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Abstract: A very large number of applications that are currently deployed on
large scale distributed systems such as grids or volunteer computing systems are
Bag-of-Tasks (BoT) applications. Up until now, simple mechanisms have been
used to ensure a fair sharing of resources amongst these applications. Although
these mechanisms have proved efficient for CPU-bound applications, they are
known to be ineffective in the presence of network-bound applications.

In this article, we propose a fully distributed algorithm for fairly scheduling
BoT applications on a computing grid while respecting resource constraints.
This algorithm is inspired by techniques used in flow control mechanisms in
multi-path networks. Yet, we prove that the context of BoT scheduling is sig-
nificantly more difficult in practice and that a set of non-trivial adaptations are
required to ensure convergence. We prove their effectiveness through an exten-
sive set of simulations that enables to deeply understand the potential benefits
as well as the limitations of this technique in the context of grid computing.
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Du controle de flux dans les réseaux
multi-chemins a ’ordonnancement en régime
permanent d’applications de type Bag-of-tasks
dans des grilles de calcul

Résumé : Une grande partie des applications actuellement déployées & grande
échelle est de type Bag-of-Tasks (BoT), c’est-a-dire qu’elles sont constituées d’un
grand nombre de taches identiques et indépendantes. Jusqu’ici, seulement des
mécanismes simples ont été mis en ceuvre pour s’assurer d’un partage équitable
des ressources entre les applications. Si ces mécanismes ont prouvé leur efficacité
dans le cas ou les applications sont gourmandes en calcul, leur inefficacité en
présence d’applications gourmandes en communications est également connue.

Dans cet article, nous proposons un algorithme complétement distribué pour
I’ordonnancement équitable d’applications de type BoT tout en exploitant effi-
cacement ’ensemble des ressources (de communication et de calcul). Cet algo-
rithme s’inspire de techniques qui ont été utilisées dans le domaine du controéle
de flux dans les réseaux multi-chemins. En dépit de leur ressemblance sur le plan
théorique, nous montrons que le contexte de 'ordonnancement d’applications
BoT dans une grille est significativement plus délicat en pratique que celui du
controle de flux dans des réseaux multi-chemins. Un ensemble d’adaptations
non triviales est nécessaire pour obtenir la convergence et nous montrons leur
efficacité a travers un ensemble conséquent de simulations

Nous pensons que ’analyse minutieuse de cet algorithme présentée dans ce
document permet de comprendre finement les avantages et les limitations de
cette technique dans le contexte des grilles de calcul.

Mots-clés : Optimisation Lagrangienne, ordonnancement en régime perma-
nent, ordonnancement distribué, calcul & grande échelle
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1 Introduction

A very large number of applications that are currently deployed on large scale
distributed systems such as grids or volunteer computing systems are Bag-of-
Tasks (BoT) applications. Up until now, mainly simple mechanisms have been
used to ensure a fair sharing of resources amongst these applications. Although
these mechanisms have proved efficient for CPU-bound applications, they are
known to be ineffective in the presence of network-bound applications. In this
article, we propose a fully distributed algorithm for fairly scheduling BoT ap-
plications on a computing grid while respecting resource constraints.

We first review in Section 2 network protocol engineering techniques based
on Lagrangian optimization and distributed gradient. These techniques have
been widely used in the networking community and in particular to propose
flow control mechanisms in multi-path networks.

Then, we explain in Section 3 how the flow control problem is similar to
the one of fair resource sharing between multiple BoT applications in a grid
environment. Although the flow-control algorithm for multi-path networks had
only been evaluated in a very limited setting, such technique is very appealing
as it allows the choice of a wide variety of fairness criteria and achieves both
optimal path selection and flow control.

We show in Section 4 how this technique enables to design a hierarchical and
distributed algorithm. This algorithm only requires local information at each
worker computing tasks and at each buffer of the network links.

Yet, we demonstrate in Section 5 through a carefully designed set of simu-
lations that a direct adaptation of this protocol to the grid context is effective
if and only if all applications are identical:application heterogeneity raises very
complex practical convergence issues.

To address heterogeneity, we detail in Section 6 a set of non-trivial adap-
tations that are required to ensure convergence. In Section 7, we prove their
effectiveness in a fully heterogeneous setting through an extensive set of simu-
lations.

We believe that the thorough analysis we conduct in this article enables to
deeply understand the potential benefits as well as the limitations of this tech-
nique in the context of grid computing.

The contributions of this article can be summarized as follows:

e The proposal of a fair and optimal hierarchical scheduling algorithm for
BoT applications with arbitrary communication-to-computation ratio. Pop-
ular existing infrastructures do not offer support for applications with such
characteristics. The kind of algorithm we propose is thus a first step to-
ward this direction.

e A comprehensive survey on how Lagrangian optimization and gradient
descent has been used to design network protocols.

e An experimental proof that although a naive adaptation of the previous
technique is effective when all applications are identical, it is bound to fail
when applications have different characteristics. BoT scheduling on grid
computing platforms is thus significantly more complex than flow control
in multi-path networks.
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e A set of non-trivial adaptations required to come up with an algorithm
whose effectiveness is assessed in a wide variety of scenarios.

e We show how to carry out step-size tuning, which is generally tedious for
such algorithms and we experimentally prove that such parameters can be
adjusted so that our algorithm is robust to platform topology modification.

2 Related Work

2.1 Resource Sharing Between Multiple Concurrent BoT
Applications

In this article, we focus on scheduling multiple BoT applications in steady-state.
Steady-state has been introduced to model situations when each application has
a very large or an unlimited supply of tasks. In such situations, applications
should aim at maximizing their average number of tasks processed per time-unit
(the throughput). Such objective is both more meaningful and easier to optimize
than classical makespan optimization. Furthermore, optimizing the steady-state
throughput enables to derive periodic asymptotically optimal schedules for the
makespan [1]. We refer the reader to [2] for more details on steady-state schedul-
ing.

This scenario is somehow similar to that addressed by existing systems. For
instance BOINC [3] is a centralized scheduler that distributes tasks for par-
ticipating applications, such as SETI@home, ClimatePrediction.NET, and Ein-
stein@Home. The applications can be very different in nature, e.g., files to be
processed, images to be analyzed or matrices to be manipulated. Yet, most of
existing systems are client-server oriented and tackle applications with a very
small communication-to-computation ratio (CCR). This is a key simplifying hy-
pothesis as it enables to serve clients regardless of their connectivity and avoids
server overload. It also enables to rely on very simple sharing mechanisms. For
example the BOINC sharing policy is to fairly share on each client the CPU
resource among projects to which the volunteer subscribed [4]. It has been
proved [5] that such a simplistic and local approach leads to resource waste
whenever communication links become critical resources. The OurGrid infras-
tructure relies on a tit-for-tat mechanism inspired by the BitTorrent bandwidth
sharing mechanism [6].

In this article however, we propose and study the design of a fair and optimal
hierarchical scheduling algorithm for applications with arbitrary communication-
to-computation ratio. The Large Hadron Collider Computing Grid (LCG) [7] is
a system with such needs. The Large Hadron Collider (LHC) produces roughly
15 Petabytes of data annually that are accessed and analyzed by thousands
of scientists around the world. The resulting computation tasks have a much
larger communication-to-computation ratio than typical distributed computing
computing applications and their efficient management is still an open problem.

