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Abstract. In this paper we investigate the security of the two most
recent versions of the message authentication code 128-EIA3, which is
considered for adoption as a third integrity algorithm in the emerging
3GPP standard LTE. We first present an efficient existential forgery at-
tack against the June 2010 version of the algorithm. This attack allows,
given any message and the associated MAC value under an unknown
integrity key and an initial vector, to predict the MAC value of a related
message under the same key and the same initial vector with a success
probability 1/2. We then briefly analyse the tweaked version of the al-
gorithm that was introduced in January 2011 to circumvent this attack.
We give some evidence that while this new version offers a provable re-
sistance against similar forgery attacks under the assumption that (key,
IV) pairs are never reused by any legitimate sender or receiver, some of
its design features limit its resilience against IV reuse.

Keywords: cryptanalysis, message authentication codes, existential forgery
attacks, universal hashing

1 Introduction

A set of two cryptographic algorithms is currently considered for inclusion
in the emerging mobile communications standard LTE of the 3rd Gener-
ation Partnership Project 3GPP. It consists of an encryption algorithm
named 128-EEA3 and an integrity algorithm named 128-EIA31 — that
are both derived from a core stream cipher named ZUC. The algorithms
ZUC, 128-EEA3, and 128-EIA3 were designed by the Data Assurance

⋆ also with Université Henri Poincaré-Nancy 1 / LORIA, France.
1 EEA stands for “EPS Encryption Algorithm” and EIA stands for “EPS Integrity

Algorithm”. EPS (Evolved Packet System) is an evolution of the third generation
system UMTS that consists of new radio access system named LTE (Long Term
Evolution) and a new core network named SAE (System Architecture Evolution).



and Communication Security Research Center (DACAS) of the Chinese
Academy of Sciences.

An initial version of the specifications of 128-EEA3/EIA3 and ZUC,
that is referred to in the sequel as v1.4, was produced in June 2010 and
published on the GSMA web site for an initial public evaluation [5,6].
Following the discovery of some cryptographic weaknesses in the ZUC v1.4
initialisation [20,18] and of the forgery attack on 128-EIA3 v1.4 reported in
this paper, tweaks to the specifications of ZUC and EIA3 were introduced
by the designers and a modified version of the specifications referred to
in the sequel as v1.5 was published in January 2011 for a second public
evaluation period [8,9]. After its adoption by 3GPP, 128-EEA3/EIA3 will
represent the third LTE encryption and integrity algorithm set, in addition
to the already adopted sets 128-EEA1/EIA1 [4] based on the stream cipher
SNOW 3G and 128-EEA2/EIA2 [1, Annex B] based on AES.

The integrity algorithm 128-EIA3 is an IV-dependent MAC that takes
as input (1) a 128-bit key, (2) various public parameters that together
determine a 128-bit initial vector, (3) an input message of length between 1
and 20000 bits, and produces a 32-bit MAC value. It uses an universal hash
function-based construction and has therefore many features in common
with the algorithms of the well known Wegman-Carter family of message
authentication codes [3,19].

As already mentioned, we denote by 128-EIA3 v1.4 (resp. 128-EIA3 v1.5)
the initial version specified in [5] (resp.the modified version specified in [8]).
In this paper we analyse the security of both versions. We first show that
128-EIA3 v1.4 is vulnerable to a simple existential forgery attack. Given
any known message M , any known or unknown initial vector, and the
associated MAC under an unknown key, it is possible to predict the MAC
value associated with a new message M ′ 6= M derived from M under the
same initial vector and the same unknown key, with a success probabil-
ity 1/2. This attack is generic, it does not rely on any specific feature of
ZUC and works with any underlying stream cipher. It exploits a subtle
deviation of 128-EIA3 v1.4 from the requirements of the Wegman-Carter
paradigm. The latter requirements can be informally summarized by say-
ing that mask values must behave as one-time masks, which is not the case
for 128-EIA3 v1.4. As will be shown in the sequel, distinct 128-EIA3 v1.4
mask values are not necessarily independent. Indeed, in 128-EIA3 v1.4,
the mechanism used to generate the masking values applied to the output
of the universal hash function does not match the model used in the proof.
Consequently, the arguments from [12] and [16] that are invoked in the



design and evaluation report [7] to infer bounds on the success probability
of forgery attacks on 128-EIA3 v1.4 are not applicable.

