
HAL Id: inria-00625240
https://inria.hal.science/inria-00625240

Submitted on 21 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Chemistry-Inspired Workflow Management System
for Scientific Applications in Clouds
Hector Fernandez, Cédric Tedeschi, Thierry Priol

To cite this version:
Hector Fernandez, Cédric Tedeschi, Thierry Priol. A Chemistry-Inspired Workflow Management Sys-
tem for Scientific Applications in Clouds. 7th IEEE International Conference on e-Science, Dec 2011,
Stockholm, Sweden. �inria-00625240�

https://inria.hal.science/inria-00625240
https://hal.archives-ouvertes.fr


A Chemistry-Inspired Workflow Management
System for Scientific Applications in Clouds
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Abstract—With the proliferation of Web Services, scientific ap-
plications are more and more designed as temporal composition
of services, commonly referred to as, workflows. To address this
paradigm shift, different workflow management systems have
been proposed. If their efficiency has been established over
centralized reliable systems, it is questionable over highly decen-
tralized failure-prone platforms. Scientific applications started
to be deployed over emerging clouds, leading to new issues, like
elasticity, i.e., the possibility to dynamically refine at runtime the
amount of resources dedicated to an application. This raised a
new demand for programming models, able to express autonomic
self-coordination of services in a dynamic, elastic platform.

Chemistry-inspired computing recently regained momentum
in this context, naturally expressing parallelism, distribution,
and autonomic behaviors. While its high expressiveness and
adequacy for this context has been established, the chemical
model severely suffers from a lack of proof of concepts. In
this paper, we concretely show how to leverage such models
in this context. We focus on the design, the implementation
and the experimental validation of a chemistry-inspired scientific
workflow management system.

Index Terms—Scientific workflows, Workflow management
system; Nature-inspired models, Chemical programming

I. INTRODUCTION

Until recently, scientific applications were commonly hard-
to-maintain unreadable scripts, leading to a poor reusability
level and high maintenance costs. With the proliferation of
Web services and the increasing adoption of service-oriented
computing, whose primary goal is to make a collection of
software services accessible through the network, scientists
started to develop their applications as compositions of Web
services, today commonly referred to as workflows. This shift
of paradigm recently led to more reutilization, and experiment
sharing in the community. The specification and execution of
such workflows are managed by workflow management sys-
tems, responsible for the coordination of the services involved.
Addressing the limitations of initial workflow languages such
as the BPEL business standard [1], different systems, for
example Taverna [2], Kepler [3], Triana [4], Pegasus [5] or
Askalon [6] provide nice features such as implicit parallelism
or data-driven coordination, increasing the abstraction regard-
ing execution management while improving the efficiency and
manageability of science workflows, as formulated by Zhao,
Raicu, and Foster in 2008 [7].

With the rise of cloud computing, science workflows started
to be deployed over clouds. For example, the Magellan project

is aimed at providing cloud infrastructures for science [8].
Clouds, or not far from here, federation of clouds, are the new
target platform for scientific workflows. One key properties of
cloud computing is elasticity, i.e., the possibility for cloud
users, to dynamically adapt the quantity of resources at his
disposal at runtime.

Thus it appears that future scientific workflow systems
and languages should provide a natural way to express both
workflows and platform characteristics. We identify several
critical features the future WMS must address: (i) the high
degree of parallelism and distribution of services deployed
over a federation of clouds, (ii) the potential issues brought by
a centralized coordinator such as single point of failure and
scalability, and (iii) the elasticity and distribution of clouds,
especially when dealing with federations of clouds.

