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Abstract. In this paper we present the methods implemented in the
CLARCS (C++ Library for Automated Registration and Comparison of
Surfaces) library. This library allows some basic and high level processing
on free-form surfaces, represented as point sets or meshes. Three methods
are the “building bricks” of CLARCS; they allow (i) the rigid/affine/non-
linear registration of two point sets, (ii) the computation of the mid-
sagittal plane of one point set, (iii) the computation of a mean point
set from several point sets, and the variability around this mean. These
methods are all based on a common methodological framework, in which
the point sets/meshes are represented either as a Gaussian mixture model
or as a draw of such a model. We propose some applications of the
methods implemented in CLARCS on different sets of medical data.

1 Introduction

In medical image processing, the most widely used methods are voxel-based,
which means that their required input data must be (most often) 3D arrays
of grey values. Some important issues with this kind of data include the large
memory needed to store them, the large run time of standard algorithms to
process them, the choice of data type to code the grey value of a voxel or the
sometimes problematic orientation of the volumes. Thanks to the increase of 3D
rendering and computational capacities of computers in the last few years, new
surface based processing methods have emerged as an alternative to standard
voxel-based techniques. In this context, the VisAGeS team at INRIA /INSERM
(https://www.irisa.fr/visages) has proposed a set of computational tools
that have been implemented in a software library called CLARCS (C++ Library
for Automated Registration and Comparison of Surfaces).



In this paper, we outline the methods implemented in CLARCS (Section 2)
and we provide some potential medical applications of these (Section 3): assess-
ment of dysmorphology in craniosynostosis and plagiocephaly and construction
of a statistical shape model of thalami for deep brain stimulation (DBS).

2 Overview of CLARCS

In the first subsection below, we briefly describe some of the best known libraries
or software working on point sets, meshes or surfaces. In the second subsection,
we describe the functions implemented in CLARCS.

2.1 Related software for surface processing

There exists a bunch of commercial software allowing for some basic (e.g. im-
port /export, visualisation) and higher level (e.g. registration) processing on sur-
faces, such as Amira (http://www.amira.com), or Rapidform (http://www.rap-
idform.com), but it is often difficult to know what methods are implemented
therein, and always costly to acquire the software.

Some freeware are specifically dedicated to high level geometric computa-
tion (e.g. CGAL, http://www.cgal.org) or high level visualisation (e.g. Par-
aView, http://www.paraview.org, and VTK, http://www.vtk.org) of sur-
faces, but we restrict our brief overview here to software which allow surface
registration/comparison in a broad sense. The Point Cloud Library (or PCL,
http://pointclouds.org) and MeshLab (http://meshlab.sourceforge.net)
are two such software/libraries, but they only implement rigid registration.
FreeSurfer (http://surfer.nmr.mgh.harvard.edu) allows non-linear registra-
tion of surfaces, but is limited to brain (cortical) data (using a specific atlas for
this purpose).

Some freely available state-of-the-art software with a larger range of appli-
cations include:

— TPS-RPM [4]: http://noodle.med.yale.edu/ chui/tps-rpm.html

TPS-L2 [15]: http://code.google. com/p/gmmreg

CPD [20]: https://sites.google.com/site/myronenko/research/cpd

SPHARM [22]: http://www.enallagma.com/SPHARM. php

— weighted-SPHARM [5]: http://www.stat.wisc.edu/ mchung/softwares/-
software.html

We have experimentally found the first three methods to be most often un-
able to cope with large (more than 100,000 points) point sets, while the two
others impose strong topological constraints on the surfaces to register (they
must be closed). The methods implemented in CLARCS allow the processing of
large point sets (often needed to encode highly convoluted /complex anatomical
structures) without topological constraints, in an efficient and fast way. From a
methodological point of view, a strong advantage of these methods over most of



the abovementioned ones is the unified computational framework they are based
on, as outlined below. Finally, to our knowledge, there is no freely available soft-
ware allowing the computation of the symmetry plane of approximately bilateral
surfaces, and the assessment of asymmetries therof.