In [8], a tweak leading to 128-EIA3 v1.5 has been proposed to circum-
vent this attack. Through an improved generation procedure, masking
values are either equal or independent. However, it can be observed that
for distinct messages, no separation between the ZUC keystream bits in-
volved in the universal hash function computation and those involved in
the generation of the masking values is ensured.

While this represents a deviation from the requirements on masking
values used in the Wegman-Carter paradigm, the security consequences
are much less dramatic than for the initial MAC (v1.4) since an ad hoc
proof given in [10] allows to show that the modified MAC offers a provable
resistance against existential forgery attacks under the assumption that
the same (key, IV) pair can never be re-used, neither by the MAC issuer
nor by the MAC verifier. We show that this property however affects the
resilience of 128-EIA3 v1.5 against forgery attacks if IV repetitions oc-
cur. We further observe that independently of this property, the universal
hash function structure also results in some limitations of this resilience.
This leads us to investigate the resistance of 128-EIA3 v1.5 and one nat-
ural variant of this MAC against forgery attacks involving three pairwise
distinct messages and the same IV value. We make no claims regarding
the practical applicability of the identified nonce repetition attacks to the
LTE system.

In Section 3, we give a short description of the 128-EIA3 algorithms.
We then describe the attack on v1.4 in Section 4 and discuss the rea-
sons why the security proofs for related constructions by Krawczyk [12]
and Shoup [16] do not guarantee the security of 128-EIA3 v1.4. In Sec-
tion 5, we state a property which, although it may not be considered as
an attack in standard security models, underscores the lack of robustness
of 128-EIA3 v1.5 against nonce repetition. We also explain why a sim-
ple modification of 128-EIA3 fails to completely suppress such properties
because of the universal hashing underlying structure.

2 Notation

Throughout the paper, we use the following notation.

– S is a stream cipher.
– For two finite bitstrings A = (a0, . . . , aℓ−1) and B = (b0, . . . , bm−1),

A‖B denotes the concatenation of A and B, i.e. the bitstring
(a0, . . . , aℓ−1, b0, . . . , bm−1).



– For a bitstring A = (a0, . . .) of length ≥ j + 1, A|ij , 0 ≤ i ≤ j, denotes
the (j−i+1)-bit string obtained from the consecutive bits of A between
indices i and j, i.e. A|ij = (ai, . . . , aj).

– 0ℓ denotes the bitstring of length ℓ whose bits are all zero.
– W (i) denotes the i-th bit of a 32-bit word W .
– Let consider a 32-bit word W = (W (0), . . . ,W (31)) and an integer

a between 1 and 31. Then W ≪ a denotes the (32 − a)-bit word
resulting from a left shift of W by a positions and a truncation of the
a rightmost bits. More precisely, W ≪ a = (W (a), . . . ,W (31)). The
(32 − b)-bit word, W ≫ b, resulting from the right shift of W by b
positions and a truncation of the b leftmost bits is defined in the same
way. We have W ≫ b = (W (0), . . . ,W (31−b)).2

3 Description of the 128-EIA3 Integrity Algorithms

The integrity algorithms 128-EIA3 make a black box use of a stream
cipher to generate a keystream from a key and an initial value. A stream
cipher S is an algorithm that takes as input a k-bit key IK and an n-
bit initialisation value IV and outputs a binary sequence z0, . . . , zi, . . .
named the keystream. The keystream is used to compute a 32-bit MAC
value Tag according to the procedure described in Algorithm 1 which
includes versions v1.4 and v1.5 for conciseness.