The BoT scheduling problem has also been widely studied under less restric-
tive hypothesis. For example, the scheduling problem is completely different if
there are fewer tasks than machines. The most well-known systems for more
general situations are APST [8], Nimrod/G [9], Condor [10] and more recently
MyGrid [6]. The objective is often to minimize completion time while the main
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issue is to select resources. Such problems are generally solved with list schedul-
ing heuristics like min-min, sufferage, or similar variations [11, 12]. It is also
generally impossible to assume that nodes are reliable and deliver constant com-
puting power. Such uncertainties are at the heart of selection mechanisms and
replication is thus often used to avoid waiting for the last tasks of a BoT [13].

2.2 Fairness and Network Protocol Design

In the last decade, the network community has used Lagrangian optimization
and distributed gradient techniques to both analyze and design network pro-
tocols like TCP (see for example [14, 15]). We start by reviewing the basis of
these techniques to understand their key components. Then, we transfer them
to the grid context.

Assume we are given a network made of a set of links £ whose capacity is to
be shared amongst a set of flows F. Let us denote by o the bandwidth allotted
to flow f. Fairly and efficiently sharing resources amongst applications has been
widely handled in economics through the notion of utility, which is a measure of
relative satisfaction of users (or flows here). If we denote by Uy(oy) the utility
associated to flow f when it is allotted a throughput gy, it is common to aim
at maximizing .. Us(of). It has been shown that different choices of Uy
leads to different kind of fairness [16]. Common choices are Us(o;) = log(oy)
(proportional fairness [15]) or Us(or) = 0% /(1—«) (a-fairness [16], which covers
in particular the cases of proportional fairness for « — 1, max-min fairness [17]
when o — o0, social welfare for a = 0).

Let us thus assume the network operator has decided to share bandwidth
according to some fairness criteria expressed through utility functions Us. The
bandwidth sharing can be written as follows:

max ) .= Ur(oy)
{\ﬂec, > 0 < B (1)

f going through [

Solving such an optimization problem in a centralized way would be impracti-
cable. Developing a distributed algorithm has thus received a lot of attention.
The main issue is that checking that all constraints are satisfied requires a
global coordination, which is very hard to implement. Hopefully, Lagrangian
optimization enables us to put the previous problem in a form more amenable
to distribution. This is achieved by introducing a dual variable for each con-
straint and hence for each resource, which we will denote by A;. The Lagrangian
function is then written as:

Lo N = Y Usler) +d> N-[B— > o (2)

feF lel f through |

objective function constraints
The original problem (1) can be safely be rewritten:

inL(o, \).
max min L, A)

Indeed, if an allocation g is unfeasible, then one of the constraints is violated and
the inner minimization problem is thus minimized by setting the corresponding
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A to +00. Conversely, if o is a feasible allocation, then the inner minimization
problem is minimized by setting the corresponding \; to either 0 when the
constraints are not tight or to any positive value when the constraint is tight.
The objective value is then equal to the original objective function and this
formulation of the primal is thus strictly equivalent to our original problem.
Under very mild assumptions it can be proven that there is no duality gap, i.e.,
that

max min L(p, \) = minmax L(p, \)
030 A>0 AZ0 030

—_———
d(X)

In most cases Uy is chosen to be continuous, increasing and strictly concave and
the dual function d is thus a convex function. Solving the original problem is
equivalent to find the saddle point of L. The main advantage of such reformu-
lation is that now constraints are very simple (¢ > 0 and A > 0) and do not
require any global coordination. Since both concave maximization problem and
convex minimization problems can be solved through gradient descent (see for
example [18], chapter 3, on the convergence analysis of descent algorithms), the
saddle point is generally obtained making a gradient descent simultaneously for
both inner and outer optimization problems. A simple constant step-size (7,)
ascent on the primal variables simultaneous to a constant step-size (y,) descent
on the dual variables leads the following update equations

oL
~—(0(t), A(t))
an (3)

(e A®)

or(t+1) = o05(t) + 7 -
At +1) = N(t) — -
Expanding the partial differentiates, the previous update equations are rewrit-

ten:
or(®) = o5 + 7+ (Uslor®) = > n(b)

L used by f

)\l(t):Al(t)_'YA'(Bl_ > Qf)

f through [

(4)

A; is generally called shadow price for link [ and the previous equations then
lead to a surprisingly simple algorithm that can be interpreted as follows (See
Figure 1):

e Every flow f evaluates the “total price” of the resources it uses (i.e., the
sum of the )\;(t)) and adapts its emission rate to account for both its
utility and the virtual price it should pay. Whenever the price gets “too
expensive”, the flow decrease its emission rate and conversely.

e Every resource [ evaluates whether it is saturated or not and adapts its
price accordingly. Whenever a resource is saturated, it will increase its
price so that the flows going through it decrease their usage and whenever
a resource is underused, it will lower its price so that the flow going through
it can increase their rate.

This “offer-and-demand” inspired algorithm is a simultaneous gradient descent
on both primal and dual variables that will converge to the saddle point, which
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* 1 N s
Q 3 |
& : ——

Figure 1: Distributed sharing algorithm based on Lagrangian optimization and
gradient descent. Flows adapt their rate ¢ based on prices \ advertized by the
network links they use and conversely.

is the optimal solution of the original problem. By adapting the step-size,
or the utility functions, one gets different protocol. Such technique have for
example been used either to design protocols achieving a given fairness criteria
or to reverse-engineer existing protocols. For example, by making an analogy
between the window adjusting protocols and the primal update equations, Low
et al. proved [14] that TCP Vegas achieves some form of proportional fairness,
while first versions of TCP Reno behaved as if utility functions were arctan
based functions.
To sum up, this approach is based on the following three steps:

1. Modeling. Model the problem as a concave non-linear maximization
problem;

2. Partial differentiates. Convert this problem into two coupled optimiza-
tion problems using Lagrangian and compute the partial differentiates of
L with respect to each primal and dual variables;

3. Algorithm design. From the structure of these partial differentiates,
devise a distributed algorithm implementing coupled gradient descent and
ascent.

The key ingredients to turn the partial differentiates into a distributed algo-
rithms (i.e., move from step 2 to step 3) are (1) the separability of objective
function (it is a sum over the flows of quantities that depend only on each flow)
and (2) the structure of the constraints (each constraint can be associated with
a resource).

2.3 Flow Control in Multi-path Network

A similar approach relying on these three steps has been used in the context
of network flows that may choose among a predetermined set of routes [19].
In such a context, each flow f is subdivided into sub-flows fi,...,fr and the
optimal flow control is written as:

max Zfe]—' Ur(Xoy 05.k)
{VZ el Z Ofk < B; (5)

fr going through [
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Wang et al. [19] specifically addressed this problem with the additional con-
straint that each flow has some minimum and maximum requirements: Vf, ms <
0 = 3, 076 < My, As this kind of constraints is not relevant in our context,
for the sake of clarity, we only present in the following, simplified versions of
the equations and algorithms proposed by [19].

