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Abstract: This work is motivated by inverse scattering problems, those problems where one
is interested in reconstructing the shape and the material properties of an inclusion from elec-
tromagnetic farfields measurements. More precisely we are interested in complementing the so
called sampling methods, (those methods that enables one to reconstruct just the geometry of the
scatterer), by providing estimates on the material properties. We shall use for that purpose the
so-called transmission eigenvalues. Our method is based on reformulating the so-called interior
transmission eigenvalue problem into an eigenvalue problem for the material coefficients. We shall
restrict ourselves to the two dimensional setting of the problem and treat the cases of both TE
and TM polarizations. We present a number of numerical experiments that validate our method-
ology for homogeneous and inhomogeneous inclusions and backgrounds. We also treat the case of
a background with absorption and the case of scatterers with multiple connected components of
different refractive indexes.

Key-words: direct and inverse scattering problem, linear sampling method, transmission eigen-
values

∗ Universita’ degli Studi di Genova
† INRIA Saclay Ile de France and Ecole Polytechnique (CMAP)



Rapport de Recherche

Inria

Résumé : Ce travail est motivé par les problèmes de diffraction inverses en lectromagnétisme o
l’on est intéressé par la reconstruction de la forme et les propriétés physiques d’une l’inclusion a
partir de mesures de champs lointains. Plus précisément, nous nous intéressons à complémenter
les méthodes d’échantillonnage (permettant la reconstruction de la géométrie de l’inclusion), en
fournissant des estimations sur les propriétés physiques du matériau. Nous utiliserons à cette fin
les fréquences de transmission qui sont les valeurs propres du problème de transmission intérieur.
Notre méthode est basée sur la reformulation de ce problème en un problème de valeur propre
pour l’indice de réfraction. Nous nous limitons dans ce travail au cas bidimensionnel et traitons les
deux cas de polarisations TE et TM. Nous présentons un certain nombre d’expériences numériques
qui valident notre méthodologie pour les inclusions homogènes et inhomogènes. Nous traitons
également le cas d’un milieu de référence avec ou sans absorption ainsi que le cas d’inclusions avec
un ou plusieurs composantes connexes possédant des indices de réfraction différents.

Mots-clés : problème de diffraction direct et inverse, linear sampling method, transmission
eigenvalues
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1 Introduction

This work is motivated by inverse scattering problems, those problems where one is interested
in reconstructing the shape and the material properties of an inclusion from electromagnetic
farfields measurements. More precisely we are interested in complementing the so called sampling
methods [2, 14], (those methods that enables one to reconstruct just the geometry of the scatterer),
by providing estimates on the material properties. We shall use for that purpose the so-called
transmission eigenvalues [8]. These special frequencies can be determined from the knowledge of
the farfields for a range of frequencies. They also correspond to values of the wavenumbers for
which the so called homogeneous interior transmission problem has a non trivial solution. Our
work is in the same spirit of [11] but we shall employ a different and (in principle) a simpler
method.

The proposed method is based on reformulating the interior transmission eigenvalue problem
into a (standard, generalized) eigenvalue problem for the material coefficients. In the case of
constant coefficients the value of the material parameter corresponds with the smallest eigenvalue
[6]. The obtained eigenvalue problem corresponds to a fourth order operator that we shall solve
using an appropriate mixed second order formulation of the problem. To obtain the desired
approximation of the refractive index, one needs to determine the first transmission eigenvalue
from the farfield data. We shall review here the method proposed in [3, 4] based on a frequency
sampling of the farfield solution. We then extend this method to the case of scatterers with multiply
connected components so that one is able to detect the transmission eigenvalues associated with
each connected components.

In these first investigations we restrict ourselves to a two dimensional setting of the problem
that models electromagnetic scattering from infinite cylinders and treat both transverse electric
(TE) and transverse magnetic (TM) polarizations. We present a number of numerical experiments
that validate our methodology for homogeneous and non homogeneous inclusions and backgrounds.
We also treat the case of a background with absorption and the case where the geometry is also
unknown (but reconstructed using the linear sampling algorithm).

The outline of this report is the following. The second section is dedicated to introducing the
forward and the inverse scattering problem for TM polarizations. We introduce our method for
constructing constant approximation of the refractive index in the third section. The fourth section
corresponds with the extension of our results to the case of TE polarizations. The last section is
dedicated to numerical experiments that validate our approach and illustrate its effectiveness. We
finally provide in the appendix a fast implementation procedure of the linear sampling method in
the case of backgrounds with piecewise constant and axisymmetric refractive indexes. The latter
has been used for instance to perform some of the numerical experimentations in the last section
of this report.

2 Forward and inverse scattering problem

We consider the scattering of a time harmonic electromagnetic plane wave by an inhomogeneous
infinite cylinder with cross section D such that the electric field E = (0, 0, u exp−iωt) is polarized
parallel to the axis of the cylinder (TM polarization). Supposing the index of refraction n de-
pendent only on the two coordinates orthogonal to the cylinder axis and factoring out the time
harmonic component we obtain that the total field u satisfies [8]:

∆u(x) + k2n(x)u(x) = 0 in R
2 (1)

u(x) = ui(x) + us(x), with ui(x) = expikx·d, (2)

lim
r→∞

√
r(
∂us(x)

∂r
− ikus(x)) = 0 uniformly with respect to x̂ :=

x

|x| , (3)
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4 Giorgi, Haddar

where x ∈ R
2, k > 0 is the wave number, r = |x| and d ∈ Ω = { x

|x| : x ∈ R
2}.

The index of refraction n is assumed to be a piecewise continuously differentiable function with
discontinuities across non intersecting C2 curves. Moreover we suppose that Im(n) ≥ 0 and that,
with m := 1−n and D̄ being the support of m, D̄ is compact with the complement of D connected
and boundary ∂D smooth.

Problem (1)-(3) has a unique solution u ∈ H2
loc(R

2) and the corresponding scattered field us

has the asymptotic behavior [8]:

us(x) =
expikr

√
r
u∞(x̂, d) +O(r−3/2) (4)

as r → ∞ uniformly with respect to x̂ ∈ Ω.
The knowledge of the so-called farfield pattern u∞(x̂, d) for all observation directions x̂ ∈ Ω,

all incident directions d ∈ Ω and for a range of frequencies k (that will be specified later) forms
the data of the inverse problem of determining D and n. In fact, although the shape of D will
be determined at a fixed frequency k, for the reconstruction of n, the knowledge of u∞(x̂, d) for a
range of k will be required. As it will be better specified in the following, even in this last case the
method will operate without combining data of different frequencies; for this reason we suppressed
the mention to k in the notation.