Stated differently, the MAC value T associated with IK, IV , and an
ℓ-bit message M = (m0, . . . ,mℓ−1) is derived by accumulating (for a set of
positions i determined by the message bits and the message length) 32-bit
words Wi = (zi, . . . , zi+31) extracted from the keystream by applying it a
32-bit “sliding window”:

T = (
ℓ−1
⊕

i=0

miWi)⊕Wℓ ⊕Wmask,

where Wmask = WL−32 with the value L being different between v1.4 and
v1.5, i.e. Wmask = Wℓ+32 for v1.4 and Wmask = W⌈ ℓ

32⌉×32+32 for v1.5. The

parameter lengths used in 128-EIA3 are: k = n = 128 and 1 ≤ ℓ ≤ 20000.
In fact, the MAC of a message M is computed as

MAC(M) = H(z0,...,zℓ+31)(M)⊕Wmask,

2 We are thus using the same somewhat unusual convention as in [6] for defining the
symbols “≫” and “≪” as a “shift and truncate” rather than mere shifts. This is
motivated by the fact that this convention is more convenient for presenting the
attack of Section 4.



Algorithm 1 The 128-EIA3 MAC algorithms

Input: IK ∈ {0, 1}k, IV ∈ {0, 1}n, 1 ≤ ℓ ≤ 20000
Input: M = (m0, . . . ,mℓ−1) ∈ {0, 1}

ℓ

if v1.4 then

L = ℓ+ 64
else if v1.5 then

L =

⌈

ℓ

32

⌉

× 32 + 64 {This is the only difference between v1.4 and v1.5}

end if

(z0, . . . , zL−1)← S(IK, IV )|0L−1

Tag = 0
for i = 0 to ℓ− 1 do

Wi ← (zi, . . . , zi+31)
if mi = 1 then

Tag← Tag ⊕Wi

end if

end for

Wℓ ← (zℓ, . . . , zℓ+31)
Tag← Tag ⊕Wℓ

Wmask ← (zL−32, . . . , zL−1)
Tag← Tag ⊕Wmask

return Tag

where
(

H(.)

)

is a family of universal hash functions based on Toeplitz ma-
trices with pseudorandom coefficients taken from a stream cipher output.
We have:

H(z0,...,zℓ+31)(m0, . . . ,mℓ−1) = [m0,m1, . . . ,mℓ−1, 1] ·















z0 z1 . . . z31
z1 z2 . . . z32
z2 z3 . . . z33
...

...
. . .

...
zℓ zℓ+1 . . . zℓ+31















.

4 An Existential Forgery Attack against 128-EIA3 v1.4

In this section we describe an attack on the first version of 128-EIA3, that
we call 128-EIA3 v1.4. This algorithm has some specific properties that
we will now exploit to transform a valid MAC for a message M into a
valid MAC for a message M ′ related to M .

4.1 Description of the substitution attack

We can notice that the words Wi derived from the keystream and corre-
sponding to message bits mi are not independent from each other. More
precisely, we have: Wi+1 = ((Wi ≪ 1), zi+32).



Moreover the “one-time masks” Wmask associated with identical values
of IV but different message lengths are related. We have:

Wmask = (zℓ(M)+32, . . . , zℓ(M)+63),

where ℓ(M) denotes the length of the message M . Let us suppose that
Wmask is the one-time mask generated for the input (IK, IV,M) and
W ′

mask is the one-time mask generated for the input (IK, IV,M ′). If
ℓ(M ′)− ℓ(M) = ∆ℓ with 0 < ∆ℓ < 32, we have:

W ′
mask = (Wmask ≪ ∆ℓ, β0, . . . , β∆ℓ−1),

for some bit values βi. We can use these relations in a substitution attack.
Let us suppose that the adversary knows a valid MAC value T for

a given message M = (m0, . . . ,mℓ−1) of length ℓ bits under a given
IV value IV and a key IK. This MAC can be transformed with prob-
ability 1/2 into a valid MAC, T ′, for the (ℓ + 1)-bit message M ′ =
(0,m0, . . . ,mℓ−1) under the same IV value IV and the same key IK.

