisfied iff the query query selects elements whose
names were already defined in τ , but whose content model has changed due to
evolutions brought by τ ′, as illustrated below:

ACM Journal Name, Vol. 2, No. 3, 09 2001.

16 · Pierre Genevès et al.

node
selected by
query

subtree for
selected node
has changed
(new content
model)

XML document valid against τ ′

but not against τ

The definition of new content("query", τ, τ ′) follows:

new content("query", τ, τ ′)
def

=

select("query", tr(τ ′)Fall &˜tr(τ)˜ old complement
T)

&˜added element(τ, τ ′)

&˜ancestor(added element(τ, τ ′))

& descendant(old complement)

&˜following(old complement)

&˜preceding(old complement)

The predicate new content("query", τ, τ ′) can be used for ensuring that XPath
expressions will not return nodes with a possibly new content model that may
cause problems. For instance, this allows checking whether an XPath expression
whose resulting node set is converted to a string value (as in, e.g. XPath expres-
sions used in XSLT “value-of” instructions) is affected by the changes from τ to
τ ′.

—new sibling("query", τ, τ ′) is satisfied iff the query query selects elements whose
names already occurred in τ , but such that they now occur with new potential
siblings due to τ ′. The notion of context, here, is extended to be not only the
chain of ancestors from the selected node to the root but also the set of previous
and following siblings of the selected node.

The previously defined predicates can be used to help the programmer identify
precisely how type constraint evolutions affect queries. They can even be combined
with usual logical connectives to formulate even more sophisticated problems. For
example, let us define the predicate exclude(ϕ) which is satisfiable iff there is no
node that satisfies ϕ in the whole tree. This predicate can be used for excluding
specific element names or even nodes selected by a given XPath expression. It is
defined as follows:

exclude(ϕ)
def

=˜ancestor-or-self(descendant-or-self(ϕ))

This predicate can also be used for checking properties in an iterative manner,
refining the property to be tested at each step. It can also be used for verifying
fine-grained properties. For instance, one may check whether τ ′ defines the same
set of trees as τ modulo new element names that were added in τ ′ with the following

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 17

formulation:

˜(τ <=> τ ′) & exclude(added element(τ, τ ′))

This allows identifying that, during the type evolution from τ to τ ′, the query
results change has not been caused by the type extension but by new compositions
of nodes from the older type.
In practice, instead of taking internal tree type representations (as defined in

Section 2.2) as parameters, most predicates do actually take any logical formula
as parameter, or even schema paths as parameters. We believe this facilitates
predicates usage and, most notably, how they can be composed together. Figure 9
gives the syntax of built-in predicates as they are implemented in the system,
where f is a file path to a DTD (.dtd), XML Schema (.xsd), or Relax NG (.rng).
In addition of aforementioned predicates, the predicate descendant(ϕ) forces the

predicate ::=
select("query")
select("query", ϕ)

exists("query")
exists("query", ϕ)

type("f ", l)
type("f ", l, ϕ, ϕ′)
forward incompatible(ϕ,ϕ′)
backward incompatible(ϕ,ϕ′)

element(ϕ)

attribute(ϕ)
descendant(ϕ)
exclude(ϕ)
added element(ϕ,ϕ′)

added attribute(ϕ,ϕ′)

non empty("query", ϕ)
new element name("query", "f ", "f ′", l)
new region("query", "f ", "f ′", l)
new sibling("query", "f ", "f ′", l)
new content("query", "f ", "f ′", l)
predicate-name(〈ϕ〉�)

Fig. 9. Syntax of Predicates for XML Reasoning.

existence of a node satisfying ϕ in the subtree, and predicate-name(〈ϕ〉�) is a call
to a custom predicate, as explained in the next section.