Let Φ be the radiating fundamental solution of the Helmholtz equation

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), (5)

where H
(1)
0 is the Hankel function of the first kind of order 0 and consider

Φ∞(x̂, z) :=
expiπ/4

√
8πk

exp−ikx̂·z (6)

the farfield pattern of Φ(·, z). Central to the Linear Sampling Method is the farfield equation

(Fgz)(x̂) = Φ∞(x̂, z) (7)

where the farfield operator F : L2(Ω) → L2(Ω) is defined by:

(Fg)(x̂) =

∫

Ω

u∞(x̂, d)g(d)ds(d) (8)

We recall that Fg is the farfield associated to the incident wave

vg(x) :=

∫

Ω

expikx·d g(d)ds(d) (9)

called Herglotz wave function with density g. We recall hereafter the main theorem associated
with the LSM (see [7] for instance). We shall assume in the sequel that Re(n)− 1 or 1−Re(n) is
positive definite on D.

Theorem 2.1. Except possibly for a discrete set of values of k when Im(n) = 0, it holds:

1. if z ∈ D, for every ǫ > 0 there is a solution gǫ
z ∈ L2(Ω) of the inequality

‖Fgǫ
z − Φ∞(·, z)‖L2(Ω) < ǫ (10)

such that
lim
ǫ→0

‖vgǫ
z
‖L2(D) <∞ (11)

and that
lim

z→∂D
‖vgǫ

z
‖L2(D) = ∞. (12)

INRIA



Computing estimates on material properties from transmission eigenvalues 5

2. if z is not in D, then for every ǫ > 0 and gǫ
z satisfying

‖Fgǫ
z − Φ∞(·, z)‖L2(Ω) < ǫ (13)

we have that
lim
ǫ→0

‖vgǫ
z
‖L2(D) = ∞. (14)

The linear sampling method consists in solving the regularized (F is compact between infi-
nite dimensional spaces) farfield equation for each z in a grid containing D and visualizing the
indicator function z 7→ ‖gz‖L2(Ω). This method therefore solves the inverse scattering problem of
determining the shape of an unknown object D from the knowledge of its farfield pattern u∞ for
all observation directions and all incident directions at a given frequency.n. However its fails to
do so if this frequency coincides with so called transmission eigenvalues that will be defined in the
sequel.

We recall that for z ∈ R
2, the equation Fgz = Φ∞(·, z) has a solution gz ∈ L2(Ω) if and only

if there exists w ∈ H2(D) and a Herglotz wave function vgz
such that w and vgz

are solution of

∆w + k2nw = 0, ∆vgz
+ k2vgz

= 0 in D, (15)

w − vgz
= Φ(·, z), ∂w

∂ν
− ∂vgz

∂ν
=
∂Φ

∂ν
(·, z) on ∂D. (16)

Equations (15)-(16) form the so called interior transmission problem. As it will be better clarified
in the next section, transmission eigenvalues identify wave numbers for which the farfield operator
may not be complete in L2(Ω). In particular, when k is such that the homogeneous problem
associated to equations (15)-(16) admits a non trivial solution (w, v) with v a Herglotz wave
function, then farfield operator F is not complete in L2(Ω) [8]. In [6] the set of transmission
eigenvalues has been proved to be infinite and countable.

The case of inhomogeneous background. We conclude this section by noting that an
adaptation of the linear sampling method to the problem of detecting an object embedded in
an inhomogeneous background has been well established for example in [7] (for TM polarized
plane waves and impenetrable objects) and in [9] (for near field measurements and penetrable
objects). In the inhomogeneous cases, the kernel of the farfield operator has to be modified by
subtracting its background analogous and the right hand side should be replaced by the farfield
of the background Green’s function. The index nb of the inhomogeneous background is assumed
to verify similar regularity assumptions as n and to be equal to 1 outside a ball.

Following [7] if us
b,∞ denotes the farfield pattern of the background medium (i.e. without the in-

clusion D) and if G∞(·, z) is the farfield of the Green function corresponding to the inhomogeneous
background and to a point source at z, then Theorem 2.1 holds with

(Fg)(x̂) :=

∫

Ω

[u∞(x̂, d) − us
b,∞(x̂, d)]gz(d)ds(d) (17)

and Φ∞ replaced by G∞. If ub(·, d) denotes the total field associated with the background, i.e.
solution to (1)-(3) with n = nb, then the Herglotz wave is defined in the present case as

vg(x) :=

∫

Ω

ub(x, d)g(d)ds(d) (18)

and forms the incident wave that generates, for the inclusion D, a farfield equals to Fg.

RR n° 7729



6 Giorgi, Haddar

3 Derivation of a constant approximation of the refractive

index

We consider the case of a non-absorbing (i.e. Im(n) = 0) inhomogeneous medium embedded in
a (possibly inhomogeneous) background and we assume that LSM or other qualitative methods
[2, 14] have already been used to determine the support D of the target. The aim of this section
is to determine an estimate of the index of refraction n(x) under the assumption that the support
D is known.

To achieve this goal we shall make use of the first transmission eigenvalue and consider the
interior transmission eigenvalue problem as an eigenvalue problem where the eigenvalue is the index
of refraction. This is why we first need to provide a clearer definition of transmission eigenvalues
and comment on their identification using farfield data.

3.1 Transmission eigenvalues and their identification using farfield data

We start analyzing the case of a TM polarized scattering problem of an inhomogeneous medium
in the vacuum. Using the notation and assumptions of the second section, we define the interior
transmission problem [8, 10] as the problem of finding w, v ∈ L2(D), with w − v ∈ H2(D), such
that

∆w + k2nw = 0 in D (19)

∆v + k2v = 0 in D (20)

w − v = f on ∂D (21)

∂w

∂ν
− ∂v

∂ν
= g on ∂D (22)

for some boundary data f ∈ H
1

2 (∂D) and g ∈ H
3

2 (∂D).
We have that the farfield operator F is injective with dense range provided that k is not a

transmission eigenvalue, i.e. a value of k for which the homogeneous (i.e. f = 0 and g = 0 in
(21) and (22)) interior transmission problem has a non trivial solution. We also recall that for
z ∈ D, the farfield equation has a nearby solution gǫ

z ∈ L2(Ω) that satisfies (10)-(11) if there exists
a couple (wz, vz) solution of (19)-(22) with f = Φ(·, z) and g = ∂

∂ν Φ(·, z).
Since the linear sampling method is expected to fail when k is a transmission eigenvalue and,

in particular, for almost all z ∈ D the norm of a regularized solution gz,α satisfying

lim
α→0

‖Fgz,α − Φ∞(·, z)‖L2(Ω) = 0 (23)

is expected to be large for such values of k [5, 3], a possible method for finding transmission
eigenvalues would be to solve (23) for few fixed z ∈ D and for values of k in an interval: the
transmission eigenvalues would correspond with large values of k 7→ ‖gz‖L2(Ω).

The following theorem formalizes previous considerations (the formulation is an adaptation of
the results in [5]).