Let us analyse what happens during the computation of the MAC
for M ′ (under the same IV value IV and the same key IK). The gen-
erated keystream z0, . . . , zℓ+64 is the same as the keystream that was
used to compute T , with one extra bit: zℓ+64. As a consequence, the
words Wi, 0 ≤ i ≤ ℓ are identical. The one-time mask used is W ′

mask =
(zℓ+33, . . . , zℓ+64) = ((Wmask ≪ 1), zℓ+64). Then, the MAC value T ′ is
given by the following formula:

T ′ =

(

ℓ
⊕

i=0

m′
iWi

)

⊕Wℓ+1 ⊕W ′
mask

=

(

ℓ−1
⊕

i=0

miWi+1

)

⊕Wℓ+1 ⊕W ′
mask

=

(

ℓ−1
⊕

i=0

mi ((Wi ≪ 1), zi+32)

)

⊕ (Wℓ ≪ 1, zℓ+32)⊕ ((Wmask ≪ 1), zℓ+64)

=

(((

ℓ−1
⊕

i=0

miWi

)

⊕Wℓ ⊕Wmask

)

≪ 1, β

)

= (T ≪ 1, β) , with β =

ℓ−1
⊕

i=0

mizi+32 ⊕ zℓ+32 ⊕ zℓ+64.

The value (T ≪ 1, β) is thus a valid MAC for M ′. Knowing T , the
adversary only needs to guess the value of bit β, which happens with
probability 1/2.



This attack can naturally be generalized by recurrence to generate a
valid MAC for (0r||M), with probability 2−r, when r < 32 : the corre-
sponding tag is then Tr = ((T ≪ r), β0, . . . , βr−1) for some value of the
bits (β0, . . . , βr−1).

Equivalently, we have that T = (α0, . . . , αr−1, Tr ≫ r). This equation
enables an adversary to transform a valid MAC IV, Tr for (0r||M) into a
valid MAC for M with probability 2−r.

The attack was checked for r = 1 and larger values of r on a few
examples, using the implementation programs provided in the annexes of
the specification documents [5,6].

4.2 Partial Flaw in 128-EIA3 v1.4 Security Arguments

The Design and Evaluation Report [7] that accompanied version 1.4 er-
roneously invokes the security proofs of [16] to infer that in the case of
128-EIA3 v1.4, no forgery of a new message can succeed with probability
higher than 2−32. The argument comes from the fact that the algorithm
makes use of an ε-almost XOR universal (ε-AXU) family of hash functions
with ε = 2−32.

Definition 1. [3,19,17,12,14] A family of hash functions {HK}K∈{0,1}k

of range {0, 1}t is ε-AXU if for any two distinct messages M,M ′ in {0, 1}∗

and any c ∈ {0, 1}t

PrK∈{0,1}k [HK(M)⊕HK(M ′) = c] ≤ ε.

In [7], a proof is given that for any value of IV , the family of hash
functions used in 128-EIA3, i.e. the intermediate value obtained in the
MAC computation associated with key K just before before the exclusive
or with Wmask is ε-AXU with ε = 2−32.

As far as we know, the first construction of a secure MAC using ε-AXU
hash functions has been issued by Krawczyk [12], who proved that given
HK(M) ⊕ r for secret uniformly drawn values of K and r, an adversary
cannot determine HK(M ′) ⊕ r with probability higher than ε. The one-
time mask generation issue is briefly addressed by noticing that in most
practical applications, the mask generation will rely on a stream cipher.

In [14, Appendix B], the security notions related to a Wegman-Carter
MAC scheme using a pseudorandom function producing the one-time
mask from a counter cnt is stated. In [15, Proposition 14], the proba-
bility of a forgery success is computed. The scheme is defined by: a finite
PRF F : {0, 1}κ × {0, 1}n → {0, 1}t, a counter cnt ∈ {0, 1}n, and a fam-
ily of universal hash functions {HK}K∈{0,1}k . The computation and the



verification of MACs require to share an integrity key that consists of a
random a ∈ {0, 1}κ and a random K ∈ {0, 1}k. At most 2n messages may
be MACed with the same key a, and

MAC(M) = (cnt, Fa(cnt)⊕HK(M)).