4.1 Custom Predicates

Following the spirit of predicates presented in the previous section, users may also
define their own custom predicates. The full syntax of XML logical specifications
to be used with the system is defined on Figure 10, where the meta-syntax 〈X〉�

means one or more occurrence of X separated by commas. A global problem spec-
ification can be any formula (as defined on Figure 6), or a list of custom predicate

ACM Journal Name, Vol. 2, No. 3, 09 2001.

18 · Pierre Genevès et al.

definitions separated by semicolons and followed by a formula. A custom predicate
may have parameters that are instanciated with actual formulas when the custom
predicate is called (as shown on Figure 9). A formula bound to a custom predicate
may include calls to other predicates, but not to the currently defined predicate
(recursive definitions must be made through the let binder shown on Figure 6).

spec ::=
ϕ formula (see Fig. 6)
def ;ϕ

def ::=
predicate-name(〈l〉�) = ϕ′ custom definition
def ; def list of definitions

Fig. 10. Global Syntax for Specifying Problems.

5. IMPACT OF STANDARD SCHEMA EVOLUTION ON VALID DOCUMENTS

As depicted on Fig. 1, the whole system relies on a satisfiability solver for the
underlying logic. The main principe of the satisfiability-solver is an exhaustive
search for a tree that satisfies the formula. The search relies on a least fixpoint
computation that starts from all possible leaves and attempt to plug every possible
parent node at each further step. The algorithm terminates once the initial formula
has been found to hold in a given node of the tree. Otherwise, the algorithm
terminates when no more parent nodes can be added. The algorithm, as well as
proofs of its soundness and completeness, optimal complexity, and implementation
techniques are detailed in [Genevès et al. 2007].
We have carried out extensive experiments of the system in real world settings,

e.g. with popular web schemas such as XHTML, MathML, SVG, SMIL (Table II
gives details related to their respective sizes). In this section, we show how the tool
can be used to analyze different situations where schemas changes have important
consequences on the validity of existing documents.

Schema Variables Elements Attributes

XHTML 1.0 basic DTD 71 52 57
XHTML 1.1 basic DTD 89 67 83
MathML 1.01 DTD 137 127 72
MathML 2.0 DTD 194 181 97

Table II. Sizes of (Some) Considered Schemas.

One major role of organizations such as W3C is to contribute to the standard-
ization effort leading to a unique widely accepted set of constraints for a given class
of documents. Designing a normative specification is a complex process, which is
made even harder by a few important considerations. For example, when a language
is designed, one need to take into account how future versions of that language can
evolve. For a particular version of a language, not only the schema constraints
allowed by that version need to be considered but also how they can be modified

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 19

in future versions. This allows to address how an implementation of this version
should process document variants added by future schema versions.
Specifically, we identify three different properties for a specification:

—Forward compatibility : All instances of an older specification should be valid
with respect to newer specifications. This ensures that a document can still be
processed properly with applications implementing newer specifications.

—Backward compatibility without added elements/attributes: New combinations of
old elements are not supposed to be introduced in later specifications. Otherwise,
an application implementing an older specification will not able to process a
document that conforms to some future specification, even if this document does
not contain any element or attribute introduced as extensions.

—Equivalence between schema versions: A given specification can be expressed in
a variety of schema definition languages like DTD, XML Schema, Relax NG. We
expect the different schema versions of the same specification to define the same
set of documents modulo the expressivity of the schema language [Murata et al.
2005].

An XML schema definition (whether normative or not) often evolves over time,
as new needs often result in new features usually introduced as new elements and
attributes. However we believe that this normal evolution should not break the
three previous properties.
We report below on using the framework for characterizing the evolution of the

main standard document formats used on the web, including W3C XHTML, SMIL,
SVG and MathML, based on the criteria identified above. This kind of analyses
yield important observations on the validity of, potentially, billions of documents.