Theorem 3.1. Let gz,α satisfy (23) and z be a point of R
2; let vgz,α

be the Herglotz wave function
associated to gz,α and let us assume that k is a transmission eigenvalue. Then for almost every
z ∈ D, ‖vgz,α

‖L2(D) cannot be bounded as α→ 0. Otherwise, if k is not a transmission eigenvalue,
then there exists gz,α satisfying (23) such that ‖vgz,α

‖L2(D) is bounded as α→ 0 for each z ∈ D.

Let us denote by P (D, k, n) the interior transmission problem (19)-(22) for a domain D of
refractive index n and with boundary data f = Φ(·, z) and g = ∂

∂ν Φ(·, z).
We give in following a corollary of the previous theorem that indicates how, for multiply con-

nected inclusions D, one can identify the transmission eigenvalues associated with each connected
component. More precisely, assume that D =

⋃

ĵ∈{j0,...,jm}Dĵ with m ∈ N and Dĵ connected for

each ĵ ∈ {j0, ..., jm} and refer to P (Dĵ , k, nĵ) as the interior transmission problem associated to

INRIA



Computing estimates on material properties from transmission eigenvalues 7

Dĵ , with nĵ restriction of n to Dĵ . We remark that, obviously, the set of transmission eigenvalues

for D is the union of transmission eigenvalues for Dĵ for ĵ ∈ {j0, ..., jm}.
Let us consider the farfield equation associated to the whole D and let gz,α satisfy (23).

Corollary 3.1. Let jp, jq ∈ {j0, ..., jm} and let k∗ be a transmission eigenvalue for P (Djp
, k, njp

)
and not for P (Djq

, k, njq
). Then

• ‖vgz,α
‖L2(D) is unbounded for almost every z ∈ Djp

.

• For each z ∈ Djq
there exists a gz,α satisfying (23) such that ‖vgz,α

‖L2(D) is bounded.

Proof. First, we point out that if (w, v) is a solution of P (D, k, n), then (wj̄ , vj̄) (restriction of
(w, v) to Dj̄) would be a solution of P (Dj̄ , k, nj̄) and that

‖v‖2
L2(D) =

∑

j̄∈{j0,...,jm}
‖vj̄‖2

L2(Dj̄)
. (24)

• Let k∗ be a transmission eigenvalue for Pjp
. Then, from Theorem 3.1, it follows that

‖vgz,α,jp
‖L2(Djp ) has to be unbounded for almost every z ∈ Djp

. Then, by (24), ‖vgz,α
‖L2(D)

is unbounded for almost every z ∈ Djp
.

• If z ∈ Djq
, (0,Φ(·, z)) is a (bounded) solution of Pjp

. Hence, (w, v) such that w = 0 on D,
v = 0 on Dj̄ for each j̄ 6= jp and v = Φ(·, z) on Djp

is a bounded solution of P (D, k∗, n).
Denseness of the set of Herglotz wave functions implies the existence of a gz,α such that
‖vgz,α

− v‖L2(D) → 0 for α→ 0. This implies that ‖Fgz,α − Φ(·, z)‖L2(Ω) → 0 for α→ 0.

3.2 Identification of the refractive index

As explained before, solving the interior transmission eigenvalue problem means, knowing the
shape of D and the pointwise values of n, find k∗ such that there exists a non trivial solution u of
the problem P (D, k, n).

Let us change the point of view: since transmission eigenvalues are detectable without knowing
n(x), it is possible to consider directly the problem P (D, k∗, n) where D and k∗ are known and n is
unknown. Moreover, supposing n constant, P (D, k∗, n) could be treated as a classical generalized
eigenvalue problem.

Now, we are ready to explain the idea of the whole method. Given the inverse scattering
problem of detecting an inhomogeneous medium of index n, one can first reconstruct the shape of
the unknown object D using the LSM (or other similar qualitative methods). Then, fixing a z in
D and plotting the norm of g (solution of (23)) for every k in an interval, transmission eigenvalues
k∗ of P (D, k, n) can be detected. With their knowledge, it will be possible to solve the problem
of finding n∗ so that P (D, k∗, n∗) has a non trivial solution; i.e. finding n∗ for which k∗ is a
transmission eigenvalue of P (D, k, n∗).

Proposition 3.1. Assume that n is constant. Then, the homogeneous interior transmission
problem P (D, k, n) is equivalent to the problem of finding u ∈ H2

0 (D) satisfying

(∆ + k2)∆u = −k2n(∆ + k2)u in D. (25)

Further, the eigenvalue problem: find (u, n) ∈ H2
0 (D) × R satisfying (25), admits a countable

number of eigenvalues n ∈ R.

Proof. The equivalence between (20)-(22) (with n constant) and (25) can be easily proved by
setting u = w − v ([2, 15]).
Problem (25) is equivalent to (∆ + k2)2u = λ(∆ + k2)u with λ = k2(1 − n). The operator
(∆+k2)2 : H2

0 (D) 7→ H2
0 (D) is bijective and self adjoint while operator (∆+k2) : H2

0 (D) 7→ H2
0 (D)

is compact, injective and self adjoint. Then, the existence of a countable number of real eigenvalues
λ can be proved applying classical spectral theory for compact self adjoint operators.

RR n° 7729



8 Giorgi, Haddar

The main difficulty related to numerical solutions of the eigenvalue problem (25) comes from
the fourth order operator which requires the use of C1 finite elements. We shall in the following
provide mixed formulations of the problem that allows the use of C0 finite elements. These
formulations, inspired by classical mixed formulation for the biharmonic problem, are those used
in the numerical simulations (done with standard P1 Lagrange finite elements).

Proposition 3.2. Assume that n is constant. Then if u ∈ H2
0 (D) ∩H3(D) is such that (25) is

valid, then u and u = (∆ + k2)u are solution of the variational problem: “Find u ∈ H1
0 (D) and

u ∈ H1(D) such that

∫

D

(uv + ∇u∇v − k2uv −∇u∇v)dx = −k2n

∫

D

(k2uv −∇u∇v)dx (26)

for all v ∈ H1
0 (D), v ∈ H1(D)”.

Conversely, if u ∈ H1
0 (D) ∩ H3(D) and u ∈ H2(D) are solutions of (26), then u ∈ H2

0 (D) and
satisfies (25).

Proof. Substituting u = (∆ + k2)u, equation (25) becomes ∆u = −k2nu. Multiplying both
equations respectively against test functions v ∈ H1(D) and v ∈ H1

0 (D) and applying Green’s
identity we obtain

∫

D

(∇u∇v − k2uv)dx = −
∫

D

uvdx (27)

and

−
∫

D

∇u∇vdx = −k2n

∫

D

(k2uv −∇u∇v)dx. (28)

Summing the two equations we obtain (26).
Reciprocally, starting with (26) we can go back to equations (25) by assuming that u ∈ H1

0 (D)∩
H3(D) and u ∈ H2(D). Using Green’s identity we obtain that (27) is equivalent to

∫

D

(u − ∆u− k2nu)vdx =

∫

∂D

∂u

∂ν
v ds(x) (29)

for all v ∈ H1(D). Since C∞
c (D) ⊂ H1(D) we get

∫

D
(u− ∆u− k2nu)vdx = 0 for all v ∈ C∞

c (D).

