Geodesics, Parallel Transport & One-parameter Subgroups for Diffeomorphic Image Registration

Abstract : The aim of computational anatomy is to develop models for understanding the physiology of organs and tissues. The diffeomorphic non-rigid registration is a validated instrument for the detection of anatomical changes on medical images and is based on a rich mathematical background. For instance, the ''large deformation diffeomoprhic metric mapping'' framework defines a Riemannian setting by providing an opportune right invariant metric on the tangent space, and solves the registration problem by computing geodesics parametrized by time-varying velocity fields. In alternative, stationary velocity fields have been proposed for the diffeomorphic registration based on the one-parameter subgroups from Lie groups theory. In spite of the higher computational efficiency, the geometrical setting of the latter method is more vague, especially regarding the relationship between one-parameter subgroups and geodesics. In this study, we present the relevant properties of the Lie groups for the definition of geometrical properties within the one-parameter subgroups parametrization, and we define the geometrical structure for computing geodesics and for parallel transporting. The theorethical results are applied to the image registration context, and discussed in light of the practical computational problems.
Type de document :
Communication dans un congrès
Pennec, Xavier and Joshi, Sarang and Nielsen, Mads. Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability, Sep 2011, Toronto, Canada. pp.64-74, 2011
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00623919
Contributeur : Xavier Pennec <>
Soumis le : vendredi 14 octobre 2011 - 17:07:37
Dernière modification le : jeudi 11 janvier 2018 - 16:31:01
Document(s) archivé(s) le : dimanche 15 janvier 2012 - 02:23:57

Fichier

MFCA11_2_3.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : inria-00623919, version 2

Collections

Citation

Marco Lorenzi, Xavier Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for Diffeomorphic Image Registration. Pennec, Xavier and Joshi, Sarang and Nielsen, Mads. Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability, Sep 2011, Toronto, Canada. pp.64-74, 2011. 〈inria-00623919v2〉

Partager

Métriques

Consultations de la notice

584

Téléchargements de fichiers

339