All the models used for the proofs assume that the hash function and
the pseudorandom function are randomly chosen and in particular that
they are independent from each other. In the case of 128-EIA3 v1.4, the
construction does not fit the model as the two are related. Moreover, what
makes our attack work is that the one-time masks used for messages M
and M ′ of distinct lengths are different but related. In fact, we have:

MAC(M) = (cnt,S(IK, cnt)|
ℓ(M)+32
ℓ(M)+63 ⊕HS(IK,cnt)|0

ℓ(M)+31
(M)).

We see that the mask computation also involves the message length and
leads to distinct, but related mask values, for identical IVs and different
message lengths. Therefore no existing proof applies and we manage to
derive an attack against v1.4.

5 Sensitivity of 128-EIA3 v1.5 to Nonce Reuse

In order to resist to our forgery attack, 128-EIA3 has been tweaked [8],
leading to the specification of 128-EIA3 v1.5. This new version corresponds
to the condition v1.5 in Algorithm 1. The tweak ensures that mask values
generated by the algorithm for a given (key, IV) pair for different mes-
sages are either equal or independent through an improved selection of
the location in the keystream from which the mask value is extracted:

Wmask = (zL−32, . . . , zL−1), with L =

⌈

ℓ(M)

32

⌉

× 32 + 64.

This comes at the cost of using a slightly longer part of the keystream.
Although this ensures resistance against forgery attacks under the assump-
tions that (1) neither the MAC issuer nor the MAC verifier reuse any IV
value under the same key and the (2) the keystream bits generated by
ZUC are indistiguishable from random, as proven in [10, Section 11], we
remark that this scheme remains fragile towards IV reuse.

In [15,16], the question of a stateful MAC (implying a counter) against
a stateless MAC (with a randomly chosen IV) is briefly discussed. It is
underlined in [16] that reliably maintaining a state may be difficult. Prac-
tical experience shows that the correct handling of IVs is not a trivial task.



Indeed, there is far from a theoretical security requirement to a practical
implementation of a scheme and former IV critical modes like CBC have
already been subjected to attacks against practical implementations (see
e.g. [13]). Therefore we think that it is also important to assess the level
of robustness of a scheme in the case of an improper handling of the IV.

In this section we expose two specific properties of 128-EIA3 v1.5,
which do not affect a generic Wegman-Carter authentication scheme.
These properties involve the MACs of three distinct messages under the
same key/IV pair. Therefore, they might threaten the security of 128-
EIA3 v1.5 if an adversary can get the MAC of two distinct messages
under the same (key, IV) pair. Such an event can happen if IVs are mis-
takenly repeated by the MAC generating party. It can also happen with-
out deviating from the expected behaviour of the message authentication
through substitution attacks: the attacker may use verification queries to
gain knowledge on the system [2,11]. More in detail, two valid 128-EIA3
tag values can be obtained by an adversary for the same (key, IV) pair
and two distinct messages with a non-negligible probability due to the
short MAC size (32 bits): one from the MAC generating party and (with
probability 2−32) an extra one from the verifying party. This may allow
the adversary to predict with certainty the MAC value of a third message
with the same (key, IV) pair.3

5.1 On the Independance of Universal Hashing Keys and

Masking Values

In the following we consider tags generated using the same key/IV pair.
We remark that in the case of 128-EIA3 v1.5, even though masking values
for two distinct messages are either equal or independent, the indepen-
dence of the universal hash function keys (i.e. the keystream bits used
in the computation of the hash value) and the masking values is not
guaranteed. Parts of the keystream (zi) used as masking values for a mes-
sage can be used during the universal hash function computation for a
longer message, and conversely. This represents a deviation of the mask
value generation of 128-EIA3 v1.5 from the Wegman-Carter paradigm.
We show that consequently, while the proof of [10] guarantees that the
MACs associated with two distinct messages and the same IV value are
independent and uniformly distributed, the knowledge of the tags of two