Lately, nature metaphors, and in particular chemistry-
inspired analogies have been identified as a promising source
of inspiration for developing new approaches for autonomous
service coordination [9]. Among them, the chemical program-
ming paradigm is a high-level execution model. Within such
a model, a computation is basically seen as a set of reactions
consuming some molecules of data interacting freely within
a chemical solution producing new ones (resulting data).
Reactions take place in an implicitly parallel, autonomous,
and decentralized manner. More recently, the Higher-Order
Chemical Language (HOCL) [10] raised the chemical model
to the higher-order, providing a highly-expressive paradigm:
every entity in the system (in our case data, services and
their dependencies, and the platform itself) is seen as a
molecule. Moreover, rules can apply on other reaction rules,
programs dynamically modifying programs, opening doors
to dynamic adaptation. This model is now envisioned as an
alternative naturally expressing autonomous coordination [11].
However, while its expressiveness and adequacy to service
coordination have been established, the actual experimentation
of the chemical model has remained quite limited until now.
There is a strong need of a proof of concept to show its
viability, in particular compared to current reference WMS.

Contribution. In this paper, we present a workflow manag-
ment system able to solve a wide variety of workflow patterns
both in a centralized and a decentralized way following the
chemical model. Its implementation and performance evalua-
tion on different classic scientific workflows presenting differ-
ent characteristics are discussed. For the sake of comparison



and discussion, workflows tested were also executed on top of
Taverna and Kepler WMS, validating our software prototype,
and establishing the viability of the concept.

Section II introduces the preliminaries of our work:
workflow management systems and the chemical computing
paradigm. Section III describes the architecture and workflow
engine we have built. We show how a workflow is described in
our model, and how chemical rules are defined and combined
so that they can solve a wide variety of workflow patterns.
Section IV focus on the implementations of both centralized
and decentralized versions of the system defined. Section V
details the experimental campaign and its results. Section VI
discusses related works. Section VII draws a conclusion.

II. BACKGROUND

We now introduce the two main areas of this work: work-
flow management systems and the chemical computing model.

A. Workflow Management for e-Science

The increase in the reliance on service-oriented architec-
tures (SOA) in e-science resulted in applications to be more
and more defined as workflows of services. As a natural
consequence, workflow management systems have gained
recently considerable attention. The BPEL standard [1] and
followers [12] were first briefly adopted by the scientific
community. Then, science-oriented workflow languages and
systems were designed, to cope with the different character-
istics of scientific applications, in parallelism high parallelism
and need for scheduling. In this way, a number of systems
were designed for the expression and execution of scientific
workflows. Taverna [2], Kepler [3], Triana [4], Pegasus [5] or
Askalon [6] provide nice features such as implicit parallelism
or data-driven coordination, increasing the abstraction regard-
ing execution management while improving the efficiency
and manageability. All typically provide a visual notation for
composition of services.

The remainder of this section introduces the two open-
source workflow systems used for the sake of validation of
our work: Taverna and Kepler. We chose Kepler and Taverna
because they are among the most used and mature open-source
scientific systems. As mature as it can be, we choose not to
use Pegasus as the resource management is integrated into the
workflow manager, which is not of our primary concern here.

Taverna builds upon service-oriented architectures, and the
Web service standards. Interactions between services (pro-
cessors) are defined using the XML-based Scufl language
or a GUI. Taverna is data-driven, data-dependencies specify
links among different services, thus parallelism is implicit.
Note that control-dependencies can also be specified by links
that define precedence conditions among processors. Taverna’s
workflow engine is centralized; a unique coordinator manages
the coordination of all computation blocks.

Kepler is a centralized workflow engine built upon Ptolemy
II [13] by the members of the Science Environment for
Ecological Knowledge (SEEK) project and the Scientific Data
Management (SDM) project. It also relies on a data-driven

model for simulating, and designing of real-time and concur-
rent workflows using a proprietary modeling markup language
called MoML. This language is based on the actor-oriented
modeling paradigm which consists in a composition of com-
putation blocks called actors that represent operations or data
sources. Due to its data-driven behavior, Kepler provides an
intuitive and implicit parallel execution, however it hinders the
execution of complex workflow patterns. In recent versions,
some control structures can be supported through somewhat
sophisticated programming.

The limitation of both Taverna and Kepler is the lack of
(i) facilities to describe more complex control-flow patterns,
and (ii) support for decentralized coordination of the workflow
execution.