2.2 CLARCS

CLARCS is a C++ library for surface processing and analysis which has been
developed at IRISA (http://www.irisa.fr) since 2007. CLARCS is mainly
composed of three basic algorithms allowing (i) the rigid/affine/non-linear reg-
istration of two point sets, (ii) the computation of the mid-sagittal plane of one
point set, (iii) the computation of a mean point set from several point sets,
and the variability around this mean. These algorithms are building bricks that
can be combined to allow higher-order surface processing such as computation
of pointwise asymmetry fields and statistical analysis thereof within or between
populations. The three algorithms rest on a common methodological framework,
that we briefly outline here. We refer the reader to the corresponding papers for
a deeper insight into these algorithms. Let us first define the following pseudo-
distance between point sets X' and X?2:
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Computing 62(X*', X?) is a minimisation problem involving the unknown
transformation T linking the two point sets, and the unknown card(X!) x
card(X?) matrix A. The constraints on this matrix allows it to encode the point-
to-point correspondences between the point sets in a fuzzy way. The cost function
can be seen as the sum of (i) a data-attachment term, (ii) a barrier (smoothing)
function, which convexifies the cost function, and (iii) a regularity constraint on
the unknown transformation. The relative strength of the three terms is weighted
by the positive scalars 202 and «.

It is enlightening to notice that this minimisation problem is actually the
maximum a posteriori (MAP) problem consisting of finding the transformation T
best superposing the two point sets, when one makes the hypotheses that (i) each
point z; of X! is independently drawn from a Gaussian mixture model (GMM)
(whose means are the points T'(z;) of T(X?), whose covariance matrices are equal
to oI, I being the identity 3x3 matrix, and whose mixture weights are equal)
and (ii) T is a random variable with a distribution of the form o exp(—aL(T)).
With this probabilistic view, X' can be interpreted as a noised version of T(X?),
o being the standard deviation of this noise.



This MAP problem can typically be solved using the Expectation-Maximisa-
tion (EM) algorithm, which leads to the following iterative two-step algorithm:

exp[ ||z —T(x,)|*/(20)]
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This EM algorithm can be shown to converge monotonically to an (at least)
local maximum of the MAP criterion or, equivalently, to an (at least) local
minimum of the aforementioned cost function. Actually, the two steps of the
EM algorithm are exactly the same as those obtained when minimising this cost
function with respect to A and T in turn.

The formulation of the E-step helps to understand why the matrix A encodes
the point-to-point correspondences: when the transformation 7' is known, /L]
is the posterior probability that the point x; has been drawn from the mixture
component with centre T'(z;). The E-step simply consists in computing these
card(X!) x card(X?) probabilities. On the contrary, solving the M-step is highly
dependent on the type of transformations considered.

Below, we show how this generic algorithm can be instantiated to lead to the
three basic methods implemented in CLARCS.

Rigid/affine/non-linear registration. When T is set to be rigid and a = 0
(i.e. no prior on the rigid transformation), the MAP problem boils down to a
maximum likelihood (ML) problem. Several closed-form solutions exist for the
M-step, using typically the unit quaternions or the singular value decomposi-
tion. This results in what was termed the EM-ICP algorithm by Granger &
Pennec [14]. An earlier variant of this algorithm was devised by Rangarajan et
al. and termed the RPM algorithm [21].

We built on the EM-ICP algorithm to propose some adaptations for non-
linear registration. In previous works, we showed how to use the normals in
addition to the point coordinates [19], and how to enforce some constraints on
the point-to-point correspondences [9]. We also showed how to solve the M-step
when considering a model of locally affine transformations [19, 9] or when using
the Reproducing Kernel Hilbert Space (RKHS) theory and the Fourier analysis
to build the model [10]. Finally, we showed how to obtain symmetric consistency
when using this last transformation model [10].