XHTML Basic

The first test consists in analyzing the relationship (forward and backward compat-
ibility) between XHTML basic 1.0 and XHTML basic 1.1 schemas. In particular,
backward compatibility can be checked by the following command:

backward_incompatible("xhtml-basic10.dtd",

"xhtml-basic11.dtd", "html")

Executing the test yields a counter example as the new schema contains new element
names. The counter example (shown below) contains a style element occurring as
a child of head, which is not permitted in XHTML basic 1.0:

<html>

<head>

<title/>

<style type="_otherV"/>

</head>

<body/>

</html>

The next step consists in focusing on the relationship between both schemas ex-
cluding these new elements. This can be formulated by the following command:

ACM Journal Name, Vol. 2, No. 3, 09 2001.

20 · Pierre Genevès et al.

backward_incompatible("xhtml-basic10.dtd",

"xhtml-basic11.dtd", "html")

& exclude(added_element(

type("xhtml-basic10.dtd","html"),

type("xhtml-basic11.dtd", "html")))

The result of the test shows a counter example document that proves that XHTML
basic 1.1 is not backward compatible with XHTML basic 1.0 even if new elements
are not considered. In particular, the content model of the label element cannot
have an a element in XHTML basic 1.0 while it can in XHTML basic 1.1. The
counter example produced by the solver is shown below:

<html>

<head>

<object>

<label>

</label>

<param/>

</object>

<meta/>

<title/>

<base/>

</head>

<body/>

</html>

XTML basic 1.0 validity error: element a is not

declared in label list of possible children

SMIL

The second test consists in analyzing the relationship (forward and backward com-
patibility) between several versions of the SMIL standard6, namely versions 1.0, 2.0,
and 3.0. In particular, forward compatibility between 1.0 and 2.0 can be checked
by the following command:

forward_incompatible("SMIL10.dtd", "SMIL20.dtd", "smil")

The result of the test shows a counter example document that proves that there
exist valid SMIL 1.0 documents that are not valid anymore with respect to SMIL
2.0. In fact that is because the content model of the layout element is defined
as any in SMIL 1.0, whereas it is more restricted in SMIL 2.0. We observe that

6The first author was a member of the W3C SMIL working group and a co-author of SMIL 2.0
and 2.1.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 21

introducing any is a choice that has important consequences. Indeed, a document
that was playable with 1.0 implementations may no longer be playable using 2.0
implementations. The counter example produced by the solver is shown below:

<smil>

<head>

<layout>

<meta content="_otherV" name="_otherV"/>

</layout>

</head>

</smil>

SMIL 2.0 validity error:

Element layout content does not follow the DTD,

expecting (region|topLayout|root-layout|regPoint)*,

got (meta)

The lesson here is that introducing very permissive content models (like any) has
to be considered very seriously. Indeed, that means that all future versions of the
standard should be at least as permissive. Otherwise, all content produced with
earlier (more permissive) versions becomes at risk. Therefore, the initial content
model has to be carefully designed in order to avoid such situations.
The following example is even worse. We check forward compatibility between

SMIL 2.0 and 3.0:

forward_incompatible("SMIL20.dtd",

"SMIL30Language.dtd", "smil")

We obtain the following counter-example:

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

<body>

<switch>

<animateMotion/>

</switch>

</body>

</smil>

This document is valid with respect to SMIL 2.0. However it does not validate with
respect to SMIL 3.0. That is because the content model for the switch element
was set to a more restrictive pattern in version 3.0 compared to 2.0, as the following
validation error message suggests:

SMIL 3.0 validity error :

Element switch content does not follow the DTD,

expecting ((metadata | switch)* , ((((animate | set |

animateMotion | animateColor) , (metadata | switch)*)* ,

(((par | seq | excl | audio | video | animation | text |

... switch)*)+)) | (layout , (metadata | switch)*)*)),

got (animateMotion)

ACM Journal Name, Vol. 2, No. 3, 09 2001.

22 · Pierre Genevès et al.