B. Chemical Programming

Nature analogies, and more specifically bio-chemical
metaphors, have recently gained momentum in the construc-
tion of programming models coping with the requirements
of the Internet of Services [9]. Initially proposed to naturally
express highly parallel programs, the chemical programming
paradigm exhibits properties required in emerging service
platforms and naturally express autonomic coordination.

According to the chemical metaphor, molecules (data) float
in a chemical solution, and react according to reaction rules
(program) producing new molecules (resulting data). These
reactions take place in an implicitly parallel, autonomous, and
non-deterministic way until no more reactions are possible,
a state referred to as inertia. The computation is carried out
according to local conditions without any central coordina-
tion, ordering or serialization. This programming style allows
writing programs cleared of any artificial sequentiality and to
concentrate on the functional aspects of the problem solved.
The presence of a molecule is enough to trigger a reaction
requiring such a molecule. Nevertheless, as it will be shown,
we can express sequentiality if needed.

The GAMMA language [14] first formalized chemical
programming. In GAMMA, the solution is a multiset con-
taining the molecules, and reactions between molecules are
rules rewriting the multiset. The multiset is the unique data
structure. More recently, higher-order chemical programming
has been proposed, through HOCL (Higher Order Chemical
Language) [10]. In HOCL, every entity is a molecule, in-
cluding reaction rules. A program is a solution of molecules,
formally a multiset of atoms, denoted A1, A2, . . . ,An, “,”
being the associative and commutative operator of construction
of compound molecules. Atoms can be constants (integers,
booleans, etc.), reaction rules, tuples of n atoms, denoted
A1:A2:. . .:An, or sub-solutions, denoted 〈Mi〉, where Mi is
the molecule content of the sub-solution. A reaction involves
a reaction rule replace P by M if V and a molecule N
satisfying the pattern P and the reaction condition V . The
reaction consumes the molecule N to produce a new molecule
M. This rule can react as long as a molecule satisfying the
pattern P exists in the solution. Its one-shot variant, denoted
one P by M if V , reacts only once, and is consumed in



the reaction. Rules can be named or appear explicitly in the
solution. Let us consider the simple HOCL program below
that extract the maximum even number from a set of integers.

1.01 let selectEvens = replace x, ω by ω if x%2 ! = 0 in
1.02 let getMax = replace x, y by x if x ≥ y
1.03 in
1.04 〈
1.05 〈selectEvens, 2, 3, 5, 6, 8, 9〉,
1.06 replace-one 〈selectEvens = s, ω〉 by getMax, ω
1.07 〉

The selectEvens rule removes odd numbers from the
solution, by repeated reactions with an integer x, ω denoting
the whole solution in which selectEvens floats, deprived of
x. The getMax rule reacts with two integers x and y such that
x ≥ y and replaces them by x. In a solution of integers, this
rule, by its repeated application extracts the maximum value.
The solution is composed by (i) a sub-solution containing
the input integers along with the selectEvens rule, and (ii)
a higher-order rule (on Line 1.06) that will open the sub-
solution, extract the remaining (even) numbers and introduce
the getMax rule.

Solving the problem requires the sequentiality of the reac-
tions of the two rules. This can be achieved by the higher-
order: in an HOCL program, a sub-solution can react with
other elements only if it has reached the state of inertia. In
other terms, the higher-order rule will react with the sub-
solutions only when no more reactions are possible within it,
i.e., when it contains only even numbers. (Note that the order
in which odd numbers are deleted is non-deterministic.) The
result is then as follows:

〈
〈selectEvens, 2, 6, 8〉,
replace-one 〈selectEvens = s, ω〉 by getMax, ω

〉

Then, the higher-order rule reacts with it, extracting re-
maining numbers, introducing dynamically the getMax rule,
and in this way triggering the second phase of the program
where the maximum value is kept. The resulting solution is:
〈2, 6, 8, getMax〉 . getMax then reacts with pairs of integers
until only 8 remains. Note that, due to the higher-order, putting
both rules directly in the solution of integers could entail a
wrong behavior as the pipeline between the two rules would
be broken, possibly leading to a wrong result, for instance if
getMax reacts first with the 8 and 9, thus deleting the 8.

