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ABSTRACT Geometry-based approaches aim at propagating the geo-

. : .. _metric structure of the image from the boundary towards the
In this paper we propose an algorithm for stereoscopic im: . o
pap brop g b nterior of the holes. Usually these methods consist in nd-

age inpainting, given the inpainting mask in both images. We the mini f functional or directl i
also assume that depth map is known in one of the imag g9 the minimum ot:an energy functional or directly soving

of the stereo pair, taken as reference. This image is clué partial differential equation [1, 2, 3]. lts main drawback is

tered in homogeneous color regions using a mean-shift pr&hat they are not able to restore textures.

cedure. In each clustered region, depths are tted by planes In parallel to these geometry-oriented approaches, a cate-
and then extended into the mask. Then we inpaint the visidory of very powerful methods have appeared as an applica-
ble parts of each extended region using a modi ed exemplartion of texture synthesis [4, 5, 6, 7]. They can be described as
based inpainting algorithm. Finally, we extend the algorithmexemplar-based methods (they basically exploit the locality

to Stereoscopic image inpainting_ We d|sp|ay some experiand the Stationarity at a certain scale of teXtUreS) and were in-

ments showing the performance of the proposed algorithm. troduced by Efros and Leung in the seminal paper [8], where a
simple yet effective non-parametric texture synthesis method

Depth-Enhanced Im- po504 on local image patches was proposed. The unknown
region , called the hole, is lled-in by copying content from
the known part ¢ of the image, the complement of the hole.

1. INTRODUCTION This method is at the origin of many image inpainting algo-
rithms, one of the most effective ones being [4]. This algo-

The recent commercial interest in exhibiting 3D movies ofvithm permits to obtain interesting results for inpainting of

other events like sports or music in theaters has motivated thgoth textured and non-textured images.

development of post-production tools in order to assist their The above methods deal with 2D images or video and do

acquisition or to eliminate unwanted objects like rigs or Cable%ot take into account the 3D geometry of the objects they are
which may be unavoidable during Iming. Image inpainting inpainting

consists in recovering the missing or corrupted parts of an

image so that the reconstructed image looks natural. Our pur- N the case of stereoscopic image inpainting, one needs to
pose in this paper is to propose an inpainting tool which iéake into account depth information to produce coherent in-

able to Il-in the holes in both left and right images with a co- paintings [9, 10]. In the method proposed by Wang et al. [9]

herent texture so that the invented parts of both images loog°!0" @nd depth maps are lled-in for each image in a sep-
like the projection of real 3D objects and the user perceive&'ate Way. The 3D coherence is obtained Esmg ar': iterative
them as such. In this paper we focus our attention on still imPTOC€Ss, but no convergence is ensured. The method in [10]

ages, the video case being necessary to create a exible todPt produces_a_3|_3 cqherent lling-in of the d_epth_ maps u_sing
for the post-production of depth-enhanced imagery. an energy minimization process and then inpaints the image

Image inpainting techniques can be organized into wwdpair simultaneously using a modi ed version of [4], that en-

main categories: geometry and texture oriented methods. sures the 3D coherence of the generated texture.
In this paper, we also use the depth information, not only

A. Hervieu and P. Gargallo acknowledge partial support by IP projec ; ; st ; ;
"2020 3D Media: Spacial Sound and Vision”, nanced by EC. A. Hervieu, tto aChI_eve a COhere.nt |r_1p§|nt|_ng of the left and ”ght IMages,
A. Bugeau and N. Papadakis acknowledge support from the Torres Queve(lﬂiflt to improve the inpainting itself. We rst concentrate on

program of the Ministerio de Educari y Ciencia in Spain. The authors the inpainting of a single image whose depth map is known.
thank Mediapro for allowing the use of some of their stereoscopic images. \We will refer to such an image asdepth-enhanced image

YV. Caselles acknowledges partial support by MICINN project, refer-our main idea is to use the 3D geometry of the scene, given

ence MTM2009-08171, by GRC reference 2009 SGR 773 and by ”ICRE% . . . .. .
Acacemia” prize for excellence in research funded both by the Generalitat @Y the depth map, to determine which objects are visible in