Hence, u − ∆u− k2nu = 0 almost everywhere in D and consequently ∂u
∂ν = 0 almost everywhere

on ∂D. The latter implies in particular that u ∈ H2
0 (D). Similar arguments applies to (28) and

prove that ∆u = −k2nu almost everywhere in D, which implies (25).

3.3 The case of an inhomogeneous background

The approach described in the previous subsection can be extended to the case in which the
medium is embedded in an inhomogeneous background. Let us consider the case where the inclu-
sion D is embedded in a background with index nb. Then the homogeneous interior transmission
problem is formulated as follows:

∆w + k2nDw = 0 in D, (30)

∆v + k2nbv = 0 in D, (31)

w = v on ∂D, (32)

∂w

∂ν
=
∂v

∂ν
on ∂D. (33)

where nD denotes the index of D. Taking u = w − v in (30)-(33) and applying the operator
∆ + k2nD to the difference (30)-(31) we obtain

(∆ + k2nD)
1

k2(nb − nD)
(∆ + k2nb)u = 0 in D (34)

INRIA



Computing estimates on material properties from transmission eigenvalues 9

u = 0,
∂u

∂ν
= 0 on ∂D. (35)

Substituting

u :=
1

k2(nb − nD)
(∆ + k2nb)u (36)

we obtain
∆u = −k2nDu in D. (37)

Multiplying (37) by a test function v ∈ H1
0 (D) and (36) by k2(nb−nD)v with v ∈ H1(D), applying

the Green’s formula, taking into account the boundary conditions satisfied by u and adding the
two equations, one ends up with the following variational formulation

∫

D

(k2nb(uv − uv) −∇u∇v −∇u∇v)dx = λ

∫

D

(uv + uv)dx, (38)

which is valid for all v ∈ H1
0 (D) and v ∈ H1(D) and with λ := −k2nD. Using this procedure and

similar arguments as in the proof of Proposition 3.2, one can prove the following.

Proposition 3.3. If nD is assumed to be constant and ∃w, v ∈ L2(D) and w− v =: u ∈ H2
0 (D)∩

H3(D) such that (30)-(33) is valid, then u and u = 1
k2(nb−nD) (∆ + k2nb)u are solution of the

variational problem: “Find u ∈ H1
0 (D) and u ∈ H1(D) such that

∫

D

(k2nb(uv − uv) −∇u∇v −∇u∇v)dx = λ

∫

D

(uv + uv)dx (39)

for all v ∈ H1
0 (D), v ∈ H1(D)”.

Conversely, if u ∈ H1
0 (D) ∩ H3(D) and u ∈ H2(D) are solutions of (39), then u ∈ H2

0 (D) and
satisfies (34).

Remark 3.1. In the case of inhomogeneous background, (7) takes the form of

[Fgz](·) = G∞(·, z), (40)

where G∞ and F are defined as (17), taking into account the presence of the inhomogeneous
background. As in the homogeneous case, k 7→ ‖gz‖L2(Ω) is expected to have peaks for k being a
transmission eigenvalue for a.e. z ∈ D. This procedure allows us to compute the transmission
eigenvalues from farfield data.

3.3.1 A remark on the case of absorbing background

It is well known that, when a non-absorbing object of support D is embedded in a background
such that Im(nb) > 0, then there are no real transmission eigenvalues associated with (30)-(33) [8].
Since complex transmission eigenvalues are not detectable by the procedure previously indicated
in (Remark 3.1), this means that our method providing estimates on the index of refraction is not
applicable.

However, in this preliminary remark something is not sufficiently precise: the definition of the
background index inside D has no physical meaning since the “physical index” of the medium
inside D is n. For backgrounds with constant indexes or for layered backgrounds, a “natural
extension” of the definition of the background index inside D can be defined. But this is mainly
only for a mathematical or numerical convenience.

This simple consideration suggests that there can be some degrees of freedom in the definition
of nb inside D, which is the part used in the interior transmission problem (30)-(33). As far as
the inverse problem of determining n is concerned, this is feasible since at this stage we assume
that D is known. In particular if we choose nb to be a real constant (different from nD) in D,
then we are back again to the case where the interior transmission problem has real eigenvalues
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10 Giorgi, Haddar

and therefore one would be able to apply the procedure previously explained to get estimates on
nD. This procedure will be validated by some numerical experiment in the numerical section.

Of course there is an extra price to pay: it is hidden in the step of determining the transmission
eigenvalue from farfield data. Indeed when one complexifies the background index, this makes the
computation of us

b,∞ in (17) more costly.
We finally observe that this procedure can also be applied in the case without absorption if

one would like to use the (simpler) formulation of the interior transmission problem with constant
index.

4 The case of TE polarization

Our results for TM polarized waves can be extended to the case of transverse electric (TE) polar-
ization, i.e. the case for which the magnetic component of the field (originated by the incidence of
a time harmonic plane wave) vibrates parallel to the axis of the infinite cylinder that is assumed
to have cross section D. The main steps of the inversion algorithm are the same as in the TM
case and we shall hereafter only give a sketch of the main differences.

Let us first quickly introduce the direct scattering problem for a scatterer D of refractive index
n in the case of TE incident plane waves. The total field u ∈ H1

loc(R
2) satisfies

∇ · ( 1

n(x)
∇u(x)) + k2u(x) = 0 in R

2, (41)

u(x) = ui(x) + us(x) with ui(x) = expikx·d, (42)

lim
r→∞

√
r(
∂us(x)

∂r
− ikus(x)) = 0. (43)

The associated farfield pattern as well as the farfield operator can be deduced as in the TM case.
Theorem 2.1 is also still valid in the present case under the same assumption on the refractive
index.

4.1 Transmission eigenvalues

In this case, the homogeneous interior transmission problem is defined as follows [4]: find w̃, v ∈
L2(D) such that w̃ − v =: u ∈ H1(D), ∇ · ( 1

n∇w̃ −∇v) ∈ L2(D) and

∇ · ( 1

n
∇w̃) + k2w̃ = 0 in D, (44)

∆v + k2v = 0 in D, (45)

w̃ = v on ∂D, (46)

1

n

∂w̃

∂ν
=
∂v

∂ν
on ∂D. (47)

Since the Linear Sampling Method works independently from wave polarization, results obtained
in the case of transverse magnetic waves as well as Theorem 3.1 and Corollary 3.1 could be
extended to the case of transverse electric polarization. Hence, again, transmission eigenvalues are
detectable from the knowledge of farfield patterns and the resolution of the eigenvalue problem
P (D, k∗0 , n) can provide us with a constant approximation n∗ of n.

