K. J. Friston, A. P. Holmes, K. J. Worsley, J. B. Poline, C. D. Frith et al., Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping, vol.26, issue.4, pp.189-210, 1995.
DOI : 10.1002/hbm.460020402

B. P. Rogers, V. L. Morgan, A. T. Newton, and J. C. Gore, Assessing functional connectivity in the human brain by fMRI, Magnetic Resonance Imaging, vol.25, issue.10, pp.1347-1357, 2007.
DOI : 10.1016/j.mri.2007.03.007

B. Ng, G. Hamarneh, and R. Abugharbieh, Detecting Brain Activation in fMRI Using Group Random Walker, MICCAI 2010, pp.331-338, 2010.
DOI : 10.1007/978-3-642-15745-5_41

X. Descombes, F. Kruggel, and D. Y. Von-cramon, Spatio-temporal fMRI analysis using Markov random fields, IEEE Transactions on Medical Imaging, vol.17, issue.6, pp.1028-1039, 1998.
DOI : 10.1109/42.746636

W. D. Penny, N. J. Trujillo-barreto, and K. J. Friston, Bayesian fMRI time series analysis with spatial priors, NeuroImage, vol.24, issue.2, pp.350-362, 2005.
DOI : 10.1016/j.neuroimage.2004.08.034

L. M. Harrison, W. D. Penny, J. Asburner, N. J. Trujillo-barreto, and K. J. Friston, Diffusion-based spatial priors for imaging, NeuroImage, vol.38, issue.4, pp.677-695, 2007.
DOI : 10.1016/j.neuroimage.2007.07.032

M. W. Woolrich, M. Jenkinson, J. M. Brady, and S. M. Smith, Fully Bayesian Spatio-Temporal Modeling of FMRI Data, IEEE Transactions on Medical Imaging, vol.23, issue.2, pp.213-231, 2004.
DOI : 10.1109/TMI.2003.823065

M. D. Fox and M. E. Raichle, Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging, Nature Reviews Neuroscience, vol.17, issue.9, pp.700-711, 2007.
DOI : 10.1016/j.neuroimage.2006.02.010

S. M. Smith, P. T. Fox, K. L. Miller, D. C. Glahn, P. M. Fox et al., Correspondence of the brain's functional architecture during activation and rest, Proc. Natl. Acad. Sci, pp.13040-13045, 2009.
DOI : 10.1073/pnas.0905267106

M. D. Fox and M. Greicius, Clinical applications of resting state functional connectivity, Frontiers in Systems Neuroscience, vol.4, p.19, 2010.
DOI : 10.3389/fnsys.2010.00019

Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero, Shrinkage Algorithms for MMSE Covariance Estimation, IEEE Transactions on Signal Processing, vol.58, issue.10, pp.5016-5029, 2010.
DOI : 10.1109/TSP.2010.2053029

URL : http://arxiv.org/abs/0907.4698

T. P. Minka, Bayesian Linear Regression, 2001.

M. Schmidt, G. Fung, and R. Rosales, Fast Optimization Methods for L1 Regularization: A Comparative Study and Two New Approaches, 18 th Eur. Conf. Machine Learning, 2007.
DOI : 10.1007/978-3-540-74958-5_28

P. Pinel, B. Thirion, S. Meriaux, A. Jober, J. Serres et al., Fast reproducible identification and large-scale databasing of individual functional cognitive networks, BMC Neuroscience, vol.8, issue.1, p.91, 2007.
DOI : 10.1186/1471-2202-8-91

URL : https://hal.archives-ouvertes.fr/hal-00784462

B. Thirion, G. Flandin, P. Pinel, A. Roche, P. Ciuciu et al., Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets, Human Brain Mapping, vol.22, issue.8, pp.678-693, 2006.
DOI : 10.1002/hbm.20210

T. Nichols and S. Hayasaka, Controlling the familywise error rate in functional neuroimaging: a comparative review, Statistical Methods in Medical Research, vol.12, issue.5, pp.419-446, 2003.
DOI : 10.1191/0962280203sm341ra