Catalunya. the hole. The color texture is then synthesized for each of

Index Terms— Image Inpainting,
age, Stereoscopic Images




() (©) (d)
Fig. 1. (a) The region to be inpainted is shown in blue. (b) The Fig. 2, lllustration of the region extension procedure wNif = 2
depth maD corresponding to (a), with unknown depth in the sameadjacent regions. (a) depth plane segmentation of the known part
blue region. (c) Mean-shift clusterir@ of (a). of the image (b) of Fig. 1. We then hage in black,S; in white and
in blue. (b) Black backgroun®, reconstruction. (c) Extension

of the depth layeB; (the white region) in the hole using [3]. (d)
these objects independently as in a texture-by-numbers proBisible part of the extended regions with respect to the two layers
lem [11]. We can see our approach as a mixture of geometriglane equations (the red surrounded region is the visible part of the
and texture-based methods, where the geometric step lls-iwhite extended region).
object labels rather than colors. In addition, we will see that
the depth information will greatly help in the geometric rea-

soning. 3. COLOR AND DEPTH SEGMENTATION

This section presents a way of computing a segmentation
of a depth-enhanced image relying both on color and depth
) ) i . information. The idea consists in computing rst an over-
The input of our algorithm is an image and the correspondgegmentation using only color information. Then the 3D ge-
ing depth map (i.e. a depth-enhanced image). The depth M@pnetry of each of the color segment, given by the depth map,
can be computed from multiple images using a favorite stereg approximated by a 3D plane. Finally, in order to obtain

algorithm [12]. The proposed algorithm has three main stepsggions that correspond as closely as possible to real 3D ob-

jects, we compute a second segmentation, this time based on
the depths rather than the color.

2. OVERVIEW OF THE ALGORITHM

(i) Segment the image into depth layers:

(a) Segment the image using color information. Color image segmentation. The rst step of the process
(b) Estimate a depth plane for each color segment¢onsists in computing a segmentation of the image in regions
Obtain a set of labeled planes. of uniform color. For that we use the mean-shift algorithm

[13]. This kernel-based algorithm does not require to x the
number of regions, but it requires to choose the kernel shape
and its bandwidth for both spatial and color dimensions. In
(i) Extend the depth layers into the hole using a binary in.P"actice We have chosen a Gaussian kernel with both band-
S ; . widths equal to 10. The result of the segmentation is a par-
painting algorithm. Extract a depth map by computing, ... . o
. o . " tition C of the known part of the image®. In the sequel,
which of the layers is visible at each pixel (i.e. the clos-
est to the camera).

(c) Segment the given depth mBpinto depth planes
using the model planes computed in (b).

clusters adjacent to the hole.
Knowing which layer is visible at each pixel, we use agng |I-in the lower part of image (a)i.e. the hole repre-
patch-based texture synthesis method to synthesize th@nted by the blue color. The given depth map is shown in (b)
texture corresponding to that layer. and the obtained mean-shift segmentation is shown in (c).

Steps (i), (i) and (iii) are object of Sections 3, 4, and 5, re- This example will be used in the following sections of the

spectively. Section 6 describes the extension of the algorithl‘f'lr_t'deI t,f) epraT the_tilgorllthm_stg phbly stzp. In?eedf Itis a
o Stereoscopic image pairs. simple” example, with onlyN = ole-adjacent regions,



the known part of the image domairf, we choose a plane

i We require that plane to approximate well the original
depth of the pixel via a per-pixel energy, and we add a spatial
regularization term, in order to avoid sparse segmentations.
We solve this multi-label optimization problem using the
expansion graph-cut algorithm [15], and we get the nal seg-
mentationS; of the domain ¢, withi =1;:::;N2N° N.

In the example shown in Fig. 1, the proposed segmenta-
tion by planes of the depth data has fused the two planes rep-
resenting the light and dark gray regions given by the color
segmentation. Indeed, those two regions have a similar plane
equation since they correspond to the same objext,the
dark post at the left part of the initial image. As there were
only N = 3 planes adjacent to the hole, this step has reduced
the number of planes %= 2. The nal depth segmentation
is shown in Fig. 2.(a), as black and white regions.