4.2 Mixed formulations of the refractive index eigenvalues problems

We shall explain here how problem (44)-(47) can be formulated as an eigenvalue problem for a
constant n, assuming that k and D are known.
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Computing estimates on material properties from transmission eigenvalues 11

Proposition 4.1. Considering n constant, problem (44)-(47) is equivalent to the problem of
finding u := 1

n w̃ − v ∈ H2(D) such that

(∆ + k2)∆u = −k2n(∆ + k2)u in D (48)

∆u = 0,
∂u

∂ν
= 0 on ∂D. (49)

Proof. Substituting w = 1
n w̃ and using (44) and (45) it is easy to obtain

∆w + k2nw = 0 in D, (50)

∆v + k2v = 0 in D, (51)

∆w = −k2w̃ = −k2v = ∆v on ∂D (52)

∂w

∂ν
=
∂v

∂ν
on ∂D. (53)

The equivalence between (50)-(53) and (48)-(49) can be shown as is the TM case.

Proposition 4.2. Assuming n constant then: if u ∈ H2(D) ∩ H3(D) is such that (48)-(49) is
valid, then u and u := ∆u are solution of the problem: “Find u ∈ H1(D) and u ∈ H1

0 (D) such
that

∫

D

(uv + ∇u∇v + k2
uv −∇u∇v)dx = −k2n

∫

D

(k2uv −∇u∇v)dx. (54)

for all v ∈ H1(D), v ∈ H1
0 (D)”.

Conversely, if u ∈ H3(D) and u ∈ H1
0 (D) ∩ H2(D) are solutions of (54), then (48)-(49) is

satisfied by u.

Proof. Substituting u = ∆u, equation (48) becomes (∆+k2)u = −k2n(∆+k2)u. Multiplying both
equations respectively against test functions v ∈ H1(D) and v ∈ H1

0 (D) and applying Green’s
identity we obtain

∫

D

uvdx = −
∫

D

∇u∇vdx (55)

and
∫

D

(−∇u∇v + k2
uv)dx = −k2n

∫

D

(k2uv −∇u∇v)dx. (56)

Summing the two equations we obtain (54). The reverse implication is a classical exercise similar
to the one done at the end of the proof of Proposition 3.2.

4.2.1 The case of an inhomogeneous background

The case of a scatterer embedded in an inhomogeneous background illuminated by TE polarized
plane waves is more complex. Nevertheless, following the approach of [4], it is possible to write the
homogeneous interior transmission problem as a generalized eigenvalue problem with λ = −k2nD

as eigenvalues.
Let us again consider an inclusion D with index nD embedded in a background with index nb;

the homogeneous interior transmission problem is formulated as follows:

∇ · ( 1

nD
∇w) + k2w = 0 in D, (57)

∇ · ( 1

nb
∇v) + k2v = 0 in D, (58)

w = v on ∂D, (59)

1

nD

∂

∂ν
w =

1

nb

∂

∂ν
v on ∂D. (60)

RR n° 7729



12 Giorgi, Haddar

Taking the gradient of (57) and (58) and substituting w = 1
nD

∇w and v = 1
nb
∇v in (57)-(60)

we obtain

∇(∇ · w) + k2nDw = 0 in D, (61)

∇(∇ · v) + k2nbv = 0 in D, (62)

with boundary conditions

ν · w = ν · w and ∇ · w = ∇ · v on ∂D. (63)

Setting u = w − v and taking the difference between (61) and (62) we obtain

1

k2(nb − nD)
(∇∇ · +k2nb)u = w. (64)

Then, applying (∇∇ · +k2nD) to both sides,

(∇∇ · +k2nD)
1

k2(nb − nD)
(∇∇ · +k2nb)u = 0 in D. (65)

Substituting U = 1
k2(nb−nD) (∇∇ · +k2nb)u we obtain (∇∇ · +k2nD)U = 0 in D, which gives rise

to the system

(∇∇ · +k2nb)u − k2nbU = −k2nDU in D, (66)

∇∇ · U = −k2nDU in D, (67)

ν · u = 0 and ∇ · u = 0 on ∂D. (68)

The latter eigenvalue problem for eigenvalues λ = −k2nD can be formulated in a variational form
as in the inhomogeneous TM case by respectively replacing the variational spaces H1(D) and
H1

0 (D) with
Hdiv(D) := {V ∈ L2(D)2 ; ∇ · V ∈ L2(D)} ∋ U,

and
{v ∈ Hdiv(D) ; ν · u = 0 on ∂D} ∋ u.

The numerical implementation of the resulting variational formulation requires the use of Hdiv

elements. We did not validate our procedure in the present case.

5 Numerical Experiments

5.1 The case where the shape is known

Before presenting some numerical results concerning the reconstruction of the shape and the
constant approximation of the refractive index of unknown objects, let us show how - solving
P (D, k∗0 , n) as a generalized eigenvalue problem - we obtain a good approximation of n when both
D and its first transmission eigenvalue are known.

We focus on the case of a circular geometry and we shall investigate two configurations: in
the first one, the refractive index is constant (Figure 1 (a)) and in the second one the index of
refraction has two different values in two concentric circles (Figure 1 (b)).
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(a) (b)

Figure 1: Configuration of the refractive index in a circular domain D: homogeneous case (a),
piecewise constant case (b).

In both cases the first transmission eigenvalue is analytically computable using the following
result (that can be obtained using separation of variables).

Proposition 5.1. For a circle of radius R and refractive index n, if k∗0,TM and k∗0,TE denote
the first transmission eigenvalues respectively in the case of transverse magnetic and transverse
electric polarized waves, then

k∗0,TM = min{k|∃p ∈ N s.t. det(ATM
p,k ) = 0},

k∗0,TE = min{k|∃p ∈ N s.t. det(ATE
p,k) = 0},

with

ATM
p,k :=

(

Jp(kR) Jp(k
√
nR)

kJp−1(kR) − p
RJp(kR) k

√
nJp−1(k

√
nR) − p

RJp(k
√
nR)

)

,

ATE
p,k :=

(

Jp(kR) Jp(k
√
nR)

kJp−1(kR) − p
RJp(kR) 1√

n
(k
√
nJp−1(k

√
nR) − p

RJp(k
√
nR))

)

.