Now that the first modeling step is achieved, we can move on to the partial
derivatives step. Using the same technique as previously, a constant step-size
gradient algorithm leads to the following update:

07,k(t) = 0rk(t) + 7 (U}(Qf(t)) - > Az(t))
! used by fi

(6)

A(t) = Ni(t) — - (Bz - Y Qf,k>

fr through [

We can now move on to the algorithm design step. The main difference with
the previous setting is that now each sub-flow f; has its own rate and that
it requires the aggregate throughput of flow f to perform its update. More
concretely, each flow f evaluates the price of each sub-flow f; and updates the
sub-flow rates accordingly, slowly moving toward the cheapest alternatives. .
Unfortunately, a technical issue prevents the previous equations to be used
bluntly. Since the original objective function is not strictly convex (it is strictly
convex in any of the g, but not with respect to the gy ), the dual function
d is not twice differentiable and so, a gradient descent algorithm based on this
approach may oscillate and exhibit convergence instabilities. This problem can
be circumvented by adding a quadratic term, which makes the primal cost func-
tion strictly convex. This technique is called prozimal optimization (see for
example [18], chapter 3) and is used in [19] where two alternative algorithms
are proposed to solve the flow control problem in multi-path networks.
Consider the new modified optimization problem:

%lggrggng: Us <zk: Qf,k) - Z};Zf: %(Qf,k —0rw)’, (7)

where g is an auxiliary variable and c a constant (set to 1 in [19]).

At the optimum, gy, = o, and hence the solution of (7) is the same as the
one of (5). This optimization problem is strictly concave in each variable gy
and ¢, and is equivalent to

in L(3. 0. A
max maxmin L(Z, 0, A), (8)

where any of the minimization and maximization problem is a convex or con-
cave optimization problem of a twice differentiable function. A classical fixed
step-size gradient descent algorithm can be used for each level. Such three-
level resolution would however be extremely inefficient in practice as it would
require to detect a number of times the convergence (in a distributed way) of
the inner problems before further proceeding on the outer problems. This is
why Wang et al. [19] propose to update all variables o, ¢ and A simultaneously,
hence breaking the very constraining three-level hierarchical structure of the
proximal optimization problem from Eq. (8). In essence, this leads to the same
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Figure 2: Four test topologies used to illustrate the behavior of Lagrangian
based flow control algorithms in multi-path networks. s; denotes the source of
a flow and d; the destination. Dotted lines are one particular path that a flow
may use.

equations and algorithm as (6), except that the g act as a smoothing term for
the o variables to dampen oscillations.

Note that Wang et al. do not provide the proof of the convergence of this
algorithm. This was studied in a more recent work of Lin and Schroff [20], in a
similar setting, where the structure of the two outermost optimization problems
is broken. In particular, they prove sufficient conditions on the step-sizes for
the algorithm to converge and also study the impact of measurement noise.

More precisely, let us denote by E ;. the routing vector for sub-flow fi. This
means that E}’k is equal to 1 if route f goes through link [ and O otherwise.
One of the main result of [20] is that the algorithm converges if the step-size 7,
satisfies

(9)

g c where {M = maxg k) Eﬁ‘}k and

< o
AT ols M S =max; 3, 3, B,

More concretely, M is the length of the largest path and S is the largest number
of sub-flows going through a link. Although this problem has been extensively
studied on a theoretical point of view, it is interesting to note that, to the best
of our knowledge, experimental validation of the resulting algorithms is rather
limited. The only tested situations reported in [19, 20] are shown on Figure 2
and involve at most 8 nodes and 3 pairs of sources/destinations. In both studies,
the proposed step-sizes for each setting lead to a satisfactory convergence within
a few dozens to a few hundreds of iterations.

3 Steady-State Scheduling of BoT Applications:
Framework and Models

3.1 Platform Model

Throughout this article, we represent the target computing and communica-
tion resources by a platform graph, i.e., a node-weighted edge-weighted graph
G = (N, E,W, B), as illustrated in Figure 3. Each node P, € N represents a
computing resource that can deliver W,, floating-point operations per second.
Each edge e; ; : (P, — P;) € E is labeled by a value B; ; which represents the
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Figure 3: A resource graph labeled with node (computation) and edge (commu-
nication) weights. Two application deployments with different sources and task
characteristics.

bandwidth between FP; and P;. We assume a linear-cost communication and
computation model. Hence it takes X/B; ; time units to send a message of size
X from P; to P;. For the sake of clarity, we ignore processor-task affinities; in-
stead, we assume that only the number of floating-point operations per second
(W, for processor P,) determines the application execution speed. However,
taking such affinities into account does not change any of the results presented
in this article'.

We assume that all W; are non-negative rational numbers. For any i, W; = 0
means that P; has no computing power but yet, can forward data to other
processors. Similarly, we assume that all B, ; are positive rational numbers (or
equal to 0 if there is no link between P; and P;).

The operation mode of the processors is the full overlap, multi-port model for
both incoming and outgoing communications. In this model, a processor node
can simultaneously receive data from all his neighbors, perform some (indepen-
dent) computation, and send data to all its neighbors at arbitrary rate while
respecting the resource constraints (i.e., the bandwidth and processing speed
bounds). Note that this framework also comprises the bounded multi-port ex-
tension [21] where each node has an additional specific bandwidth bound. This
extension simply amounts to slightly change the graph. However, no specific as-
sumption is made on the interconnection graph, which may well include cycles
and multiple paths.

3.2 Application Model

We consider K applications, Ag, 1 < k < K. Each application originates from
a master node P, that initially holds all the input data necessary for each
application Ay (see Figure 3). Each application is composed of a very large set
of independent, equal-sized tasks. We can think of each Ay as a bag of tasks,

1t simply amounts to replace the latter-to-be-defined application-specific quantities wy, by
wn,k.
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where the tasks are files that require some processing. A task of application
Ay, is called a task of type k and is described by a computational cost wy (a
number floating point operations) and a communication cost by (in bytes) for
the associated files. For sake of simplicity, we assume that the only commu-
nication required is outwards from the master nodes, i.e., that the amount of
data returned by the worker is negligible. Considering inward data would in-
cur only minor modifications to the remaining equations and algorithms. We
further assume that each application Ay is deployed on the platform as a tree.
This assumption is reasonable as this kind of hierarchical deployment is used
by many grid services [22]. Therefore, if an application &k uses node P,, all its
data will use a single path from P,y to P, denoted by (P,x) ~ P,). If no
such path exists or if application & cannot access node n (e.g., for administrative
reasons), then (P, ) ~ P,) is empty. We do not assume that there is a single
way to go from a location to another (which generally does not hold true in
a grid environment). We rather assume that if several ways exist, only one is
actually used.

3.3 Steady-State Scheduling and Fairness

As each application has an unlimited supply of tasks, it should aim at maxi-
mizing its average number of tasks processed per time-unit (the throughput). In
this article, we denote by g, ; the average number of tasks of type k executed
by P, per time unit. It has been shown in [2] that feasible steady-state rates
(i-e., feasible gy, ’s) could be used to derive efficient autonomous and dynamic
schedules. That is why in this article, we only focus on determining such rates
in a fully decentralized way.