Symmetry plane computation. When T is set to be a reflection, o = 0 (i.e.
no prior on the reflection) and when X! = X2 the EM algorithm allows to
compute the plane best superposing the left and right parts of X! = X? [7].
Needless to say, this assumes that X! = X2 is (at least) approximately bilateral.
Our specific contribution was to propose a closed-form for the M-step, relying on
the parametrization of the unknown reflection plane using its unit normal and
distance to the origin of the coordinate system [7]. Non-linear registration of the
point set with its flipped image with respect to the approximate symmetry plane
allows the pointwise mapping of asymmetries [8].



Atlas construction. The problem here is to find a point set M best represent-
ing a set of n point sets X!,..., X™. We defined it as:

M = arg min Z 5(X, XY

i=1,...,n

If T is set to be a similarity (rigid transformation plus uniform scaling), it is
possible to devise an iterative algorithm converging to an (at least) optimum of
this criterion, in which the point-to-point correspondences, the mean point set
(which turns out to be the mean shape in this case where T is defined as a sim-
ilarity) and the unknown transformations linking the n point sets and the mean
point set are estimated in turn. However, in such an approach, point-to-point
correspondences are likely to be meaningless; this is why we proposed to estab-
lish these correspondences using non-linear transformations while computing the
mean shape using similarities. The resulting iterative algorithm can no longer
be shown to converge, but behaves well in practice [6]. Once the algorithm has
converged, it is straightforward to perform PCA on the residuals.

Implementation details. These three algorithms were implemented within a
multiscale framework. As previously noted by Granger & Pennec, the o pa-
rameter allows to deal with the correspondences in a fuzzy way, leading to a
smoother criterion to minimise. When o is infinitely small, their EM-ICP algo-
rithm is simply the ICP algorithm of Besl & McKay, hence the name [2]. This
leads to the idea of devising a scheme in which several EM algorithms are succes-
sively run with decreasing o values, with a large starting value when the point
sets to register are far from each other. We also used kd-trees, for increased
speed, and a cut-off distance between the points x; and T'(x;), above which
they are eliminated from the estimation of the transformation, for increased
speed and robustness to outliers.

3 Applications

3.1 Quantification of skull asymmetries in craniosynostoses

Synostosis is the union of two or more separate bones to form a single bone
(Merriam-Webster). Cranial synostosis, or craniosynostosis is a rare congenital
disease which consists in the premature fusion of one or several cranial sutures.
The last medical condition is typically met in conjunction with a hundred of
syndromes, among which are Apert or Crouzon. On the contrary, the etiology
of isolated (nonsyndromic) craniosynostosis is largely unknown. Early detection
and treatment of craniosynostosis is crucial, as hindered skull growth can lead
to increased intracranial pressure and thus alteration of normal brain develop-
ment [23].

It is expected that improved characterisation of the dysmorphology of the
skull associated with craniosynostosis could help understanding its cause(s), im-
proving its diagnosis (e.g. lambdoid synostosis may be easily confounded with



deformational plagiocephaly) and even improving its treatment. In this context,
of particular interest are the unilateral coronal synostoses, as it is not clear
whether the left and right coronal synostoses are due to the same factors.

We propose to characterise the dysmorphology of one skull with unilateral left
coronal synostosis by assessing its pointwise asymmetry. This assessment is based
on the computation of an approximate symmetry plane, from which the left-
right differences (asymmetries) can be evaluated (cf. Fig. 1). The outer surface
of the skull was computed using manual grey-level thresholding, mathematical
morphology and the marching cube algorithm from a CT scan. The point set is
a triangular mesh of a complete skull made up of about 140,000 cells and 82,000
points.

Fig. 1. Evaluation of pointwise asymmetries on a skull with craniosynostosis.
We display the norm of the asymmetry field. Strong asymmetries are visible on the
temporal bone, the posterior part of the parietal bone and the supraorbital part of the
frontal bone.

3.2 Quantification of skull asymmetries in deformational
plagiocephaly

Since the inception of the ”back to sleep” recommendations in the early 90s to
reduce sudden infant death syndrome, the incidence of positional (i.e. nonsyn-
ostotic) plagiocephaly has drastically increased [18,16]. Plagiocephaly consists
of the flattening of one side of the head, with aesthetics consequences, and po-
tential altered brain development [17]. Objective assessment of plagiocephaly
should help diagnosis and follow-up of this condition [3].