Proposition 5.2. For a circle made of two concentric layers of external radius Re and internal
radius Ri, if ne and ni respectively denote the refractive index of the exterior and interior layers
and if k∗0,TM and k∗0,TE are the first transmission eigenvalues respectively in the case of transverse
magnetic and transverse electric polarized waves, then

k∗0,TM = min{k|∃p ∈ N s.t. det(BTM
p,k ) = 0},

k∗0,TE = min{k|∃p ∈ N s.t. det(BTE
p,k ) = 0},

with

BTM
p,k :=











Jp(kRe) −Jp(k
√
neRe) −H(1)

p (k
√
neRe) 0

J ′
p(kRe) −J ′

p(k
√
neRe) −H(1)′

p (k
√
neRe) 0

0 Jp(k
√
neRi) H

(1)
p (k

√
neRi) −Jp(k

√
niRi)

0 J ′
p(k

√
neRi) H

(1)′

p (k
√
neRi) −J ′

p(k
√
niRi)











,

BTE
p,k :=











Jp(kRe) −Jp(k
√
neRe) −H(1)

p (k
√
neRe) 0

J ′
p(kRe) − 1

ne
J ′

p(k
√
neRe) − 1

ne
H

(1)′

p (k
√
neRe) 0

0 Jp(k
√
neRi) H

(1)
p (k

√
neRi) −Jp(k

√
niRi)

0 1
ne
J ′

p(k
√
neRi)

1
ne
H

(1)′

p (k
√
neRi) − 1

ni
J ′

p(k
√
niRi)











.

Remark 5.1. Studying or plotting the behavior of det(ATM
p,k ), det(ATE

p,k), det(BTM
p,k ), det(BTE

p,k ) for
k ∈ R, one can observe that few p ∈ N (the firsts) are enough for determining k∗0 .
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Problem P (D, k∗0 , n) is solved with P1-finite elements based on the variational formulations
(26) and (54). The discretization step is ∼ 1

10 of the wavelength inside the medium. The matrices
are assembled using FreeFem++ [16] and the associate eigenvalue problem is solved in Matlab
with the preset function eigs, in modality ’sm’ (i.e. look for smaller magnitude eigenvalues).
Since the eigenvalue problem formulation correspond with a generalized eigenvalue problem for
non self-adjoint matrices and with degenerate mass matrices, there is no guarantee for convergence
of the algorithm. Moreover, the mixed formulation is equivalent to the original one only under
regularity assumptions on the solution. This is why parasite values are observed in the numerical
computations of the eigenvalues. These parasite values correspond to solutions u that do not
satisfy the boundary condition ∂u/∂ν = 0 on ∂D. From the practical point of view we observed
that these bad values can simply be cut off by respecting the lower bound n∗ = min{−λ/k∗20 > 1}
[3, 4].

Figure 2 shows results achievable when D is a circle of radius 0.5 and has a constant refractive
index. The value of n is well recovered, with a better precision occurring for small n. As it is clear
from Figure 2, with the increasing of the value of n, k∗0 decreases, clustering around k = 1. Since
the computation of transmission eigenvalues is precise up to two digits, the previous consideration
suggests that the difference in precision between reconstructions for small and large values of n is
due to a not enough precise approximation of k∗0 for large n.

Figure 2: Reconstructed index for a homogeneous circle of radius 0.5. TM case (left) and TE
case (right).

Figures 3 and 4 are associated with the two layered case where the areas of the two layers are
equal (Re = 0.5 and Ri = 1

2
√

2
). The values of ne and ni are varied by maintaining the difference

ne−ni equals to 6, (for example (ne, ni) = (8, 2), (9, 3), ...) for Figure 3. As in previous figures, we
plot the value of the reconstructed value n∗ of n (y-axis) against the first transmission eigenvalue
(x-axis); blue lines corresponding to the value of ni and ne. They are over plotted in order to
clarify wether or not n∗ fall in [ni, ne]. In Figure 4 the role of ne and ni are reversed to emphasize
how a different structure (and not only different values of n or different layer areas) could affect
the reconstruction.
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Computing estimates on material properties from transmission eigenvalues 15

Figure 3: Reconstruction of the index in the case of a two layered circle (Re = 0.5 and Ri = 1
2
√

2
).

The exact refractive index is such that ne − ni = 6. The reconstructed value is shown by * and
the solid line indicate the exact values of ne and ni. TM case (left) and TE case (right).

Figure 4: Same settings as in Figure 3 but with ni − ne = 6. TM case (left) and TE case (right).

In the previous examples one observes that it is not simple to relate the value of the re-
constructed constant index n∗ with non-constant refractive indexes. This is confirmed by next
examples where we have not been able to observe a relation more accurate than

min
x∈D

n(x) ≤ n∗ ≤ max
x∈D

n(x). (69)

Understanding how transmission eigenvalues distribute depending on shape and dimension of the
scatterer, on its index of refraction and on polarization of the wave, is, at present, still an open
problem. The next few experiments are an overview of this complex relation between n∗ and
different configurations of the material inside D which is still a circle of radius 0.5.

With Figures 5 and 6, (respectively for TM and TE polarization), we want to investigate how
different structures of n would lead to different transmission eigenvalues (and consequently to
different n∗) even if minD n and maxD n are not modified. In both cases we consider a circular
scatterer of radius 0.5 containing a concentric circular layer of varying radius. For fixed values of
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16 Giorgi, Haddar

the refractive index ni = 6 and ne = 12 we show how k∗0 and n∗ behave with respect to the radius
of the internal circle Ri.

Figure 5: Results for TM polarized incident waves in the case of a two layered circle with Re = 0.5
and a varying Ri. The exact index values are ni = 6 and ne = 12. The x-axis represents the values
of Ae/Atot, ratio of external layer area to the total circle area. Left: first transmission eigenvalue.
Right: reconstructed n∗.

As expected, since the first transmission eigenvalue decreases with respect to the index of re-
fraction [6], it should be increasing with respect to Ri (since ne > ni) and therefore decreasing
with respect to the area of the external layer Ae. However, the dependence is completely nonlin-
ear. The values of n∗ have reversed monotonicity property with respect to the first transmission
eigenvalue and therefore increases with Ae. The behavior of n∗ is also nonlinear as demonstrated
by the comparison with the weighted average of the exact n.

Figure 6: Results for TE polarized incident waves in the case of a two layered circle with Re = 0.5
and a varying Ri. The exact index values are ni = 6 and ne = 12. The x-axis represents the values
of Ae/Atot, ratio of external layer area to the total circle area. Left: first transmission eigenvalue.
Right: reconstructed n∗.
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Computing estimates on material properties from transmission eigenvalues 17

5.2 Numerical results for cases where the geometry is not known a

priori

In this last section we present some numerical experiments and results that are related to a
more realistic inverse scattering experiment: i.e. a situation where both the geometry D of the
scatterer and its refractive index n are unknown and the only data at our disposal are the farfields
associated with many incident directions. Since in the previous section it has been shown that the
method performance for TM polarized waves and for TE polarized waves is similar, we show only
simulations for TM waves. The inversion algorithm is the following:

• Apply the LSM algorithm (as described in Section 2) to find an approximation D̃ of the
shape of D.