3 Whether this third message and the associated tag can be successfully submitted to
the verifying entity depends on wheter the IV repetition detection of this entity is
effective or not.



related messages under the same (key, IV) pair may allow to compute the
tag of a third message under the same key and IV. Consider any message
M1 of arbitrary length ℓ1, any message M2 of length ℓ2 ≥ 1+32(⌈ ℓ1

32⌉+1),
and the message M3 = M2 ⊕ δ of length ℓ3 = ℓ2, where δ is the bitstring
of length ℓ2 whose prefix of length ℓ1 is M1 and whose other bits are zero
except for the two bits at positions ℓ1 and 32(⌈ ℓ1

32⌉ + 1). Then we have
MAC(M1)⊕MAC(M2)⊕MAC(M3) = 0. Indeed,

MAC(M1) =
⊕ℓ1−1

i=0 (m1
i
Wi) ⊕ Wℓ1

⊕ W
32(⌈

ℓ1
32

⌉+1)
,

MAC(M2) =
⊕ℓ2−1

i=0 (m2
i
Wi) ⊕ Wℓ2

⊕ W
32(⌈

ℓ2
32

⌉+1)
,

MAC(M3) =
⊕ℓ1−1

i=0 (m1
i
Wi) ⊕

⊕ℓ2−1
i=0 (m2

i
Wi) ⊕ Wℓ1

⊕ W
32(⌈

ℓ1
32

⌉+1)
⊕ Wℓ2

⊕ W
32(⌈

ℓ2
32

⌉+1)
.

Consequently, for any such triplet of pairwise distinct messages the au-
thentication codes of two messages gives a forgery for the third one.

The above 3-message forgery can be avoided by making the mask-
ing values and the universal hashing keys independent, for example by
following the slightly modified MAC described in Algorithm 2.

Algorithm 2 A modified version of 128-EIA3

Input: IK ∈ {0, 1}k, IV ∈ {0, 1}n, ℓ ∈ N
∗

Input: M = (m0, . . . ,mℓ−1) ∈ {0, 1}
ℓ

(z0, . . . , zℓ+63)← S(IK, IV )|0ℓ+63

Tag = 0
Wmask ← (z0, . . . , z31)
for i = 0 to ℓ− 1 do

Wi ← (zi+32, . . . , zi+63)
if mi = 1 then

Tag← Tag ⊕Wi

end if

end for

Wℓ ← (zℓ+32, . . . , zℓ+63)
Tag← Tag ⊕Wℓ

Tag← Tag ⊕Wmask

return Tag

This algorithm is quite similar to 128-EIA3 and requires the same
number of keystream bits and the same amount of computation as 128-
EIA3 v1.4 — the single difference being that the mask value consists
of the first keystream bits and the universal hash function output value
is derived from the subsequent keystream bits. This scheme ensures the
equality or independence of keystream bits used as masking values or
universal hashing key when tagging two different messages. It is also closer



to the Wegman-Carter paradigm in that the masking value computation
does not depend on the message being tagged — which is not the case in
128-EIA3 v1.4 and v1.5, where the length of the tagged message impacts
the masking value. Unfortunately some non-generic properties remain,
that are related to the Toeplitz matrix structure underlying the universal
hash function construction rather than to the masking values generation
method and hold for both 128-EIA3 v1.5 and Algorithm 2.

5.2 On the Sliding Property of the Universal Hash Function

of 128-EIA3

In Section 4 we exploited a sliding property of the universal hash function
used by 128-EIA3. Let z be the keystream sequence used in the computa-
tion of the universal hash function (i.e. without the final encrypting mask
value). We denote by Hz the universal hash function. Using the “sliding-
window” property of the construction based on Toeplitz matrices, we can
derive the following property. For r < 32, we have

Hz(0
r‖M) ≫ r = Hz(M) ≪ r.