Fig. 3. Depth and depth based color inpainting of the soccer image As a result of the process described in this section, we
(Fig: 1). (@) The inpa_linted dgpth map. (b) In_painting of the _rst layer have now a set of image regios, whose geometry is ap-
(region surrounded in red Fig. 2.(d)). (c) Final result obtained aﬁebroximated by a set of planes . In next section we describe

lling-in the background region. (d) Result using a 2D exemplar- - . - -
based algorithm [4]. how to extend these regions into the hole to be inpainted.

4. DEPTH INPAINTING
that shows the processes involved in the proposed method.

Depth plane estimation. For each regio€; adjacent to the !n this sectlon,.we present a schem_e to l-in the d.epth—map
in the hole. Since the depth map is segmented into planar

hole, we want to approximate its 3D geometry by a plane. For_ . . . .
that, we t a plane (an af ne function) to the depths of the regions, the idea is to extend the shape of these regions, and

pixels in the region. For different reasons, it may happen thatpen determine which region is actually visible at each pixel
. . f the hole.
no plane ts the given depths with enough accuracy. Indeecf,)

the real shape may not be planar and, even if it is, the givegxtension of the depth layers. In order to ensure that each
depth map might contain errors. Thus, in order to t robustlypixel in the hole will be covered by at least one of the depth
a plane to most of the region, a RANSAC (RANdom Sampleayers, we start by extending the background layer to cover
And Consensus) procedure is considered. We use here the entire hole. We de ne the background layer as the depth
version called MLESAC [14]. When using it, we set the noisejayer that is most distant to the camera. By convention, the
standard deviation = 0:25, the min and max number of background will correspond to the depth lay&yo. In the
iterations as 100 and 1000, respectively. Thanks to this stegxample of Fig. 2, the plane in black is deeper than the white
the proposed inpainting method is robust to small errors ifne over all the blue mask. Hence, background reconstruction
depth estimation. is here done simply by lling-in the blue mask with the black
The result of this step is a set dbf 3D planes ,i = plane as shown in Fig. 2.(b).
1;:::;N, each of which approximates the depths of aregion  Next, each of the remaining depth laye®, i =
Ci. Inthe example shown in Fig. N = 3 regions adjacent 1.::.:NO 1 is extended into the hole using an image
to the hole are observed (the green, light gray and dark graymoothing algorithm [3]. For each layer, we consider the
ones). For each of these regions, a plane (not shown in théyaracteristic function of its corresponding image region.
gure) is tted to the depth map. This is a binary function that takes the value 0 outside the

Plane segmentation of the depth data. As output of the region, and 1 inside, and it is unknown inside the hole to be
previous step we have the image segmented into a set of rélPainted. We then apply the smoothing algorithm (with gra-
gions with uniform color and whose depth map is approxi-d'em and tensor smoothness parameters setto 1 and 5, respec-

mated by a plane. Notice that a single plane may t differentively) to the values of the function inside the hole, while we
regions since a single planar object may contain different col?0ld constant the known values outside the hole that serve as

ors. Thus, we need to improve our initial color segmentatiorpoundary condition. The result is a smoothed characteristic
using the depth planes. function that has to be thresholded in order to obtain a binary
For that we propose to segment the given depth map int§egmentation. A threshold ve.llu.e of 0.5was chosen..

computed depth planes as labels. Thus, for each pixel desultis a setof overlapping regions. Each pixel in the hole is
covered by at least one (the background) region.



Depth reconstruction. Finally, the depth of each pixel in
the hole is easily obtained by computing which region is vis
ble on it. That s, the closest to the camera among the region
that contain the pixel. Indeed, several extended regions ma
contain the pixel because the depth extension has been dol
independently for each depth layer.

While simple, this is a key step of the proposed algo-
rithm. By computing the visibility of the regions, we de- (@) (b)
termine where a region ends because it becomes hidden by
another one. This kind of geometric reasoning would not be
possible if we were not using the depth maps, and is the main
reason for the improvements brought by the present technique
over the 2D inpainting methods.

In the example, we see that the extension of post layer
stops when it hits the ground. In Fig. 2.(c), we see the in nite
extension of the post layer produced by the smoothing proce- (c) (d)
dure, while in Fig. 2.(d), we can see the post stopping on the
ground. See Fig. 3.(a),(b) and (c) for the corresponding depth
and image results. The same propagation stopping effect can
be seen in the inpainting of the cone in Fig. 6.

