Detecting Outlying Subjects in High-Dimensional Neuroimaging Datasets with Regularized Minimum Covariance Determinant

Abstract : Medical imaging datasets used in clinical studies or basic research often comprise highly variable multi-subject data. Statistically-controlled inclusion of a subject in a group study, i.e. deciding whether its images should be considered as samples from a given population or whether they should be rejected as outlier data, is a challenging issue. While the informal approaches often used do not provide any statistical assessment that a given dataset is indeed an outlier, traditional statistical procedures are not well-suited to the noisy, high-dimensional, settings encountered in medical imaging, e.g. with functional brain images. In this work, we modify the classical Minimum Covariance Determinant approach by adding a regularization term, that ensures that the estimation is well-posed in high-dimensional settings and in the presence of many outliers. We show on simulated and real data that outliers can be detected satisfactorily, even in situations where the number of dimensions of the data exceeds the number of observations.
Type de document :
Communication dans un congrès
Medical Image Computing and Computer Assisted Intervention, Sep 2011, Toronto, Canada. Springer-Verlag, Part III (LNCS 6893), pp. 264-271, 2011, 14th International Conference, Toronto, Canada, September 18-22, 2011. 〈http://www.springerlink.com/content/y1w41n8238341866/〉. 〈10.1007/978-3-642-23626-6_33〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00626857
Contributeur : Virgile Fritsch <>
Soumis le : mardi 27 septembre 2011 - 11:33:33
Dernière modification le : vendredi 22 juin 2018 - 01:20:19
Document(s) archivé(s) le : mercredi 28 décembre 2011 - 02:26:18

Fichiers

outliers.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Virgile Fritsch, Gaël Varoquaux, Thyreau Benjamin, Jean-Baptiste Poline, Bertrand Thirion. Detecting Outlying Subjects in High-Dimensional Neuroimaging Datasets with Regularized Minimum Covariance Determinant. Medical Image Computing and Computer Assisted Intervention, Sep 2011, Toronto, Canada. Springer-Verlag, Part III (LNCS 6893), pp. 264-271, 2011, 14th International Conference, Toronto, Canada, September 18-22, 2011. 〈http://www.springerlink.com/content/y1w41n8238341866/〉. 〈10.1007/978-3-642-23626-6_33〉. 〈inria-00626857〉

Partager

Métriques

Consultations de la notice

579

Téléchargements de fichiers

716