While this example is quite simple, it already provides the
intuition behind autonomic coordination and online adaptation.

III. CHEMICAL WORKFLOW MANAGEMENT SYSTEM

In this section, we describe chemistry-inspired workflow
management systems. First, the coordination mechanisms de-
veloped, which build upon higher-order chemistry, are pre-
sented. Then, the architecture underlying it, for both central-
ized or decentralized coordination are described. The concepts
presented in this section take their origin in the founding work
presented in [15].

A. Workflow Representation

We now consider a workflow of Web Services (WS). The
general shape of the chemical representation of a workflow
is as follows: the main solution is composed of as many sub-
solutions as there are WSes in the workflow. Each sub-solution
represents a WS with its own data and control dependencies
with other WSes. More formally, a WS is a molecule of the
form WSi : 〈. . .〉 where WS i refers to the symbolic name
given to the service whose connection details and physical
position are hidden.

Let us consider a simple workflow example whose chemical
representation is illustrated by Figure 1. It is composed of
four services S1, S2, S3 and S4. In this example, after S1

completes, S2 and S3 can be invoked in parallel. Once S2

and S3 have both completed, S4 can be invoked. WS1 : 〈. . .〉
to WS4 : 〈. . .〉 represent WSes in the solution. The relations
between WSes are expressed through molecules of the form
DEST:WSi with WSi being the destination WS where some
information needs to be transferred. For instance, we can
see in the WS1 sub-solution that WS1 will transfer some
information (its outcome) to WS2 and WS3 (Line 2.02).

2.01 〈 // Multiset (Solution)

2.02 WS1:〈CALL:S1, PARAM:〈in1〉,DEST:WS2, DEST:WS3〉, // WS1 Sub-solution

2.03 WS2:〈DEST:WS4, replace RESULT:WS1:value1

2.04 by CALL:S2, PARAM:〈(value1)〉 〉,

2.05 WS3:〈DEST:WS4, replace RESULT:WS1:value1

2.06 by CALL:S3, PARAM:〈(value1)〉 〉,

2.07 WS4:〈replace RESULT:WS2:value2, RESULT:WS3:value3

2.08 by CALL:S4, PARAM:〈(value2)〉

2.09 〉

Fig. 1. Chemical workflow representation.

Let us have a more precise look on these dependencies.
WS2 has a data dependency: it requires a molecule RE-
SULT:WS1:value1 containing the result of S1 to be invoked
(second part of Line 2.04). The two molecules produced by
the reaction represent the call to S2 and their input parameters.
They are expressed using a molecule of the form CALL:Si, and
a molecule PARAM:〈in1,...,inn 〉, where in1,...,inn represent the
input parameters to call the service Si. In Figure 1, this input
parameter corresponds to the result of some previous service
Sj . WS3 works similarly. WS4 performs a particular control
pattern known as synchronization. It needs to wait until WS2
and WS3 have completed, in other words, until the molecules
RESULT:WS2:value2 and RESULT:WS3:value3 appear in its
sub-solution, to start its own execution. In addition, a data
dependency is also expressed in WS4: the result of S2 is
required to call S4.

To ensure the execution of a chemical workflow, addi-
tional generic chemical rules (i.e., independent of any specific
workflow) must be defined. These rules consume and gener-
ate additional molecules to manage transfer of information
between services, condition checking, fault detection, and
more complex control flows. To express the whole logic of



a workflow, these rules have to be composed relying on the
analogy of molecular composition. This concept consists in the
composition of several molecules, which are composed based
on data molecule dependencies, and whose reactions produce
new molecules reacting in their turn, and so on, to complete
the workflow.

B. Generic Rules for Invocation and Transfer
Common tasks in a workflow of services are service invoca-

tion and information transfer between services. We now review
three generic rules illustrated in Algorithm 1, responsible for
these tasks, and that will be commonly encountered in the
compositions presented later. The invokeServ rule encapsulates
the actual invocation of services. When reacting, it invokes the
Web Service Si, by consuming the tuples CALL:Si represent-
ing the invocation itself, and PARAM:〈in1,...,inn 〉 representing
its input parameters, and generates the molecules containing
the results of the invocation in the WSi sub-solution. The
molecule FLAG INVOKE is a flag whose presence in the
solution indicates that the invocation can take place. The
preparePass rule is used for preparing the messages to transfer
the results to their destination services, that will later trigger
the execution of the passInfo rule.