We denote by gi the throughput of application k at the steady state: g =
> nen Onk- In this article we focus on proportional fairness (i.e., Uy = log)
as this measure is scale-free? but the algorithms we present can be straight-
forwardly adapted to a-fairness, which accounts for other types of fairness.
Therefore, we aim at finding (onx)1<k<i,1<n<n that solve

max Zk Uk(gk)
(10a) o= onk  (10b) Vn, Y onpwp < W,

n

%
(10c) V(P — Pj)vz Z On. kb < By
(Piﬁlgjiléc(};’:}zifan)

(10)

The first equation (10a) is only introduced for ease of notations. Constraint (10b)
states that the computation capacity of processor n cannot be exceeded. Simi-
larly, constraint (10c) states that the network capacity of link (P, — P;) cannot
be exceeded.

This framework is very general as it does rely neither on the assumption
that all applications originate from the same location nor that all processors are
available to all applications (such restrictions can seamlessly be incorporated in
the previous equations).

21t is insensitive to the units in which throughput is expressed. If an application were
to group into tasks twice as big, the same resource share would result in a twice smaller
throughput. Such scale-free property is highly desirable in our context since throughput is
expressed in tasks of application k per time-unit.
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4 Decentralized Scheduling of BoT Applications

The optimal BoT application scheduling on grid, as described in Section 3 is
very similar to the optimal flow control problem in multi-path routing presented
in Section 2.3. Hence, we can apply the same Lagrangian based technique.

Computing Partial Derivatives Applying the Lagrangian methodology to
this context leads to the introduction of dual variables for both computing
resources (A; for P;) and communication resources (u; ; for (P; — P;)). Again,
the resulting algorithm will be governed by the following dynamic:

Ot 1) = 00,0+ 7, 5o (0(0) 50 0. 1)

Bt 1) = Bl + 75 52 —(0(0). 50 (0. 0) ”
A1) = Al0) = 7+ S (0l0), 20, A0, 1)

s+ 1) = 1y = 500, 20X, (1)

Expanding the partial derivatives for g, ;, we get:

LoV~ (b Y m®rwenm)  2)

0
On.k (P; — Pj) from
m(k) to P,

py (t): aggregate price to use Py

As expected, the aggregate price to use P, accounts for both communication
link usage (the p;;) and CPU usage (the A,). Furthermore, this usage is
weighted by communication (b;) and computation (wg) requirements of ap-
plication k. Again, updating o, 1 requires the knowledge of gy, which is the
aggregate throughput of application k.

Expanding partial derivatives with respect to other variables is straightfor-
ward and does not bring particular insight so we do not detail them here. They
lead to update equations analogous to Equation (6): as soon as the capacity of
a resource is exceeded, its price increases and vice-versa.

Distributed Algorithm Design In grids, the master-worker pairs are anal-
ogous to routes in the flow control problem, and applications are analogous to
connections. Compared to the flow control problem, there is thus a huge number
of “routes” and a very few “sources.”, which may have some important impact
on the convergence rate.

Last, a subsequent difference lies in the decision points. While in networking
context, sources adapt and choose their transmission rate, in grids, we would
like the intermediate nodes (between a master and each of its worker) to ad-
just the rates, so as to prevent overloading the master. Hence the prototype
“source” algorithm we proposed in [23] was based on a decentralized aggregation
of various quantities, which we detail here.

Using this particular structure, we propose to implement this dynamic using
classical traversal algorithms [24] initiated by the master of each application:
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e Each node P, is responsible for primal variables g, ; and g, i, while the
master nodes are responsible for the aggregation g of the o, . Each
resource (CPU or link) is responsible for its dual variable (A, or p; ;).

e Each root propagates its aggregate throughput gy along the tree. During
the propagation, the aggregate price for sending data from the master is
computed. Therefore, upon reception, each node has all required informa-
tion to update its contribution g, ; to application k. Upon reception, the
leaves of the tree send back their g, j, up-tree, which are in turn aggregated
up to the master.

Similarly to the original algorithm of [19], there is no need for any global
information, such as the number or the kind of nodes that are in the grid. Nodes
only need to communicate with their neighbors and to update the few variables
they are responsible for. The wave algorithms seamlessly aggregate all required
quantities with no direct interaction among the different applications.

Furthermore, the resulting algorithm only requires very simple computations
and small communications. Last, this algorithm seamlessly adapts to variations
of W; of B; ; and to the arrival or departure of new nodes and applications.

Convergence Issues The previous algorithm converges to the optimal solu-
tion when provided with an adequate choice of vx,7,,7,, and 7z, a recurrent
problem in gradient based algorithms. Even though the results by Lin and
Schroff [20] do not provide any insight on the convergence speed, condition (9)
implies that the step-size should be much smaller in the steady-state scheduling
context than in the multi-path flow-control problem. Indeed, in the flow-control
problem, the vector F is a 0 — 1 vector whereas in our context, its values are the
wg and the by, that are much larger. The step-size should be at least inversely
proportional to M - L, where

L = maxy, (bk. (maxn | (P (i) ~ Pn)|) + wk) and

M (S g, Pt

Now, although M and S have less obvious interpretation, one sees that they
account for by and wy and that step sizes should thus be significantly small,
which may impact convergence speed.

As we previously mentioned, although very promising, experimental studies
of these algorithms reported in the literature are rather limited. Our initial
evaluation in [23], although limited revealed that even in very simple settings,
finding satisfactory step-sizes seemed sometimes impossible and that non trivial
adaptation of Equation (12) were required. This is why we devote the rest of
this article to demonstrate that application heterogeneity is the source of the
difficulty, to explain how step-sizes should be tuned and how updates should be
performed to be effective in a wide variety of scenarios.

5 Performance Evaluation of the Naive Algorithm

In this Section, we evaluate the algorithm proposed in Section 4 when using
exactly Equation (11). We call such algorithm the “naive algorithm” as it is a
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Figure 4: Sample platform with N = 20 nodes and maximum degree d,,q; = 5.
The area of squares (resp. diamonds) is proportional to the capacity of the
nodes (resp. links).

straightforward application of [19]. We evaluate our algorithm using the Sim-
GRID simulation toolkit [25]. All our codes, scripts and experiment results are
available at http://mescal.imag.fr/membres/arnaud.legrand/distla_2012/.

5.1 Platform Generation

The platforms used for the experiments are random trees described by two
parameters: the number of nodes n and the maximum degree of each node
dmaz- The interconnection network topologies are generated using a breadth-
first algorithm in order to generate wider (rather than deep and narrow) trees.
Figure 4 shows a sample platform with 20 nodes and a maximum node degree
of 5. Computational speeds are uniformly chosen in the range [2, 10)|GFLOP/s,
while link capacity is chosen in the range 110kB/s — 7 MB/s.

5.2 Applications

To evaluate the applicability of our distributed scheduling algorithm, we use
three different types of applications, to which the algorithm has to allocate
resources efficiently and fairly. As stated above, we carefully designed the al-
gorithm to cope with network-bound applications. Thus, it is important to
define application types that exhibit different CCRs. The following three types
of applications have been used for the experiments:

A CPU-bound application Each task performs a multiplication of two
squared matrices of size t = 3500. The size of the tasks are hence b; = 8x2xt? =
196 MB. The amount of work required is roughly w; = 3 = 42,875 MFLOP.
Then, its communication to computation ratio (CCR) is ¢; = by /wy = 4.57 -
1073,
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A network-bound application The tasks of that application implement the
addition of two squared matrices of size ¢. Therefore, the size of each task is
by = 196 MB and their processing requirements are wy = t2> = 12.25 MFLOP.
This results in a relatively large CCR of ¢o = by/wy = 16.