Now we would like to know if the bug is limited to the occurrence of the animateMotion
element or whether it is more general. To this end, we progressively exclude ele-
ments named animateMotion, set, animateColor, and animate, as follows:

forward_incompatible("SMIL20.dtd",

"SMIL30Language.dtd", "smil")

& exclude(animateMotion) & exclude(set)

& exclude(animateColor) & exclude(animate)

We still obtain the following counter-example (valid w.r.t SMIL 2.0 but not w.r.t
SMIL 3.0), which shows that the forward incompatibility is not limited to the
occurence of the previous elements, but rather, to severe limitations of the switch
content model introduced in 3.0. In other words, switch is an element which
undermines SMIL forward compatibility.

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

<body>

<switch>

<seq/>

<area/>

</switch>

<switch/>

</body>

</smil>

SVG

The SVG test consists in analyzing the relationship (forward and backward com-
patibility) between SVG 1.0 et 1.1. In particular, we examine the different profiles
(tiny, basic and full) from 1.0 and compare them to 1.1 schemas. Backward com-
patibility can be checked by the following command:

forward_incompatible("svg10.dtd",

"svg11-flat-20030114.dtd", "svg")

The test is unsatisfiable meaning that SVG 1.1 is formally proven to be forward
compatible with SVG 1.0. This is good news as it means that all 1.0 documents will
be supported with 1.1 conforming implementations, without any exception. In the
case where a 1.0 document does not play with a 1.1 implementation, this indicates
a bug in the implementation and not in the SVG specification.
We observe here that the common practice of including a single doctype declara-

tion within a document is questionable, since a document is not only valid w.r.t a
given schema but also w.r.t to all future forward-compatible versions. Keeping track
of this mapping between a document and several schemas allows the document to
be supported by a larger set of implementations.
Similar tests on the SVG 1.1 tiny, basic and full also exhibit good results. This

corresponds to the definition of these three profiles as strict subsets of each other.
Furthermore, we believe that the use of a modularized version of a schema (as
opposed to a complete redefinition) has helped in avoiding compatibility problems.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 23

We now focus on testing the backward compatibility between the SVG basic 1.1
profile and SVG 1.0 profile. The test fails even if new features are left aside:

backward_incompatible("svg10.dtd",

"svg11-basic.dtd", "svg")

& exclude(added_element(type("svg10.dtd", "svg"),

type("svg11-basic.dtd","svg")))

& exclude(switch)

This test yields the following counter-example which confirms that there is actually
a flaw in the 1.1 specification:

<svg>

<image href="..." width="..." height="...">

<title/>

<title/>

</image>

</svg>

as it allows two title elements to occur inside an image element, which was not
allowed in the 1.0.

MathML

We apply a similar investigation approach to MathML 1.0 and its newer version 2.0.
We formulate a backward compatibility test without elements that were added in
version 2.0. Furthermore, we want to exclude immediate trivial counter-examples
involving the use of the declare element as well as of the math element occur-
ing within the annotation-xml element. For this purpose, we use the following
formulation:

backward_incompatible("mathml.dtd","mathml2.dtd","math")

& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd","math")))

& exclude(declare)

& (~descendant(math))

that bans the declare element from occuring in the whole tree (achieved with the
use of the exclude(declare) predicate), and prevents the math element from ocur-
ring in the root’s subtree (owing to the use of the (~descendant(math)) predicate)
The following counter-example is produced:

<math>

<apply>

<annotation-xml>

<mprescripts/>

</annotation-xml>

</apply>

</math>

ACM Journal Name, Vol. 2, No. 3, 09 2001.

24 · Pierre Genevès et al.

Such backward incompatibilities suggest that applications cannot simply ignore
new elements from newer schemas, as the combination of older elements may evolve
significantly from one version to another.

6. IMPACT OF SCHEMA EVOLUTION ON QUERIES

In this section, we report on using the framework in order to evaluate the conse-
quences of schema changes on XPath queries such as the ones found in transforma-
tions like the MathML content to presentation conversion [Pietriga 2005].