Algorithm 1 Basic generic rules.
3.01 let invokeServ = replace WSi:〈CALL:Si, PARAM:〈in1, . . . , inn〉,

3.02 FLAG INVOKE, ω 〉,

3.03 by WSi:〈RESULT:WSi:〈value〉, ω 〉

3.04 let preparePass = replace WSi:〈RESULT:WSi:〈value〉, DEST:WSj, ω〉

3.05 by WSi:〈PASS:WSj:〈COMPLETED:WSi:〈value〉 〉 〉

3.06 let passInfo = replace WSi:〈PASS:WSj:〈 ω1 〉, ω2 〉, WSj:〈 ω3 〉

3.07 by WSi:〈 ω2 〉, WSj:〈 ω1, ω3 〉

Rule passInfo transfers molecules of information between
WSes. This rule reacts with a molecule WSi:〈PASS:d:〈ω1 〉〉
that indicates that some molecules (here denoted ω1) from
WSi needs to be transfer to d. These molecules, once inside
the sub-solution of d will trigger the next step of the execution.
Therefore, the molecule ω1 will be transferred from sub-
solution WSi to sub-solution d, when reacting with passInfo
rule.

C. Complex Workflow Patterns
With generic rules described until now, the engine can only

support data flows. However, more complex control flows
are required to be taken into account, in order to solve a
broader range of workflow definitions. We now illustrate how
HOCL can be leveraged to deal with complex control flows,
by detailing a particular pattern known as Simple Merge.

As illustrated in Figure 2, a simple merge pattern is similar
to a XOR operation. It involves a structure where two or more
source service flows converge into a single destination in an
asynchronous way. The destination service must however be
launched only once, regardless of the number of incoming.
In other words, only the first source service to complete will
influence the remainder of the workflow execution.

Fig. 2. Simple merge Pattern.

To enhance our workflow engine with the support of the
simple merge pattern, we need to define the appropriate
generic rules and dispatch them in the sub-solutions of
WSs involved. These rules are given in Algorithm 2. The
sm preparePass reaction rule is used to add, in the sub-
solution of every incoming service, a particular MERGE:Yes
molecule to the information to be transferred to the des-
tination service (see Lines 4.01 and 4.03). The destination
WS waits for this molecule and only the first MERGE:Yes
molecule received in its sub-solution will be consumed. Next,
sm setFlag reaction rule takes place producing one molecule
of the form FLAG INVOKE, allowing the service invocation.
The following MERGE:Yes molecules received will be ignored.
In terms of molecular composition, each source WS will have
in its sub-solution one sm preparePass rule (A on Figure 2)
and one passInfo (B on Figure 2) rules, they are composed
with sm setFlag rule (C) in the destination WS.

Algorithm 2 Generic rules - Simple merge pattern
4.01 let sm preparePass = replace DEST:WSj, RESULT:WSi:〈value〉

4.02 by PASS:WSj:〈RESULT:WSi:〈value〉, MERGE:Yes〉

4.03 let sm setFlag = replace-one MERGE:Yes by FLAG INVOKE

For space reasons, we omit more complex control flows
(such as synchronization merge, exclusive choice or discrimi-
nator). However, the support for a wide range of control flow
patterns can be found in the research report [16], as well as
its design process.

To sum up, the coordination is achieved through a set of
autonomic, and local reactions taking place within each WS’s
sub-solution (or between two WSs’ sub-solutions), providing
all the abstractions for a natural expression of a decentralized
coordination of virtually all identified workflow patterns [17].

D. Architectural Frameworks

We now show how the chemical engine can be powered
over both centralized and decentralized architectures.