An intermediate application A task of this application sorts a vector of
t’ = 1,000,000 double elements (8 bytes). Hence, all tasks are of size b3 = 8 MB
and their processing requirements are ws = t' - log(t') = 13.81 MFLOP. The
CCR of this application is c3 = 0.58.

Note that the CCR, of such applications is much larger than for those which
are typically encountered in BOINC projects [3]. They are therefore more diffi-
cult to schedule. For the experiments, the master of each application is chosen
randomly, but no two applications are emitted from the same host. Although
the previous computation of b and w is very crude and quite unrealistic for the
aforementioned applications, it enables to span a rather difficult set of scenario.

5.3 Validating Results

Determining convergence of iterative algorithms is generally not easy. Fortu-
nately, it has been shown that the problem of finding a fair allocation of re-
sources subject to linear constraints can be expressed in an SDP (Semi-Definite
Programming) program [26]. Therefore, in the experiments, we test the con-
vergence of our algorithm by comparing the computed objective value to the
response of the DSDP solver [27]. Since the SDP program can be solved in
polynomial time, it provides a quick and reliable, yet centralized, validation of
our numerical results.

5.4 Convergence

In the following, we consider convergence in terms of value of the objective
function, as it represents the fairness and efficiency of the solution. Suppose
that at time epoch t, the objective value is at 95% of the optimal. Then, this
means that the allocation is Pareto efficient (one cannot increase the throughput
of an application without needing to decrease another one), and fair (as values
of the throughput are relatively close to each others, in accordance with the
measure of the objective function). Yet, while the points may be close to the
optimal ones, in terms of the objective function, they may be arbitrarily far
away in the original ones (i.e., in the g, space).

As described earlier, the convergence of our algorithm is determined by com-
paring the current objective value of our algorithm to the value of the SDP
solver. Since our objective function is a sum of logarithms, we consider the so-
lution to have converged with a precision of 0 < z < 1 if the objective value lies
within the interval [0bjop: + log(z), 0bjope — log(x)], where 0bjop: is the optimal
solution obtained by SDP. However, while performing the gradient descent, os-
cillations may occur. So, the objective value may lie within the correct interval
in iteration v but not in iteration v 4+ 1. For that reason, we run the algorithm
for a maximum number of iterations v,,q, and check if the objective value of
our algorithm is within the computed bounds around the optimal SDP value for
the last vepecr iterations. For all the experiments, we use a precision of x = 0.85
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(85%) and we consider the algorithm to have converged if the objective value
remains within bounds for the last v.pecr = 100 iterations.

5.5 Results for Homogeneous Applications

To assess the convergence of our algorithm, we start with experiments using
an homogeneous (in term of CCR) set of three applications (three intermediate
applications, i.e., w = 13.81 x 10 and b = 8 x 10°). For each experiment, we
randomly select the master node of each application on a given platform.

To assess the convergence of our algorithm, we have started with experiments
using three homogeneous applications in terms of CCR. For each experiment,
we randomly selected the master node of each application on a given platform.
We have used a set of three intermediate applications (w = 13.81 x 10° and
b =8 x 10%) for conducting the experiments.

5.5.1 Small platforms

For this first experiment, we use three different platform sizes: 5 nodes, 10 nodes,
and 20 nodes. Since the shape of the platform depends on the degree of each
node, we vary the degree for these platforms and generate 9 random platforms:
three for N = 5 nodes and maximum degree d,,q, = 3; three for N = 10 with
dmaz € {3,5,7}; and three for N = 20 with dp.. € {5,10,20}. Through an
extensive search, we find a set of parameters for which our distributed algorithm
converges for the given homogeneous applications on all experimental platforms.
These parameters are: v, = 0.01, v = 0.1, 7, = 1 X 10714, Y =1X 10~4. For
this set of parameters our algorithm converges within the first 200 iterations,
i.e., the objective value enters the tube centered around the SDP value after at
most 200 iterations and remains in this tube until iteration 1,500 where we stop
the simulation.

These results confirm that the algorithm converges for homogeneous appli-
cations, similar to the simulations conducted by Wang et al. [19]. Nonetheless,
we have seen in this experiment that the convergence is rather sensitive to the
chosen parameters. Exhaustive search is rather tedious and is not likely to work
when exploring larger sets of platforms. Furthermore, such an approach does
not give any statistical information about the sensibility to platform configura-
tion or algorithm parameters. For that reason, we rely on factorial designs for
the experiments on bigger platforms [28].

5.5.2 Coefficient of variation

Considering only the final convergence as metric for the experiments leads to
only one categorical variable of binary value “converged” or “not converged”. Sta-
tistical analysis of the results, e.g., by using an analysis of variance (ANOVA)
can be misleading for categorical data [29]. Furthermore, stating whether the
algorithm has already converged depends on the computation of the optimal
value with the SDP solver that exhibited severe scalability and numerical sta-
bility issues in the experiments we conducted®. In order to be less dependent of
the SDP value and still gain insights on how well the gradient descent works, we

3Note that this is problably not due to the solver in itself but rather to the encoding into
an SDP program that was directly inspired from [26] and may have been better conditionned.
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Figure 5: Experimental results for homogeneous applications with platforms of
N =20 and dyq2 = 5.

Table 1: Overview of factor levels for factorial experiments with the homoge-
neous applications.

N dmaz Yo Yo Vu a2
#platforms nodes degree low  high low  high low high low high  nb converged
30 20 5 0.001 0.1 0.001 0.1 1E-15 1E-13 1E-15 1E-13 28 / 30
30 20 15 0.001 0.1 0.001 0.1 1E-15 1E-13 1E-15 1E-13 29 / 30
30 40 5 0.001 0.1 0.001 0.1 1E-15 1E-13 1E-15 1E-13 27 / 30
30 100 5 0.001 0.1 0.001 0.1 1E-15 1E-13 1E-15 1E-13 24 / 30

use the coefficient of variation ¢, (¢, = SD(z)/M EAN (z), where z is the vector
of objective values of the last v iterations) to assess whether the objective value
is oscillating or not.

It is important to note that a small value of ¢, does not mean that the
algorithm has already reached the optimal value. It may be far from the optimal
solution but converge very slowly. Generally speaking, small values of ¢, and a
non-optimal solution reflects that step sizes are too small to let the algorithm
converge within the defined maximum number of iterations.

5.5.3 Large platforms

Since we already have a set of parameters that works for small platforms, we
base the initial range of values for our factorial design on these values. Figure 5
summarizes the results of the factorial experiment using 30 platforms with N =
20 nodes and d,qr = 5.

This summary becomes very useful when seeking a good set of parameters
for a given platform size. The ANOVA is computed using a linear combination
of all factors while the coefficient of variation ¢, is used as response variable.
The term “factor ¢” (resp. o, A, pt) is used instead of “factor v,” (resp. vz, Ya, V)
when there is no ambiguity. The ANOVA table reveals which factor has a real
effect on the response. In Figure 5, the factor p is the most influencing factor
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with a high significance (p value is smaller than 0.0001). This effect can also
be seen in Figure 5(b) as the average ¢, value is much lower if ¢ is set to its
low value (—1). This information can be used to select good step sizes for
each variable. Yet, one must be careful about the significance results for each
factor as well as about possible interactions between parameters. In the present
experiment, one could try to reduce further the step size of g since it is the most
significant factor. It may however negatively affect the convergence rate. A and
w1 have limited impact and can thus a priori be arbitrarily chosen in the range
[1x10713,1 x 1071%]. Note that it can be very hard to draw such conclusions in
presence of strong interactions between variables and that further investigations
would be required.

