Skip to Main content Skip to Navigation
Conference papers

Progress Rate in Noisy Genetic Programming for Choosing λ

Jean-Baptiste Hoock 1, 2 Olivier Teytaud 1, 2, 3 
2 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Recently, it has been proposed to use Bernstein races for implementing non-regression testing in noisy genetic programming. We study the population size of such a (1+λ) evolutionary algorithm applied to a noisy fitness function optimization by a progress rate analysis and experiment it on a policy search application.
Document type :
Conference papers
Complete list of metadata

Cited literature [12 references]  Display  Hide  Download
Contributor : Jean-Baptiste Hoock Connect in order to contact the contributor
Submitted on : Monday, September 12, 2011 - 9:33:10 AM
Last modification on : Sunday, June 26, 2022 - 11:54:23 AM
Long-term archiving on: : Tuesday, November 13, 2012 - 10:21:16 AM


Files produced by the author(s)


  • HAL Id : inria-00622150, version 1



Jean-Baptiste Hoock, Olivier Teytaud. Progress Rate in Noisy Genetic Programming for Choosing λ. Artificial Evolution, Oct 2011, Angers, France. ⟨inria-00622150⟩



Record views


Files downloads