1) Centralized Architecture: Following the examples of
most of Workflow Management Systems mentioned before,
the coordination can be managed by a single node, referred to
as the chemical workflow service, as illustrated by Figure 3.
First, notice the S components. They represent the interface
with the actual distant WSes to be called. Then, the workflow
definition and coordination information as described before



(i.e., the multiset) is accessed by the chemical engine that will
perform the reactions required.

Fig. 3. Centralized chemical WMS architecture.

2) Decentralized Architecture: Distribute the control means
that each service involved will take its part in the coordination
process. Each WS is now chemically encapsulated, to form a
Chemical Web Service (ChWS). Each ChWS is equipped with
a chemical engine and a local copy of part of the multiset on
which its chemical interpreter will act, to realize its part of the
coordination. The multiset, containing the workflow definition
and thus all required coordination information, will now act
as a space shared by all ChWSes involved in the workflow.
In other words, ChWSes will communicate by reading and
writing it, as illustrated by Figure 4.

Fig. 4. Decentralized chemical WMS architecture.

IV. SOFTWARE PROTOTYPE

In this section, we discuss the implementation of a software
prototype for both previously described architectures. The low
layer of our prototype is an HOCL interpreter based on on-the-
fly compilation of HOCL specifications. The whole prototype
is written with Java.

A. Centralized Version

The prototype is illustrated by Figure 5. As mentioned in
Section III, the workflow definition is executed as a chemical
program by the chemical workflow service. The low layer of
the architecture is an HOCL interpreter. Given a workflow
specification as input (an HOCL program), it executes the
workflow coordination by reading and writing the multiset
initially fed with the workflow definition. The interface be-
tween the chemical engine and the distant services themselves
is realized through the service caller. The service caller relies
on the DAIOS framework [18], which provides an abstraction

layer allowing dynamic connection to different flavours of
services (SOAP or RESTFul), at the same time abstracting the
target service’s internals. DAIOS was specially extended with
a module which automatically generates the bindings, as well
as input and output messages required between the chemical
engine and a Web service.

Fig. 5. Centralized architecture.

B. Decentralized Version

The decentralized prototype is illustrated in Figure 6. Ba-
sically, the difference between centralized and decentralized
implementations is the functionality of the multiset. It now
represents a shared space playing the role of a communication
mechanism and a storage system. As we detailed before,
the workflow definition is comprised of one sub-solution
per WS involved. The information in one sub-solution can
only be accessed by the ChWS owner of/represented by that
sub-solution. On each ChWS, a local storage space acts as
a temporary container for the sub-solution to be processed
by the local HOCL interpreter. ChWSes communicate with
the multiset through RMI interfaces to read and modify it
concurrently. Periodically and independently from each other,
ChWSes request their sub-solution to this multiset. The sub-
solution obtained is then processed, modified by the local
HOCL interpreter and then pushed back to the multiset as an
update. On the other hand, the service caller now represents
the interface between a ChWS and a concrete WS.

Fig. 6. Decentralized architecture.

To implement the needed communication mechanism, some
Java RMI modules are included into the ChWSes and the



multiset. The multiset has been enhanced with an RMI server-
communicator module, providing three remote operations for
the ChWSes: put operation adds molecules in the sub-solution
of a specified ChWS, get withdraws the content of a ChWS
solution, and isConsumable determines whether there is any
new information to be processed by the calling ChWS. On the
ChWS’ side, an RMI listener module has been integrated on
each ChWS, periodically calling the isConsumable operation,
which, if it returns true, triggers the invocation of the get
operation to extract the content of the WSi solution which will
be copied into its local multiset. Once the HOCL interpreter
has finished the execution, internally the RMI listener call the
put operation to update the content of its sub-solution into
the multiset. This multiset implementation presents some sim-
ilarities with tuplespaces, founded in the Linda coordination
language [19].

V. PERFORMANCE RESULTS

In this section, we present and analyse our experimental
results. Four engines have been used: Taverna Workbench
2.2.0, Kepler 2.0, and both centralized and decentralized
version of the HOCL-based workflow engine, referred to as
HOCL Cen. and HOCL Dec. in the following, respectively.