We propose to characterise the deformational plagiocephaly of one skull us-
ing the same computational tools as in the previous section (cf. Fig. 2). The
outer surface of the skull was computed using manual grey-level thresholding,
mathematical morphology and the marching cube algorithm from a CT scan.
The point set is a triangular mesh of a complete skull made up of about 200,000
cells and 137,000 points.

3.3 Building statistical shape models of deep grey nuclei

Deep brain stimulation (DBS) was initially targetted to the ventral intermedi-
ate thalamus to reduce tremor in patients with Parkinson’s disease [1]. Since
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Fig. 2. Evaluation of pointwise asymmetries on a skull with deformational
plagiocephaly. We display the norm of the asymmetry field. Strong asymmetries are
visible on the posterior part of the parietal bone and on the superior part of the occipital
bone.

then, alternative targets have emerged, such as the subthalamic nucleus (STN),
globus pallidus interna, which appear to be comparatively efficient in this con-
text [12]. The indications for DBS have also been extended to drug-resistant
epilepsy, dystonia, Tourette syndrome or even obsessive compulsive disorders,
using the caudate and accumbens nuclei (for instance) as targetted structures.
An improved knowledge of the anatomy of these subcortical structures is key to
optimise pre-operative planning and to assess treatment efficacy.

In this context, statistical shape models (SSMs) are extremely useful as they
allow to help the segmentation of the structures of interest in MR images, in
which typical pulse sequences make it hard to distinguish these nuclei based on
the grey values alone [11].

As an illustration, we propose to build a statistical shape model of the thalami
(Fig. 4) which were manually segmented together with six other deep brain struc-
tures (cf. Fig. 3) by a trained neuroanatomist using itk-SNAP (http://www.itk-
snap.org) in 10 patients with Parkinson’s disease. For each patient, the seven
pairs of segmented structures were stored in a 3D image with discrete labels.
The surfaces of the structures were computed using the marching cube algo-
rithm. The points sets representing the left and right thalami are triangular
meshes with sizes of about 10,000 cells and 5,000 points.

Fig.3. Front view
of seven deep brain
structures. Cyan: tha-
lamus, orange: putamen,
magenta: amygdala, blue:
hippocampus, red: red
nucleus, yellow: STN,
purple: substantia nigra.
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Fig. 4. Mlean shape and first two modes of variation on left and right thalami.
The colour maps the norm of the displacement (in mm) of each point along the first
(top row) and second (bottom row) mode of variation (£2v/A\;v;) around the mean
shape.

4 Discussion & Conclusion

In this paper, we presented the CLARCS library and its three building bricks,
namely: (i) the rigid/affine/non-linear registration of two point sets, (ii) the com-
putation of the mid-sagittal plane of one point set, and (iii) the computation of a
mean point set from several point sets. We also gave some possible applications
of CLARCS. Some other applications can be found in the full papers describing
the methods implemented in CLARCS, for instance:

— the construction of a statistical shape model of the osseous labyrinth [6] and
the caudate nuclei [10]

— the estimation of the mean pointwise brain asymmetry in male right-handed
subjects and the comparison with situs inversus subjects [6] and with chim-
panzees [13]

— the estimation of the mean pointwise facial asymmetry in males and females,
and the comparison thereof [8]

With its new, robust and fast methods for surface processing, CLARCS opens
interesting perspectives with medical applications. For instance, the non-linear
registration of two point sets of about 200,000 points each runs in less than 5
minutes on a recent standard personal computer (3GHz).

The implementation of the framework of CLARCS is compatible with the
well-known visualization toolkit VTK (http://www.vtk.org), thus it is possible
to insert CLARCS specific methods into more general VTK pipelines.



We plan to distribute CLARCS as an open-source library, but this step will
require some code refactoring, thus CLARCS will be first available as an external
plugin of the future version of MedInria (http://med.inria.fr) that will be
released in early September 2011.
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