By using the parameter set 7, = 0.001, 7z = 0.001, 7, = 1 x 10713,
v, = 1 x 10715, the algorithm converges on 28 platforms out of 30 and the
corresponding convergence time distribution is given in Figure 5(d). When in-
vestigating the remaining two platforms, we observe that 1,500 iterations are
simply not enough and the algorithm requires a few extra hundreds of iterations
to converge. Further tuning of step sizes could be done using such technique but
our goal here is mainly to illustrate how factorial design and ANOVA can help
to quickly get some sound analysis of the effects of our algorithm’s parameters
on convergence. It is important to recall that this approach is not about finding
the best possible step sizes for a particular platform but rather to find step sizes
that are effective in a wide range of settings.

Table 1 shows an overview of values that have been used for conducting the
factorial experiments, where each row specifies the factor levels for a particular
platform size. The best combination of factor levels we obtain for each platform
size is marked in bold, while the last column holds the number of experiments
that have converged in less than 1500 iterations for these best factor levels.

In summary, the factorial design of the experiments can help us to find
the correct step sizes that enable the algorithm to converge. The levels of
each factor, reported in Table 1, did not have to be modified throughout the
experiments for different platform sizes even though the best levels for a platform
size have changed.

5.6 Results for Heterogeneous Applications

Since the naive algorithm has proved to be effective in the case of homogeneous
applications for a wide range of platforms, we now evaluate the case of heteroge-
neous applications. In this experiment, three different applications (one instance
from each of the three application types that have been defined in Section 5.2)
emit tasks to the distributed platform. Again, we use a factorial design for the
experiment and start with 30 platforms of 20 nodes and a maximum degree of
5.

The summary of the experimental results is shown in Figure 6. In this
experiment, we use the parameters that worked well in the homogeneous case.
However, in contrast to the homogeneous case, the algorithm fails converge in
any of the 480 experiments. We can also see that g is the only factor which is not
highly significant. It is thus very hard to conclude anything from the ANOVA
since there are many significant interactions between all factors. Although, the
main effects plot suggests to decrease g and to increase A, there is a significant
interaction between these two and changing the levels does in such a way may
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Figure 6: Experimental results for heterogeneous applications of N = 20 nodes
and d,q0 = 5.

not be effective for decreasing coefficient of variation. Additionally, no factor
reduces the ¢, to value of less than 7, which was found to be a rather large value
for allowing convergence in the homogeneous case.

Nonetheless, we decrease the levels of g, u and A according to the resulting
main effects and rerun the factorial analysis. The values for ¢ remain identical
as this factor was insignificant in the previous ANOVA. As expected, the results
of the successive factorial experiment are disappointing. Again, our distributed
algorithm fails to converge in any of the 480 experiments. Worse, the average
coefficient of variance increased for each factor level. In addition, all factors (ex-
cept p) and basically all interactions showed a significant difference in variance
in the corresponding ANOVA table. The following conclusions can be drawn
from these results:

1. The naive version of the distributed algorithm fails to converge for a het-
erogeneous set of applications. More precisely, despite our efforts, we
cannot find a set of parameters that enables the algorithm to converge for
several platforms as seen in the homogeneous case.

2. There might be a set of parameters for which the algorithm converges for
a given platform, but this set seems very hard to be determine. Hence, for
very simple platforms, we tried several extensive search but always failed to
find satisfactory step sizes. Either the algorithm is highly unstable or it is
so slow that it fails getting close to the optimal. More precisely, in several
case, the objective value is very low, increases very slowly and brutally
moves very far away, hence taking a very long time before stabilizing
again. The system behaves just as if there was a huge instability zone
around the optimal value, which prevents any convergence.

Thus, we show in the next section how the algorithm can be adapted to enable
convergence for heterogeneous sets of applications.
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6 Recipes for Convergence

As demonstrated in the previous section, an algorithm using naively update
equations (11) is ineffective in a heterogeneous application setting. This issue
was already identified on a very specific example in [23], but application het-
erogeneity had not been identified as the explicative factor. Through a detailed
analysis of several particular cases, we have been able to identify several sources
of instability or of slow convergence. In this section, we detail and justify several
modifications that need to be done to update equations (11) to eliminate these
issues. Our experience indicates that the combination of all these modifications
is required to obtain an efficient algorithm but we have not evaluated their re-
spective impact. Such a study would be interesting but is beyond the scope of
this article.

6.1 Avoiding Division by Zero

As explained in Section 3.3, a reasonable choice for Uy, is the logarithm function.

Yet, when substituting this into the update equations* for On,k, We get a term
1.
oK "

ot 1) 0nik(®) + 7, (gl%(t) —p}g(t)),

where pj(t) is the aggregate cost that application k should “pay” for using
resource n. Unfortunately, although in the optimal solution g > 0, during
convergence, one of the g may drop to zero or to very small values. A small
value of ¢ leads to huge updates and thus to severe oscillations. As mentioned
in [19], it is perfectly valid to normalize this update as follows:

Qn,k’(t + 1) — Qn,k’(t) + Yo (1 - Qk(t) : PZ(t)) (13)

Such rescaling is very classical and already implemented in the naive algorithm.
It is thus completely ineffective in a fully heterogeneous context.

6.2 Fast Convergence of the Primal

As we have previously seen, constant step-size gradient descent on a convex func-
tion F is done by repeating the following updates: x(t+1) + x(t) —yVF (z(t)).
It is well known that Newton algorithm has much faster convergence than simple
gradient projection algorithm. In Newton’s algorithm, the updates are as fol-
lows: z(t+1) < x(t)—y (VEF(z(t))) - -VF(z(t)). Inverting the Hessian matrix
V2F(x(t)) is however very time consuming, which is why approzimate Newton
methods are often used [18]. In such methods, the V?F (z(t)) matrix is often re-
placed by a simpler matrix (like its diagonal), whose inversion is straightforward
and still has the right order of magnitude. Computing the Hessian matrix for
our particular problem leads to a non-invertible matrix because of the non-strict
convexity of our initial objective function. Considering only diagonal elements,
we get a new scaling that replaces Equation (13):

Onk(t+1) 4= 0nk(t) +70 (1= 0 (t) - pi (1)) 0k (D). (14)

4We always omit the term in g for sake of readability.
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Unfortunately, again, even with very small step sizes to prevent oscillations,
this technique (alone) revealed ineffective to improve convergence in our exper-
iments.

6.3 Stability Condition Around the Equilibrium

Our experiments in [23] and in Section 5.6 showed that this inability to converge
was due to a strong instability nearby the equilibrium. Such instability is due
to the fact that updating ¢ has an impact on the prices A and u, which in turn
impact on the p’s update. The second update of ¢ should have the same order
of magnitude (or be smaller) as the first one to avoid numerical instabilities that
prevent convergence of the algorithm.