MathML Content to Presentation Conversion

MathML is an XML format for describing mathematical notations and capturing
both its mathematical structure and graphical rendering, also known as Content
MathML and Presentation MathML respectively. The structure of a given equation
is kept separate from the presentation and the rendering part can be generated from
the structure description. This operation is usually carried out using an XSLT
transformation that achieves the conversion. In this test series, we focus on the
analysis of the queries contained in such a transformation sheet and evaluate the
impact of the schema change from MathML 1.0 to MathML 2.0 on these queries.

Most of the queries contained in the transformation represent only a few pat-
terns very similar up to element names. The following three patterns are the most
frequently used:

Q1: //apply[*[1][self::eq]]

Q2: //apply[*[1][self::apply]/inverse]

Q3: //sin[preceding-sibling::*[position()=last()

and (self::compose or self::inverse)]]

The first test is formulated by the following command:

new_region("Q1","mathml.dtd","mathml2.dtd","math")

The result of the test shows a counter example document that proves that the query
may select nodes in new contexts in MathML 2.0 compared to MathML 1.0. In
particular, the query Q1 selects apply elements whose ancestors can be declare

elements, as indicated on the document produced by the solver7:

<math xmlns:solver="http://wam.inrialpes.fr/xml"

solver:context="true">

<declare>

<apply solver:target="true">

<eq/>

</apply>

<condition/>

</declare>

</math>

7Notice that the solver automatically annotates a pair of nodes related by the query: when the
query is evaluated from a node marked with the attribute solver:context, the node marked with
solver:target is selected.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 25

To evaluate the effect of this change, the counter example is filled with content
and passed as an input parameter to the transformation. This shows immediately a
bug in the transformation as the resulting document is not a MathML 2.0 presenta-
tion document. Based on this analysis, we know that the XSLT template associated
with the match pattern Q1 must be updated to cope with MathML evolution from
version 1.0 to version 2.0.
The next test consists in evaluating the impact of the MathML type evolution for

the query Q2 while excluding all new elements added in MathML 2.0 from the test.
This identifies whether old elements of MathML 1.0 can be composed in MathML
2.0 in a different manner. This can be performed with the following command:

new_content("Q2","mathml.dtd","mathml2.dtd","math")

& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd", "math")))

The test result shows an example document that effectively combines MathML 1.0
elements in a way that was not allowed in MathML 1.0 but permitted in MathML
2.0.

<math xmlns:solver="http://wam.inrialpes.fr/xml"

solver:context="true">

<apply solver:target="true">

<apply>

<inverse/>

</apply>

<annotation-xml>

<math/>

</annotation-xml>

<condition/>

</apply>

</math>

Similarly, the last test consists in evaluating the impact of the MathML type evo-
lution for the query Q3, excluding all new elements added in MathML 2.0 and
counter example documents containing declare elements (to avoid trivial counter
examples):

new_region("Q3","mathml.dtd","mathml2.dtd","math")

& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd","math")))

& exclude(declare)

The counter example document shown below illustrates a case where the sin ele-
ment occurs in a new context.

<math xmlns:solver="http://wam.inrialpes.fr/xml"

solver:context="true">

<apply>

<annotation-xml>

<math>

ACM Journal Name, Vol. 2, No. 3, 09 2001.

26 · Pierre Genevès et al.

<apply>

<inverse/>

<sin solver:target="true"/>

</apply>

</math>

</annotation-xml>

</apply>

</math>

Applying the transformation on previous examples yields documents which are
neither MathML 1.0 nor MathML 2.0 valid. As a result, the stylesheet cannot be
used safely over documents of the new type without modifications. In addition,
the required changes to the stylesheet are not limited to the addition of new tem-
plates for MathML 2.0 elements. The templates that deal with the composition of
MathML 1.0 elements should be revised as well.