5. INPAINTING USING DEPTH LAYERS

The nal step of the algorithm consists in inpainting the color Q) ()
image. From the previous steps, for every pixel in the holeFig. 4. IIIustrati_on_ of the st_ereoscopic_inpainting technique. (a), _
we know its depth and its depth layer. The idea is therefore tfl’b) V;t;tfr:‘zorzcg?g:]‘;'gﬁgg;i{firr]eglrueese?g')”g;n;f‘mg Isr‘:irf‘? n?;g'g Fig.
B e o) o b it s e ma (. ) v
. . . ._the inpainted depth map Fig. 3.(a). Un lled-in region remains in
a_l' _[4] for e.a(_:h visible depth layer in the hole. This step Spie. (d) Final inpainting result after lling-in the remaining blue
similar in spirit to the texture-by-number problem [11]. area using the algorithm in [10]. (e), (f) Results obtained using [9].
The original method, essentially, lls-in the hole by copy-
ing patches of the rest of the image inside the hole, taking
care that the copied patches t well into their surrounding.gion in Fig. 2.(d)). Fig. 3.(c) shows the nal result, where
The entire image is used to search for the best patches. Hetbge background laye®, has also been inpainted with its cor-
since we have a segmentation of the image into depth layergsponding texture. The subregion segmentation proposed
we can restrict the search for patches to the correspondirapove is responsible for the fact that only grass texture, with-
depth layers. Therefore, each region of the hole is inpaintedut white lines, has been copied into the background layer.
by copying patches of the same region outside the hole. In tHeig. 3.(d) shows the result of the original inpainting algorithm
experiments, we use patches of stze 9. [4] without search restriction.
In addition to restricting the search for patches to single
depth layers, we noticed that reducing the search domaineven 6. STEREOSCOPIC IMAGE INPAINTING
more improved the results. In effect, a depth layer can be
rather large and contain different textures. So one can obtaidaving extended the depth map into the hole, it is easy to
better results by using only patches that are close to the holadapt the method to inpaint stereoscopic image pairs.
which are more likely to have the adequate texture. To ndthe Let us consider that one of the stereoscopic images, call
correct region for searching the patches, we compute a meait-l ., is already lled-in using the method presented above.
shift segmentation of the color image on each depth layer usdsing the inpainted depth map, we can ll-in the correspond-
ing a Gaussian kernel whose bandwidth (for both space aridlg pixels of the hole of the other imadg. Indeed, given the
color dimensions) is 5. This gives a set of subregions of thelepth map and the relative position of the cameras, we know
depth layer. Then, we use only the subregions adjacent to thehich pixel ofl ; corresponds to which pixel d%. Therefore,
hole as a source for copying patches. we copy the generated texture framto | ,. Notice that, due
Fig. 3 illustrates the inpainting process of image in Fig.to occlusions, some parts Ia may have no corresponding
1.(a). Fig. 3.(b) is the result of inpainting the depth layerpointinl, and are not lled-in. To obtain a complete inpaint-
S: corresponding to the dark posie( the red surrounded re- ing of imagel ,, these remaining parts are lled-in using the



stereoscopic inpainting algorithm in [10].
An experiment of stereoscopic inpainting is shown in Fig.
4. Figs.4.(a) and (b) are the given stereoscopic image pair.
The process described in the previous sections is then applied
to Fig.4.(a) to obtain the inpainted depth map (Fig. 3.(a)) and
the inpainted image (Fig. 3.(c)). These informations are then
transferred to image (b), so that a partial inpainting is obtained
(Fig. 4.(c)). The nal result including the lling in of the (a) (b)
remaining parts is shown in Fig. 4.(d).