Recall that our objective is not so much comparing per-
formance as is establishing the viability of a chemistry-based
workflow engine. In other terms, Taverna and Kepler represent
validated standards we use as guidelines.

A. Workflows considered

Three scientific workflows were executed. Illustrated by
Figure 7 (left), BlastReport3 is a bio-informatics workflow
which retrieves a blast report of a protein in a database
given its ID. The second one, CardiacAnalysis1, illustrated
in Figure 7 (right), is a cardiovascular image analysis work-
flow which extracts the heart’s anatomy from a series of
image sequences by applying image processing algorithms,
developed by the CREATIS-LRMN biomedical laboratory1.
The third one, Montage [20], given in Figure 8 is a classic
astronomical image mosaic workflow processing large images
of the sky. These workflows present different characteristics
such as the number of services involved, the amount of data
exchanged and the complexity of the coordination required
(data processing included, such as iterations of lists of objects).
We attempt to characterize these workflows as follows.

• The BlastReport workflow includes 5 services, and
presents a medium level of data exchange (simple objects,
lists) and low coordination overhead – it is composed
mostly of sequences.

• The CardiacAnalysis workflow includes 6 services, pre-
senting a high level of data exchange (complex objects,
lists) and a high coordination overhead (synchronizations,
loop iteration, parallelism). This overhead does not appear
on Figure 7 (right), and is due to the re-entrant nature
of the services. Indeed, some services produce lists of

1http://www.creatis.insa-lyon.fr/site/

Fig. 8. Montage workflow structure

objects that need to be extracted one by one by iterators,
and sent to the next service asynchronously.

• The Montage workflow includes 27 services, and exhibits
a low rate of data exchange (simple objects) and medium
coordination overhead (parallelism and synchronization
patterns).

Fig. 7. BlastReport and Cardiac workflows structures

The workflow definitions used for each WMS are available
online2,3.

B. Centralized experiments

The workflows were first run using Taverna, Kepler, and
HOCL Cen, on a local machine equipped with the Intel core-
duo T9600 2.8 Ghz processor and 4GB of memory. Figures 9
and 10 present the results. A first encouraging result is that the
execution time for the Montage workflow, i.e. for a workflow
with limited data exchange and coordination overhead, on
Kepler, Taverna and HOCL Cen. are quite similar, and even
slightly reduced on the HOCL Cen. WMS.

For the BlastReport workflow, while results are again simi-
lar for the different WMSs, HOCL Cen. takes a little more
time. This can be explained by the increased size of the

2https://www.irisa.fr/myriads/members/hfernand/hocl/workflows
3http://www.myexperiment.org/workflows/2058.html



multiset representing the BlastReport workflow (in terms of
number of molecules). However, in terms of ratio, execution
times remain very close.

Fig. 9. Performance results, Montage and BlastReport.

Finally, as we can see in Figure 10, the increased coordina-
tion overhead of the CardiacAnalysis. As mentioned before,
this workflow relies on a lot of data processing related to the
coordination itself, which, in the case of HOCL Cen., results
in a significant increase of the size and processing time of
the multiset. Also, no support for parallel execution has been
implemented on our current HOCL interpreter version. These
two optimization aspects will be investigated in the future.

Fig. 10. Performance results, CardiacAnalysis.

C. Decentralized experiments
The workflow were also executed following the HOCL Dec.

design. The experiments were conducted on the Grid’5000
platform [21], specifically, on the paradent cluster, located
in Rennes, each node being equipped with two quad-core
Intel Xeon L5148 LV processors, 30 GB of RAM and 40GB
InfiniBand Ethernet cards. We now focus on the right-most
bar of each series of Figures 9 and 10.

A first observation is the performance degradation using
HOCL Dec. on the Montage workflow. While the coordination

is executed locally on each ChWS (here the coordination is
shared among 27 services), the multiset remains a space shared
by every ChWSes leading to potential scalability issues. Also,
RMI is known to have different some scalability weaknesses
related to memory management [22], in particular provoked
by the distributed garbage collector.