• Determine the smallest transmission eigenvalue k∗0 (for each connected component of D)
using the method described in Section 3.

• Solve the eigenvalue problem P (D̃, k∗0 , n) to obtain a constant approximation n∗ of the exact
index n inside D.

Following this scheme, for each example, we shall present both the LSM reconstruction and
the graph of k 7→ ‖gz‖L2(Ω) for several z ∈ D̃. Simulations are done using 20 emitting antennas,
20 measuring antennas and by corrupting the data with 5% random noise.

Figures are collected in panels (Figures 7 - 13) and the values of the corresponding constant
approximation of n are indicated in Tables 1 - 7.

5.2.1 The case of circular geometries.

In this case comparisons can be made with the exact calculations made in previous section for
transmission eigenvalues. It has also the advantage of allowing fast computation of the Green func-
tion for inhomogeneous (layered) backgrounds and fast implementation of LSM (see Appendix).

The first example corresponds with the two layered configuration of D (shown in Figure 1-
right) with an external radius 0.5 and an internal radius 0.354, embedded in the vacuum where we
considered four configurations for the indexes of refraction n = ne for the exterior layer and n = ni

for the interior layer. Figure 7-(a1-a2) shows the LSM reconstruction for ne = 22 and ni = 19;
for four different configurations of the index of refraction (ne = 8, ni = 8), (ne = 11, ni = 5),
(ne = 22, ni = 19) and (ne = 67, ni = 61), we present k 7→ ‖gz‖L2(Ω) that allows us to determine
the first transmission eigenvalue. The corresponding values of n∗ are collected in Table 1.
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18 Giorgi, Haddar

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 7: Two layered circular inclusion embedded in the vacuum (Figure 1-right). (a1) LSM
reconstruction at k = 4.2, ne = 22 and ni = 19. (a2) reconstructed shape (red) versus exact
shape (blue). (a3), (b1), (b2), (b3) plots of k 7→ ‖gz‖L2(Ω) for several choices of z, respectively for
(ne, ni) = (8, 8), (11, 5), (22, 19), (67, 61).

ne ni k∗0 n∗ - exact shape n∗ - reconstructed shape

8 8 2.98 8.07 7.61
11 5 3.27 7.05 6.69
22 19 1.76 20.28 18.86
67 61 0.97 64.11 59.42

Table 1: Transmission eigenvalues and reconstructed index associated with Figure 7.

Figures 8, 9 and corresponding Tables 2, 3, describe the results achievable when the two
layered inclusion of previous experiment is now embedded in an inhomogeneous background. The
inhomogeneous background consists into a circular domain of radius 0.75 and with refractive index
nb embedded in the vacuum.

Figure 8 and Table 2 show how the method perform for objects embedded in a non-absorbing
background. As expected, we observe that the transmission eigenvalues are different from those
corresponding to the homogeneous background but the estimates n∗ are roughly the same.
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 8: Two layered circular inclusion (a1) embedded in an inhomogeneous background (a2).
(a3): reconstructed shape (red) versus exact shape (blue). (b1), (b2), (b3): plots of k 7→ ‖gz‖L2(Ω)

for several choices of z, respectively for (ne, ni, nb) = (8, 8, 2), (11, 5, 2), (67, 61, 10).

ne ni nb k∗0 n∗ - exact shape n∗ - reconstructed shape

8 8 2 4.11 8.09 7.70
11 5 2 4.89 6.92 5.04
67 61 10 1.11 64.35 61.44

Table 2: Transmission eigenvalues and reconstructed index associated with Figure 8.

Figure 9 and Table 3 correspond with the case of an absorbing background. We develop here
the idea explained in Section 3.3.1 and show that, when an artificial non-absorbing background of
index ñb is used inside the reconstructed domain, real transmission eigenvalues can be computed,
allowing to find roughly the same values of n∗ as in the non absorbing case. We remark that in
this configuration the accuracy of D̃ (approximation of the shape of D) has a stronger influence on
the accuracy of n∗ since it affects the computation of the incident field for the background. The
latter is used in computing ‖gz‖L2(Ω) and therefore affect the precision of the first transmission
eigenvalue.
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 9: Two layered circular inclusion (ne, ni) = (8, 8), embedded in an inhomogeneous ab-
sorbing background (a3) with nb = 2 + ı. (a1): reconstructed shape (red and green) versus exact
shape (blue). (a2): considered artificial background with ñb = 1 inside D. (b1), (b2), (b3): plots of
k 7→ ‖gz‖L2(Ω) for several choices of z, respectively for the exact shape and artificial background,
reconstructed shape (red) and artificial background, exact shape and true background. (c1), (c2),
(c3): same as (b1), (b2), (b3) but for the case (ne, ni) = (11, 5) and for the green reconstructed
shape.

ne ni nb ñb (k∗0 , n∗) - exact shape (k∗0 , n∗) - reconst. shape

8 8 2+ı 1 (2.98, 8.07) (2.96, 7.69)

11 5 2+ı 1 (3.27, 7.05) (3.28, 7.43)

Table 3: Transmission eigenvalues and reconstructed index associated with Figure 9.
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5.2.2 Cases of non circular geometries

In Figure 10 and Figure 11 the case of scatterers that are not circular is investigated. In both
figures a two layered inclusion is considered. The exact profile of D, the LSM reconstruction for
ne = 22, ni = 19 and transmission eigenvalues for (ne, ni) = (8, 8), (11, 5), (22, 19) are respectively
shown for a layered ellipse and for an ellipse embedded into a rectangle. Tables 4 and 5 present the
values of n∗ achievable using the values of k∗0 and the extracted profile D̃. One can draw roughly
similar conclusions as in the case of circular geometries.

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 10: Two layered ellipsoidal inclusion (a1) embedded in the vacuum. (a2): LSM recon-
struction for k = 4.16, ne = 22 and ni = 19. (a3): reconstructed shape (red) versus exact
shape (blue). (b1), (b2), (b3): plots of k 7→ ‖gz‖L2(Ω) for several choices of z, respectively for
(ne, ni) = (8, 8), (11, 5), (22, 19).

ne ni k∗0 n∗ - exact shape n∗ - reconstructed shape

8 8 3.42 8.08 7.74
11 5 2.81 11.10 10.50
22 19 1.92 22.16 20.73

Table 4: Transmission eigenvalues and reconstructed index associated with Figure 10.
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 11: Rectangular inclusion containing an ellipsoidal layer (a1) embedded in the vacuum.
(a2): LSM reconstruction for k = 5.64, ne = 22 and ni = 19. (a3): reconstructed shape (red) ver-
sus exact shape (blue). (b1), (b2), (b3): plots of k 7→ ‖gz‖L2(Ω) for several choices of z, respectively
for (ne, ni) = (8, 8), (11, 5), (22, 19).

ne ni k∗0 n∗ - exact shape n∗ - reconstructed shape

8 8 3.05 8.94 9.37
11 5 2.48 12.62 13.27
22 19 1.69 25.53 26.90

Table 5: Transmission eigenvalues and reconstructed index associated with Figure 11.