7. EXPERIMENTAL RESULTS AND COMPARISONS

Depth-enhanced image inpainting results. For the exam-

ple shown in Fig. 5, the rst row shows the initial image with

the inpainting mask (in blue) and the corresponding depth

map. The second row contains the complete depth map and ©) (d)
inpainting results obtained using the proposed method. An|5i 5 Depth-enh di inpainting illustrati initial
other example is shown in Fig. 3, where image (c) shows the g. 5. Depth-enhanced image inpainting illustration. (a) initia

S . ..~ Image with inpainting mask (in blue). (b) Depth map. (c) inpainted
result of our method, while image (d) is the result of Crlrnln'depth map depth map obtained with the proposed method. The small

isi's method [4]..An0th.er ex..’slmp.le. is Shovyn in Fig. _6- . blue region near the box corresponds to points where depth was not
The comparison with Criminisi's algorithm [4] highlights computed. (d) inpainting result obtained using our algorithm.
the importance of depth related information in inpainting is-

sues. Indeed, our algorithm bene ts from depth information
by ensuring 3D coherence thanks to background reconstruainted parts of the two images need not match, regarding dis-
tion and depth-layer extensions. The 3D coherence is illugParity maps. This is observed in the two experiments shown
trated by the lled-in depth map available in Figs. 3, 5. Thehere. For example, in Fig. 4, the algorithm creates white lines
reconstructed depth maps look coherent with the unmaskdhat are not 3D consistent between the two images while our
depths, and this coherence is propagated into the color infrethod ensures perfect correspondence of the inpainted parts
ages. On the contrary, using only color information may lea®f the two images according to the disparity maps.
to visible artifactsj.e. results that do not t any perceptually By comparing with the method proposed in [10] which
coherent architecture. This can be seen in Fig. 6. Our alg@lso produces 3D coherent results, we see the advantages of
rithm manages to properly extend the geometry of the object@king into account 3D reconstruction using depth layer ex-
surrounding the hole. Small artifacts are still present in thdensions. Indeed, the method in [10] is a patch-based inpaint-
generated textures, but the global architecture is well recoring algorithm extended to 3D, taking bene t of the depth in-
structed (see Fig. 6.(c)). On the other hand, the 2D algorithrfermation by choosing patches beyond or at the same depth
[4] just copies patches that match well with each other, buthan the center pixel of the patch to be lled-in, thanks to an
does not construct any meaningful geometry. Note that thalready inpainted depth map (that satis es the visibility con-
nal image generated by our algorithm is a superposition ofstraints between both stereoscopic images) obtained using a
different textures and generates patches that were not avaiPtal variation regularization. In our paper, by realizing a ge-
able in the original image. ometrical extension of the layers adjacent to the inpainting
Stereoscopic image inpainting results. Figs. 7.(a) and (b) Mask, we allow recovering a better depth inpainting.
show the initial stereo pair with the inpainting mask (in blue). ~ Finally, we note that we look for patches belonging to
Figs. 7.(c) and (d) show the inpainting results obtained by outhe same 3D planes, whereas in [10] the authors search for
method. Figs. 7.(e) and (f) show the results obtained usingatches at same depth with respect to the camera distance.
the simultaneous depth-map/stereo image inpainting schenlé€ results visually show the importance of 3D reconstruc-
in [10]. Figs. 7.(g) and (h) show the results obtained usingion (see, for instance, Fig. 7)
the stereo image inpainting algorithm described in [9]. The
visual comparison with the two existing schemes highlights 8. CONCLUSIONS
the effectiveness of the novel method. This paper proposes a novel stereoscopic image inpainting al-
We notice that our method directly ensures the 3D cohergorithm based on a three-step algorithm for inpainting depth-
ence between the stereoscopic images, in opposition to [9]. kenhanced images. Our inpainting algorithm for depth en-
this method, 3D coherence is imposed by an iterative procesganced images extends the geometry of the objects one by
that compares the results obtained on both sides. Results aee into the hole and uses their depth to determine which ob-
considered satisfactory if the inpainted disparity and color argect should be visible. This leads to natural extension of the
close enough [9]. Hence, 3D artifacts may be created: the irebjects’ geometry into the hole, while the nal texture syn-



@ (b) (@) (b)

() (d) (©) (d)
Fig. 6. Depth-enhanced image inpainting illustration. (a) initial
image. (b) the inpainting mask (in blue). (c) the inpainting result
obtained using the proposed algorithm. (d) inpainting result obtained
using [4].

thesis step generates a plausible texture for each object. Our

experiments show that, by taking into account the 3D geom- (e) )
etry of the scene, we are able to produce much more plausi-

ble inpainting results than state-of-the-art 2D methods. Our

experiments on stereoscopic image inpainting compare favor-

ably to the two other existing methods for the same problem.
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