On the BlastReport, a performance gain over HOCL Cen.
is obtained with HOCL Dec., thanks to the distribution of
the coordination over the 5 services involved. The number
of services participating is not high enough to provoke the
previous scalability problems on the multiset side.

For the CardiacAnalysis workflow, a considerable perfor-
mance gain is also obtained using HOCL Dec., demonstrating
the benefits of a decentralized workflow execution when
workflows present a high coordination overhead like Cardiac-
Analysis. Exploiting the processing resources of each ChWS,
the list handling and adaptation tasks are separately managed
by each ChWS.

D. Discussion

This series of experiments leads to several conclusions.
They constitute a proof of the viability of a chemistry-based
engine, as for some workflows, its performance are similar to
those of Kepler and Taverna.

Nevertheless, scalability issues need to be tackled. The first
limitation comes from the design of the decentralized archi-
tecture itself, in which the multiset can constitue a bottleneck.
To deal with the decentralization of the multiset itself, we
recently formulated solutions based on peer-to-peer protocols,
able to distribute and retrieve objects (here, molecules) at large
scale [23]. One of the next steps of this work is to build the
HOCL Dec. environment on top of such approaches to remove
the bottleneck problem, and propose a fully decentralized
workflow engine. A more short term possibility is to optimize
the communication scheme used, currently based on RMI,
also known for some scalability limitations. We will consider
relying on a different communication tool.

Recall, beyond performance or optimization considerations,
that the chemical models provide all the needed abstractions
to naturally express both data-driven and complex control-
driven execution, including particular features like cancella-
tion. Please refer to [16] for details. We consider the chem-
ical abstraction as participating in the long term objective
of improving the workflow execution models on emerging
platform, like clouds, where the elasticity brings new modeling
challenges.

VI. RELATED WORKS

Workflow management systems generated a high amount
of literature and systems. With the proliferation of service-
oriented architectures, and the adoption of the Web service
standard, several service-based WMS for scientific applica-
tions was proposed, such as Taverna [2], Kepler [3], Triana [4],
Pegasus [5] or Askalon [6]. A common limitation of these
systems is their lack of support for dynamic adaptation and
decentralization, leading to scalability, as well as reliability



issues. Our decentralized architecture share some similarities
with the Linda [19] approach, which pioneered the coordina-
tion through a shared space. In the same vein, recent works
address the need for decentralization in workflow execution.
More recently, several approaches replace a centralized BPEL
engine by a set of distributed, loosely coupled and cooperating
nodes. It has been identified that one promising solution for
this is to use a shared tuplespace for coordination [24], [25],
[26]. However, in [24], [25], the tuplespace is only used to
store data information, our coordination mechanism stores
both control and data information into the multiset, which is
made possible by the use of the chemical execution model
for the coordination of all data and control dependencies. In
the scientific area, in [26], authors transform a centralized
BPEL definition into a set of coordinated processes. Through a
shared tuplespace working as a communication infrastructure,
the control and data dependencies exchange among processes
to make the different nodes interact between them. Again,
the use of BPEL hinders from expressing dynamic and self-
adaptive behaviors.

As a more general comment, to our knowledge, these work
does not provide real software prototype to experimentally
validate their proposal.

VII. CONCLUSION

Scientific applications are now built as workflows of ser-
vices. Workflow management systems gained recently a lot of
attention in this context. However, the emergence of new plat-
forms, such as clouds where elasticity and dynamic adaptation
are strong requirements, led to a high demand for new models
able to represent both wokflows and the platforms, as well as
their inherent characteristics.

The chemical model is a promising paradigm naturally
capturing parallelism, distribution and dynamics. While the
advantages of such a model are now well-established, they still
suffer from a lack of proof of concepts and actual deployments.

In this paper, we have proposed a chemistry-inspired work-
flow management system. A workflow description language
and its execution model inspired by such abstractions is
discussed. The wide expressiveness (data-flows, control-flows,
natural decentralization) of the paradigm is highlighted. Then,
its implementation based on the HOCL language, for both
centralized and decentralized environment is given. Finally,
experiments conducted shown the viability of the concept,
lifting a barrier on the path to its actual adoption.
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