Selecting Scales by Multiple Kernel Learning for Shape Diffusion Analysis

Abstract : Brain morphological abnormalities can typically be detected by advanced geometrical shape analysis techniques. Recently, shape diffusion methods have proved to be very effective in providing useful descriptions for brain classification purposes. In particular, they allow the analysis of such shapes at multiple scales, but the selection of the correct range of scales remains an open issue heavily affecting the performance of methods, and it needs to be estimated adaptively for different classes of shapes. In this paper, we focus on the diffusion scale selection in order to define a robust shape descriptor for brain classification. To this end, geometric features are extracted for each scale and the best feature combination is selected by employing \it multiple kernel learning (MKL). In the presented experiments, we compare the shape of Thalamic regions in order to discriminate between normal subjects and schizophrenic patients. We demonstrate that MKL allows to obtain classifiers which are more accurate with respect to other competing algorithms for schizophrenia detection. Moreover, using the weights computed by the MKL algorithm, we can select at which scale the features are more effective for schizophrenia classification.
Type de document :
Communication dans un congrès
Pennec, Xavier and Joshi, Sarang and Nielsen, Mads. Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability, Sep 2011, Toronto, Canada. pp.148-158, 2011
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00624051
Contributeur : Xavier Pennec <>
Soumis le : jeudi 15 septembre 2011 - 16:19:44
Dernière modification le : jeudi 15 septembre 2011 - 16:25:15
Document(s) archivé(s) le : vendredi 16 décembre 2011 - 02:26:21

Fichier

MFCA11_P_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00624051, version 1

Collections

Citation

Umberto Castellani, Aydin Ulas, Vittorio Murino, Marcella Bellani, Gianluca Rambaldelli, et al.. Selecting Scales by Multiple Kernel Learning for Shape Diffusion Analysis. Pennec, Xavier and Joshi, Sarang and Nielsen, Mads. Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability, Sep 2011, Toronto, Canada. pp.148-158, 2011. 〈inria-00624051〉

Partager

Métriques

Consultations de la notice

283

Téléchargements de fichiers

75