Let us now consider two messages M and M ′ = 0‖M and assume that we
got their tags T and T ′ under the same key/IV pair. Assume furthermore
that these tag computations involve the same masking value Wmask. This
is always the case in Algorithm 2 and is true in 128-EIA3 v1.5 under some
mild assumption on the length of M (namely that ℓ (mod 32) 6= 0). Thus
we get

Hz(M
′)⊕Wmask = T ′,

Hz(M)⊕Hz(M
′) = T ⊕ T ′.

Let us now consider M ′′ = 02‖M . We have

(Hz(M
′)⊕Hz(M

′′)) ≫ 1 = (Hz(0‖M)⊕Hz(0‖M
′)) ≫ 1

= (Hz(0‖M) ≫ 1)⊕ (Hz(0‖M
′) ≫ 1)

= (Hz(M) ≪ 1)⊕ (Hz(M
′) ≪ 1)

= (Hz(M)⊕Hz(M
′))) ≪ 1

= (T ⊕ T ′) ≪ 1.

By guessing a single bit, we thus get the value of Hz(M
′)⊕Hz(M

′′).
Provided that the computation of the tag of M ′′ involves the same masking
value Wmask (i.e. ℓ (mod 32) 6= 31 in the case of 128-EIA3 v1.5), by
adding Hz(M

′)⊕Hz(M
′′) to T ′ we get a tag value for M ′′.

In other words, one can find a triplet (M,M ′,M ′′) of pairwise distinct
messages such that given the tags T and T ′ of the first two messages



under the same IV, the tag T ′′ of the third one under the same IV can
be guessed with a probability as large as 1/2. This results from the lack
of 2-independence of the universal hash function Hz used in 128-EIA3.
While Hz is uniformly distributed and 2−32-AXU — this implies the in-
dependence of the MACs of any two distinct messages under the same key
and the same IV as shown in [10] — Hz is far from being 2-universal, i.e.
the hashes of two distinct messages can be strongly correlated and this
results in the lack of independence of the MACs of three pairwise distinct
messages illustrated here.4

5.3 The IV construction in 128-EIA-3 and Prevention of

Nonce Reuse

The input to the IV construction for 128-EIAx are [1]:

– a 32-bit counter COUNT,
– a 5-bit bearer identity BEARER,
– a 1-bit direction of transmission DIRECTION.

This differs notably from the UMTS Integrity Algorithm (UIA) where the
inputs for the IV construction are [4]:

– a 32-bit counter COUNT-I,
– a 32-bit random value FRESH,
– a 1-bit direction of transmission DIRECTION.

In the case of 128-EIA3, the IV is 128 bits and defined by 4 32-bit
words, IV0‖IV1‖IV2‖IV3 where:

IV0 = COUNT

IV1 = BEARER‖027

IV2 = IV0 ⊕
(

DIRECTION‖031
)

IV3 = IV1 ⊕
(

016‖DIRECTION‖015
)

We notice that while in UMTS two distinct values managed by the
sending and receiving parties ensure the non-repetition of IVs, one single
32-bit counter is used for this purpose in LTE. Enforcing the use of fresh
IVs by both the MAC issuer and the MAC verifier might therefore be
more complex and we may express some concerns about the assurance
that in LTE implementations the strong security requirement of (key, IV)
pair never being reused at either side will always be verified.

4 While another choice of Hz might have led to a much lower maximum success
probability for a 3-message forgery, the existence of 4-message forgeries of success
probability 1 seems difficult to avoid for any GF (2)-linear universal function family.



6 Conclusion

The existential forgery attack presented in Section 4 was forwarded to
the designers of 128-EIA3 v1.4, who produced the modified version 128-
EIA3 v1.5 to address the issue. While our analysis of 128-EIA3 v1.5 did
not reveal any security issue of similar significance and the new MAC of-
fers a provable resistance (under some assumptions) against a large class
of forgery attacks, we have highlighted some structural properties of the
mask values computation and the universal family of hash functions un-
derlying 128-EIA3 v1.5, and shown that these may lead to limitations
of its resilience against nonce reuse. None of the security properties we
have investigated here relates to the specific features of the underlying
IV-dependent stream cipher ZUC.
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