Therefore, in [23], using a natural stability condition, we have proposed the
following scaling on dual variables®:

Zk kan,k(t) - Wz
Zk s.t. 0n, k>0 w}%Q% (t)
2k broi(t) — Bij

+Vu
i b2 2 +
X, praia b (1)

and 9n x>0
Note that this scaling does not require any additional aggregation as all pro-

cessors already receive gy to perform the update of ¢ (Equation (13)). When a
node does not participate to any computation or when a link does not convey
any data, the denominator is equal to zero and the previous updates are thus
not well-defined. We need an update for the case where this situation occurs.

Nt +1)  X(E) + 7 (15)

tii (E+ 1) < pui 5 () (16)

6.4 Avoid Division by Very Small Values and Discontinu-
ities

Something important on which we have not insisted yet is that every variable
needs to remain positive. Hence, in any such distributed gradient algorithm, if
any update steps leads to a negative variable, the variable is set to 0. This kind
of projection is done with the operator [z(t) + u]t = max(0,z(t) + u) and is
applied to every variable (both primal and dual). It is typical of such methods
but raises several issues in our context. Indeed, it may be the case from an
iteration to another that a denominator experiences a very important variation,
which may cause a brutal negative step. Whenever many dual (resp. primal)
variables suddenly drop to 0, it generally causes a large increase of the primal
(resp. dual) variables. This is why these projections need to be smoothed.
We used the following smooth projection operator, which revealed extremely
efficient:

[2(t) +u]*" = max(a - z(t), z(t) + u), with 0 < o < 1

With such updates, variables never suddenly drop to 0. Instead, variables geo-
metrically decrease to zero, until the corresponding resource is used again. In
our experiments, we set a to 1/2.

The final version of the update equations we obtain for our adaptive algo-
rithm is summarized in Figure 7.

5Equations in [23] did not take the Newton updates on primal variables and were thus
slightly different.
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Figure 7: Update formulas for the adaptive algorithm

7 Performance Evaluation of the Adaptive Algo-
rithm

In this section, we assess the convergence quality of our new iterative algorithm
on a wide variety of platforms.

7.1 Platforms and Applications

We select the same platforms as the ones we used for evaluating the homoge-
neous case, i.e., platforms of size 20, 40, and 100. Additionally, we also include
platforms with 500 nodes and a maximum degree of 15. We have tested the
same heterogeneous set of applications as for the experiments with the naive
version of the algorithm. So, three applications (CPU-bound, network- bound,
intermediate) are randomly placed on a host and emit their tasks from this host.
We also ensure that applications roots are not too far away from each other and
that they actually interfere even when platform size increases.

7.2 Results for Heterogeneous Applications

We started our evaluation with 30 platforms of 20 nodes and a maximum degree
dmaz = 5. Since the update formulas differ drastically from the ones use in the
naive version , we cannot use the same parameter ranges. Hence, we select
one platform and perform an initial scan over a wide range of parameters to
find suitable values for each factor. This scan suggests to conduct a factorial
experiment with the following values: ¢ = (0.05,0.15), ¢ = (0.05,0.15), A =
(0.7,1.3), = (0.7,1.3). The first entry of the vector denotes the smaller level
of each factor. Performing an ANOVA on the results enables to determine a set
of parameters that lead our algorithm to converge on 24 out of 30 platforms.

The best values are shown on the first line of Table 2.

Table 2: Good step sizes for different platform characteristics for heterogeneous

applications.
nodes degree o 0 A © nb converged
20 5 0.05 005 1.3 0.7 24 / 30
20 15 0.01 0.15 0.7 1.3 30 / 30
40 5 0.01 0.06 13 0.7 28 / 30
100 5 0.01 0.06 0.7 0.7 27 / 30
500 15 0.002 0.05 0.7 0.7 29 / 30

Unfortunately, when testing these factor levels on platforms with 40 nodes
and dyne = 5, these values are found to be ineffective (the algorithm converges
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Figure 8: Experimental results for heterogeneous applications and the adapted
algorithm on platforms of N = 500 nodes and d,,q, = 15.

in only 7 out of the total 480 experiments). However, the ANOVA reveals that
that o is the most significant factor and should be decreased. Thus, we adjust
the values for p and run another series of experiments with the following factor
levels: ¢ = (0.01,0.05), ¢ = (0.05,0.15), A = (0.7,1.3), » = (0.7,1.3). The
analysis shows that o is again the most significant factor to achieve a small
coefficient of variation (¢,) and that the other parameters have little influence.
Indeed, when g is set to 0.01, the algorithm converges in 232 of 240 cases.

We conduct further experiments with platforms that are composed of 100
nodes (dmqe = 5) and of 20 nodes (dmqez = 15). We use the same adjusted
factor levels that have shown a good convergence quality for 40 nodes. For both
experiments, the factor ¢ is the most significant one and needs to be set to its
lower value. The best step sizes are also shown in Table 2.

As final experiment, we assess the convergence quality of our algorithm for
platforms with 500 nodes and a maximum degree of 15. For these tests, we start
again with the factor levels that have been used for platforms of size 40-100,
which are ¢ = (0.01,0.05), ¢ = (0.05,0.15), A = (0.7,1.3), u = (0.7,1.3). When
running the experiments, we quickly notice after 40 tests that our algorithm
does not converge and that the coefficient of variation is very large. This sug-
gests that our step sizes are too big. Since we have not recorded enough data
to conduct an ANOVA, we simply check the distribution of ¢, values for the
different values of ¢ = (0.01,0.05). By comparing the histograms, one can see
that the ¢, values are smaller on average for the smaller value of ¢. Hence, we
decrease the levels of p and conduct the experiments again with these levels:
o0 = (0.001,0.01), ¢ = (0.05,0.15), A = (0.7,1.3), u = (0.7,1.3). Again, we inter-
actively evaluated the experimental results and stopped the factorial experiment
after roughly 170 experiments as many experiments failed to converge. On the
data gathered we run an ANOVA and discover that o is again the most signif-
icant factor and should be further decreased. Therefore, we lower the levels of
o once again to (0.0001,0.001) and rerun the factorial experiment. Now, the
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algorithm produces very small values of ¢, but again, we never converge within
the maximum number of iterations (1500). So, as ¢ was already to set to a
small and stable value, we increase the range of ¢ and decrease the range for all
other parameters to avoid oscillation. We run a final factorial experiments with
the following factor levels: ¢ = (0.001,0.002), ¢ = (0.01,0.05), A = (0.1,0.7),
@ = (0.1,0.7). The experimental results are analyzed in Figure 8, which leads
us to a set of parameters for which the algorithm converges on 29 out of 30 plat-
forms. Unsurprisingly, the factor ¢ was not significant anymore for obtaining a
small ¢, as both levels are very close to each other.

Interestingly, the number of iterations required to converge seems to be in-
dependent on the size of the platform (as can be observed by comparing Fig-
ure 8(d) and Figure 5(d)). Starting arbitrarily far from the optimal solution,
the expected number of steps should thus be smaller than 800. A 500 node
platform with d,,,,; = 15 has a diameter of roughly 10 and thus the expected
convergence time would be of a dozen of minutes (assuming a 50ms RTT be-
tween machines). Such convergence time is linear in the number of steps and
logarithmic in the platform size. It could certainly be further improved by a
better tuning of step sizes and using asynchronous steps.