7. SYSTEM IMPLEMENTATION

We have implemented the whole software architecture described in Section 2 and
illustrated on Figure 1. The tool [Genevès and Layäıda 2009] is available online
from:

http://wam.inrialpes.fr/xml

Interaction with the system is offered through a web user interface in a web
browser. Figure 11 presents a screenshot of the user interface. The user can either
enter an analysis problem using predicates through area (1) of Figure 11 or select
from pre-loaded analysis tasks offered in area (4) of Figure 11. The level of details
displayed by the analyzer can be adjusted in area (2) of Figure 11 and allows to
inspect logical translations and statistics on problem size and the different operation
costs. The results of the analysis are displayed in area (3) of Figure 11 together
with XML counter-examples.
All the previous tests were processed in less than 30 seconds on an ordinary lap-

top computer running Mac OS X. The 30s correspond to the most complex use
cases. Most complex means analyzing recursive forward/backward and qualified
queries such as Q3, under evolution of large and heavily recursive schemas such as
XHTML and MathML (large number of type variables, elements and attributes:
see Table II). These are the hardest cases measured in practice with the imple-
mentation. Most of other schemas and queries usually found in applications are
much simpler than the ones presented in this paper and will obviously be solved
much faster. Given the variety of schemas occurring in practice, we focused on the
most complex W3C standard schemas. The full online implementation [Genevès
and Layäıda 2009] allows to run all the tests described in the paper as well as
user-supplied ones. It shows intermediate compilation stages, generated formulae
(in particular the translation of schemas into the logic), and reports on the perfor-
mance of each step of the analysis.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 27

(1)

(2)

(3)

(4)

Fig. 11. Screenshot of the Web-Based Solver Interface.

8. RELATED WORK

Schema evolution is an important topic and has been extensively explored in the
context of relational, object-oriented, and XML databases. Most of the previous
work for XML query reformulation is approached through reductions to relational
problems [Beyer et al. 2005]. This is because schema evolution was considered as
a storage problem where the priority consists in ensuring data consistency across
multiple relational schema versions. In such settings, two distinct schemas and
an explicit description of the mapping between them are assumed as input. The
problem then consists in reformulating a query expressed in terms of one schema
into a semantically equivalent query in terms of the other schema: see [Yu and
Popa 2005] and more recently [Moon et al. 2008] with references thereof.
In addition to the fundamental differences between XML and the relational data

ACM Journal Name, Vol. 2, No. 3, 09 2001.

28 · Pierre Genevès et al.

model, in the more general case of XML processing, schemas constantly evolve in
a distributed, independent, and unpredictable environment. The relations between
different schemas are not only unknown but hard to track. In this context, one
priority is to help maintaining query consistency during these evolutions, which is
still considered as a challenging problem [Sedlar 2005; Rose 2004]. The absence of
evolution analysis tools for XML/XPath contrasts with the abundance of tools and
methods routinely used in relational databases.
The work found in [Moro et al. 2007] discusses the impact of evolving XML

schemas on query reformulation. Based on a taxonomy of XML schema changes
during their evolution, the authors provide informal – not exact nor systematic –
guidelines for writing queries which are less sensitive to schema evolution. In fact,
studying query reformulation requires at least the ability to analyze the relation-
ship between queries. For this reason, a closely related work is the problem of
determining query containment and satisfiability under type constraints [Benedikt
et al. 2005; Colazzo et al. 2006; Genevès et al. 2007]. These static analysis tasks
are also notably useful for performing query optimization [Groppe et al. 2006].