5.2.3 Cases of multiply connected inclusions

Finally, inspired by Corollary 3.1, we present a simulation for a scatterer consisting in two distinct
objects of different refractive indexes. Figures 12 and 13 jointly with Tables 6 and 7 prove that a
reconstruction of both indexes of refraction is effectively achievable by considering k 7→ ‖gz‖L2(Ω)

first for several z in one connected component and second for several z in the other connected
component. As one cas observe in part (b1) of Figure 13, small peaks are present in k 7→ ‖gz‖L2(Ω)

preceding the first transmission eigenvalue. A closer look reveals that those peaks correspond with
the transmission eigenvalues of the other connected component (see part (b3)). We think that this
is due to the fact that the two connected components are close to each others. For instance, such
perturbation is not observed in the case of Figure 12 where the distance between the two connected
components is larger.
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 12: Two homogeneous circular inclusions (a1): a circle c1 centered at (0, 0) of refractive
index n = 8 and a circle c2 centered at (5, 5) of refractive index n = 25. (a2): LSM reconstruction
for k = 4.2. (a3) and (b2): reconstructed shape (red) versus exact shape (blue) respectively for c1
and c2. (b1) and (b3): plots of k 7→ ‖gz‖L2(Ω) for several choices of z, respectively for c1 and c2.

circle n k∗0 n∗ - exact shape n∗ - reconstructed shape
c1 8 2.99 8.03 7.17
c2 25 1.57 25.17 24.60

Table 6: Transmission eigenvalues and reconstructed index associated with Figure 12.

A Fast implementation of LSM in the case of a background

with axisymmetric index

We here explain a procedure that accelerates the LSM algorithm for inhomogeneous backgrounds
that have piecewise constant and axisymmetric indexes. In this configuration, by exploiting the
analytic expression of a solution to the Helmholtz equation (obtained by separation of variables)
and by imposing a single regularization to the family of equations (7), we shall indicate how one
can avoid a computation of the right hand sides for all sampling points, and therefore speed up the
inversion of the data. Such a procedure can be useful in situations in which, for reasons related
to the resolution power of the output or related to the material properties, we need to reconstruct
the shape of the scatterer on a grid made of a large amount of points. We explain the procedure
in the case of TM polarized wave (the case of TE case can be treated in a similar way).
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 13: Two homogeneous circular inclusions (a1): a circle c1 centered at (0, 0) of refractive
index n = 8 and a circle c2 centered at (5, 5) of refractive index n = 25. (a2): LSM reconstruction
for k = 4.2. (a3) and (b2): reconstructed shape (red) versus exact shape (blue) respectively for c1
and c2. (b1) and (b3): plots of k 7→ ‖gz‖L2(Ω) for several choices of z, respectively for c1 and c2.

circle n k∗0 n∗ - exact shape n∗ - reconstructed shape
c1 8 2.98 8.07 7.17
c2 25 1.57 25.17 24.60

Table 7: Transmission eigenvalues and reconstructed index associated with Figure 13.
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In the case of incident plane waves, the solution to the Helmholtz equation in the case of
piecewise constant and axisymmetric indexes is of the form

u(x) =

+∞
∑

m=−∞
[αℓ

mH
(1)
m (krx

√

n(x)) + βℓ
mJm(krx

√

n(x))] expimθx (70)

in the region ℓ where n(x) is constant, where (rx, θx) are the polar coordinates of x and where Hm

and Jm are respectively Hankel and Bessel functions. The coefficients αℓ
m and βℓ

m only depend
on the incident field and on the geometry. If ℓ = 0 denotes the outer domain (vacuum) and
ℓ = L denotes the inner homogeneous domain then αL

m = 0 and β0
m = 0 correspond to the

expansion of the incident field in the neighborhood of the outer boundary. More precisely, using
the Jacobi-Anger expansion [8], the incident field is expanded as

ui(x) =

+∞
∑

m=−∞
β0

mJm(krx) expimθx . (71)

The remaining coefficients in expansion (70) are determined by imposing the continuity of the
total field and of its normal derivative on the interfaces. One obtains for each harmonic m a
system of 2L equations for 2L unknowns. The matrix of the obtained system is independent of
the right hand side. This enables for instance a quick evaluation of the background farfields (see
(17)) since

us
∞,b(x̂, d) =

+∞
∑

m=−∞
α0

m(d)

√
2

π
exp

−iπ
2

(2m+1) expimθx̂ . (72)

One can also use this technique to evaluate the background Green tensor. In that case, G(·, z)
has similar expression as (70) in the layers that does not contain z with the additional condition

that β0
m = 0. In the layer that contain z we add to that expression i

4H
(1)
0 (k

√

n(x)|x− z|). Using

the addition formula in order to expand x 7→ i
4H

(1)
0 (k

√

n(x)|x − z|) as a Fourier series one ends
up, as in the previous case, with a 2L× 2L system to solve for each harmonic or order m, with a
matrix independent of the point z. We therefore infer an expression of G∞ (see (17)) of the form

G∞(x̂, z) =
+∞
∑

m=−∞
ξ0m(z)

√
2

π
exp

−iπ
2

(2m+1) expimθx̂ . (73)

The linear sampling method requires the resolution of

Fgz = G∞,z (74)

for each z point of R
2 belonging to a grid containing the scatterer and where F is defined in (17).

If F ∗ denotes the adjoint of F , the Tikhonov regularization of (74) is

(F ∗F + αzI)gz = F ∗G∞,z (75)

which has to be solved for each z belonging to a grid containing the unknown object. Supposing αz

independent from z, i.e. supposing to choose the regularization parameter only once during all the
reconstruction process (for instance, in [1] a no sampling approach to the linear sampling method
is proposed and the problem of properly choosing α is analyzed), some simplification inside the
far field equation is possible. In fact, defining

ψm(x) :=

√
2

π
exp

−iπ
2

(2m+1) expimθx (76)

we have that ∀x̂ ∈ Ω

G∞(x̂, z) =

M
∑

m=−M

ξ0m(z)

√
2

π
exp

−iπ
2

(2m+1) expimθx̂ =

M
∑

m=−M

ξ0m(z)ψm(r, θx̂), (77)
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assuming that we truncate the infinite series at M ∈ N. The solution gz can be expanded as

gz =

M
∑

m=−M

ξ0m(z)gm, (78)

where the functions gm are independent from z and are solutions to:

(F ∗F + αzI)gm = F ∗ψm. (79)

Practical experiments suggest that generally M does not need to be large (due to the behavior of
Bessel functions) and, in particular the needed M is much smaller than the dimension of the grid
points for z.
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