8 Conclusion

In this article, we have shown the links between communication-bound BoT
scheduling in grid platforms with flow control in multi-path networks. La-
grangian optimization and distributed gradient have been extensively used in
the latter context and are therefore a very natural technique for the former.
Surprisingly, it turns out that although both problems are very similar on a
theoretical point of view, the heterogeneity of BoT makes the BoT scheduling
problem significantly harder in practice than the flow control problem. For-
tunately, we have been able to propose a set of adaptations that lead to an
effective fully distributed algorithm for fairly sharing resources between BoT
applications. We have evaluated the effectiveness of our algorithm through a
set of carefully designed experiments that enable to discriminate real trends from
noise introduced by the randomness of the platform. The algorithm is shown
to converge in reasonable time even for very large and complex heterogeneous
platforms.

Although we propose a (centralized) technique for finding robust step sizes,
it turns out that they seem to be dependent on the order of magnitude of the
platform characteristics and size (some of them seem to be roughly inversely
proportional to platform size) as well as on the order of magnitude of the BoT
characteristics and number. The coefficient of variation seems to be a good
indicator of convergence and stability and may be used to control step sizes in
a real implementation.

References

[1] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Steady-State
Scheduling on Heterogeneous Clusters: Why and How?” in Proceedings of

RR n°® 7745



Multiple Bag-of-tasks Application Scheduling on Grids 25

the 6th Workshop on Advances in Parallel and Distributed Computational
Models (APDCM 2004), 2004.

[2] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, and
Y. Robert, “Centralized Versus Distributed Schedulers Multiple Bag-of-
Tasks Applications,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 19, no. 5, pp. 698-709, May 2008.

[3] “Berkeley Open Infrastructure for Network Computing,” http://boinc.
berkeley.edu.

[4] D. P. Anderson, “BOINC: A System for Public-Resource Computing and
Storage,” in Proceedings of the 5th IEEE/ACM Intl. Workshop on Grid
Computing, 2004.

[5] A. Legrand and C. Touati, “Non-Cooperative Scheduling of Multiple Bag-
of-Task Appplications,” in Proceedings of the 25th Conference on Computer
Commaunications (INFOCOM’07), Alaska, USA, May 2007.

[6] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauvé,
F. A. B. da Silva, C. O. Barros, and C. Silveira, “Running Bag-of-Tasks
Applications on Computational Grids: The MyGrid Approach,” in ICCP,
Oct. 2003.

[7] “Large Hadron Collider Computing Grid,” http://lcg.web.cern.ch/LCG/.

[8] H. Casanova and F. Berman, “Parameter Sweeps on the Grid with APST,”
in Grid Computing: Making the Global Infrastructure a Reality, G. F.
Fran Berman and T. Hey, Eds. John Wiley & Sons, 2003, ch. 33.

[9] D. Abramson, J. Giddy, and L. Kotler, “High Performance Parametric
Modeling with Nimrod/G: Killer Application for the Global Grid?” in
Proceedings of the 14th International Parallel and Distributed Processing
Symposium (IPDPS 2000), 2000, pp. 520-528.

[10] M. Litzkow, M. Livny, and M. Mutka, “Condor: A Hunter of Idle Work-
stations,” in Proceedings of the 8th International Conference on Distributed
Computing Systems (ICDCS’88), 1988, pp. 104-111.

[11] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics for
Scheduling Parameter Sweep Applications in Grid Environments,” in Pro-
ceedings of the 9th Heterogeneous Computing Workshop (HCW’00), 2000,
pp. 349-363.

[12] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bol6ni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F.
Freund, “A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems,”
Journal of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810-837,
2001.

[13] D. Kondo, A. Chien, and H. Casanova, “Resource Management for Short-
Lived Applications on Enterprise Desktop Grids,” in Proceedings of the
SuperComputing 2004 (SC’°04), 2004.

[14] S. Low, “A Duality Model of TCP and Queue Management Algorithms,”
IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 525-536, 2003.

[15] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication net-
works: shadow prices, proportional fairness and stability,” Journal of the
Operational Research Society, vol. 49, pp. 237-252, 1998.

[16] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,”
IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 556-567, Oct.
2000.

RR n°® 7745



Multiple Bag-of-tasks Application Scheduling on Grids 26

[17] D. P. Bertsekas and R. Gallager., Data Networks. Prentice-Hall, 1992.

[18] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall, 1989.

[19] W.-H. Wang, M. Palaniswami, and S. Low, “Optimal Flow Control and
Routing in Multi-path Networks,” Performance Evaluation, vol. 52, pp.
119-132, 2003.

[20] X. Lin and N. B. Shroff, “Utility Maximization for Communication Net-
works With Multipath Routing,” IEEE Transactions on Automatic Con-
trol, vol. 51, no. 5, pp. 766-781, 2006.

[21] B. Hong and V. K. Prasanna, “Adaptive Allocation of Independent Tasks
to Maximize Throughput,” IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 10, pp. 1420-1435, Oct. 2007.

[22] E. Caron and F. Desprez, “DIET: A Scalable Toolbox to Build Network
Enabled Servers on the Grid,” International Journal of High Performance
Computing Applications, vol. 20, no. 3, pp. 335-352, 2006.

[23] R. Bertin, A. Legrand, and C. Touati, “Toward a Fully Decentralized Al-
gorithm for Multiple Bag-of-tasks Application Scheduling on Grids,” in
Proceedings of the 9th IEEE/ACM International Conference on Grid Com-
puting (Grid 2008), 2008.

[24] G. Tel, Introduction to Distributed Algorithms, 2nd ed. New York, NY,
USA: Cambridge University Press, 2001.

[25] A. Legrand, M. Quinson, K. Fujiwara, and H. Casanova, “The SimGrid
Project - Simulation and Deployment of Distributed Applications,” in Pro-
ceedings of the 15th IEEE International Symposium on High Performance
Distributed Computing (HPDC-15), 2006, pp. 385-386.

[26] C. Touati, E. Altman, and J. Galtier, “Generalized Nash Bargaining Solu-
tion for Bandwidth Allocation,” Computer Networks, vol. 50, no. 17, pp.
3242-3263, Dec. 2006.

[27] S. J. Benson and Y. Ye, “DSDP5: Software For Semidefinite
Programming,” Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL, Tech. Rep. ANL/MCS-P1289-0905,
Sep. 2005. [Online]. Available: http://www.mcs.anl.gov/ benson/dsdp

[28] D. C. Montgomery, Design and Analysis of Ezperiments. John Wiley &
Sons, Aug. 2005.

[29] T. F. Jaeger, “Categorical Data Analysis: Away from ANOVAs (transfor-
mation or not) and towards Logit Mixed Models,” Journal of Memory and
Language, vol. 59, no. 4, pp. 434-446, February 2008.

RR n°® 7745



/<

Centre de recherche INRIA Grenoble — Rhone-Alpes
655, avenue de 1’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux — Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille — Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’ Ascq
Centre de recherche INRIA Nancy — Grand Est : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-Nancy Cedex
Centre de recherche INRIA Paris — Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes — Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex
Centre de recherche INRIA Saclay — ile-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis — Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399