The works found in [Benedikt et al. 2005; Groppe and Groppe 2008] study the
complexity of XPath emptiness and containment for various fragments with or
without type constraints (see [Benedikt and Koch 2009] and references thereof for
a survey). In [Colazzo et al. 2004; 2006], a technique is presented for statically
ensuring correctness of paths. The approach deals with emptiness of XPath expres-
sions without reverse axes. The work presented in [Genevès et al. 2007] solves the
more general problem of containment, including reverse axes.
The main distinctive idea pursued in this paper is to develop a logical approach

for guiding schema and query evolution. In contrast to the previous use of logics for
proving properties such as query emptiness or equivalence, the goal here is different
in that we seek to provide the necessary tools to produce relevant knowledge when
such relations do not hold. From a complexity point-of-view, it is worth noticing
that the addition of predicates does not increase complexity for the underlying logic
shown in [Genevès et al. 2007].
We would also like to emphasize that, to the best of our knowledge, this work

is the first to provide precise analyses of XML evolution, that was tested on real
life use cases (such as XHTML and MathML types) and complex queries (involving
recursive and backward navigation). As a consequence, in this context, analysis
tools such as type-checkers [Hosoya and Pierce 2003; Benzaken et al. 2003; Møller
and Schwartzbach 2005; Gapeyev et al. 2006; Castagna and Nguyen 2008] do no
match the expressiveness, typing precision, and analysis capabilities of the work
presented here.

9. CONCLUSION

In this article, we present an application of a unifying logical framework for verifying
forward/backward compatibility issues caused by schemas evolution. We provide
evidence that such a framework can be successfully used to overcome the obstacles of
the analysis of XML schema evolution. This kind of analyses is widely considered as
a challenging problem in XML programming. As mentioned earlier, the difficulty is
twofold: first it requires dealing with large and complex language constructions such

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Impact of XML Schema Evolution · 29

as XML types and XPath queries, and second, it requires modeling and reasoning
about evolution of such constructions.
We presented the logical foundations of the framework. We then applied the

framework for analyzing two major issues due to schema evolution: first, the con-
sequence on the validity of documents and, second, the impact on queries. The
presented system detected several compatibility problems in the main document
formats used on the web. The same tool also allows XML designers to identify
queries that need reformulation in order to produce the expected results across suc-
cessive schema versions. With this tool designers can examine precisely the impact
of schema changes over queries, therefore facilitating their reformulation.
We gave illustrations of how to use the tool for schema evolution on realistic

examples. In particular, we considered typical situations in applications involving
evolution of W3C schemas used on the web such as XHTML and MathML. We
believe that the tool can be very useful for standard schema writers and maintainers
in order to assist them enforce some level of quality assurance on compatibility
between versions.
One direction for future work is to search for techniques giving suggestions on

how to rewrite the query into an equivalent one to accommodate schema changes.

REFERENCES

Benedikt, M., Fan, W., and Geerts, F. 2005. XPath satisfiability in the presence of DTDs. In

PODS ’05. ACM Press, 25–36.

Benedikt, M. and Koch, C. 2009. XPath leashed. ACM Comput. Surv. 41, 3:1–3:54.

Benzaken, V., Castagna, G., and Frisch, A. 2003. CDuce: An XML-centric general-purpose

language. In ICFP ’03: Proceedings of the Eighth ACM SIGPLAN International Conference
on Functional Programming. ACM Press, New York, NY, USA, 51–63.

Beyer, K., Özcan, F., Saiprasad, S., and der Linden, B. V. 2005. DB2/XML: designing for
evolution. In SIGMOD ’05. ACM, 948–952.

Castagna, G. and Nguyen, K. 2008. Typed iterators for XML. In ICFP. 15–26.

Clark, J. and DeRose, S. 1999. XML path language (XPath) version 1.0, W3C recommendation.

http://www.w3.org/TR/ 1999/REC-xpath-19991116.

Colazzo, D., Ghelli, G., Manghi, P., and Sartiani, C. 2004. Types for path correctness of
XML queries. In ICFP ’04: Proceedings of the ninth ACM SIGPLAN international conference

on Functional programming. ACM Press, New York, NY, USA, 126–137.

Colazzo, D.,Ghelli, G.,Manghi, P., and Sartiani, C. 2006. Static analysis for path correctness
of XML queries. J. Funct. Program. 16, 4-5, 621–661.

Gapeyev, V., Garillot, F., and Pierce, B. C. 2006. Statically typed document transformation:
An Xtatic experience. In PLAN-X 2006: Proceedings of the International Workshop on Pro-
gramming Language Technologies for XML. BRICS Notes Series, vol. NS-05-6. BRICS, Aarhus,

Denmark, 2–13.

Genevès, P. 2006. Logics for XML. Ph.D. thesis, Institut National Polytechnique de Grenoble.
http://www.pierresoft.com/pierre.geneves/phd.htm.

Genevès, P. and Layäıda, N. 2009. The XML reasoning solver project.
http://wam.inrialpes.fr/xml.

Genevès, P., Layäıda, N., and Quint, V. 2009. Identifying query incompatibilities with evolving

XML schemas. In ICFP ’09: Proceedings of the ACM SIGPLAN international conference on
Functional programming. 221–230.

Genevès, P., Layäıda, N., and Schmitt, A. 2007. Efficient static analysis of XML paths and
types. In PLDI ’07. ACM Press, 342–351.

Genevès, P., Layäıda, N., and Schmitt, A. 2008. Efficient static analysis of XML paths and
types. Long version of [Genevès et al. 2007], Research Report 6590, INRIA. July.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

30 · Pierre Genevès et al.

Groppe, J. and Groppe, S. 2008. Filtering unsatisfiable XPath queries. Data Knowl. Eng. 64, 1,
134–169.

Groppe, S., Bottcher, S., and Groppe, J. 2006. XPath query simplification with regard to the
elimination of intersect and except operators. In ICDEW ’06: Proceedings of the 22nd Inter-
national Conference on Data Engineering Workshops. IEEE Computer Society, Washington,
DC, USA, 86.

Hosoya, H. and Pierce, B. C. 2003. XDuce: A statically typed XML processing language. ACM
Trans. Inter. Tech. 3, 2, 117–148.

Hosoya, H., Vouillon, J., and Pierce, B. C. 2005. Regular expression types for XML. ACM

TOPLAS 27, 1, 46–90.

Møller, A. and Schwartzbach, M. I. 2005. The design space of type checkers for XML trans-
formation languages. In Proc. Tenth International Conference on Database Theory, ICDT ’05.
LNCS, vol. 3363. Springer-Verlag, London, UK, 17–36.

Moon, H. J., Curino, C. A., Deutsch, A., and Hou, C.-Y. 2008. Managing and querying
transaction-time databases under schema evolution. In VLDB ’08. VLDB Endowment, 882–
895.

Moro, M. M., Malaika, S., and Lim, L. 2007. Preserving xml queries during schema evolution.

In WWW ’07. ACM, 1341–1342.

Murata, M., Lee, D., Mani, M., and Kawaguchi, K. 2005. Taxonomy of XML schema languages
using formal language theory. ACM TOIT 5, 4, 660–704.

Pietriga, E. 2005. MathML content2presentation transformation.

http://www.lri.fr/˜pietriga/mathmlc2p/mathmlc2p.html.

Rose, K. H. 2004. The XML world view. In DocEng ’04: Proceedings of the 2004 ACM symposium
on Document engineering. ACM, New York, NY, USA, 34–34.

Sedlar, E. 2005. Managing structure in bits & pieces: the killer use case for XML. In SIGMOD
’05. ACM, 818–821.

Thomas, W. 1990. Automata on infinite objects. In Handbook of theoretical computer science
(vol. B): formal models and semantics. MIT Press, Cambridge, MA, USA, 133–191.

Wadler, P. 2000. Two semantics for XPath. Internal Technical Note of the W3C XSL Working
Group, http://homepages.inf.ed.ac.uk/wadler/papers/xpath-semantics/xpath-semantics.pdf.

Yu, C. and Popa, L. 2005. Semantic adaptation of schema mappings when schemas evolve. In
VLDB ’05. VLDB Endowment, 1006–1017.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

