Joint T1 and Brain Fiber Diffeomorphic Registration Using the Demons

Abstract : Non-linear image registration is one of the most challenging task in medical image analysis. In this work, we propose an extension of the well-established diffeomorphic Demons registration algorithm to take into account geometric constraints. Combining the deformation field induced by the image and the geometry, we define a mathematically sound framework to jointly register images and geometric descriptors such as fibers or sulcal lines. We demonstrate this framework by registering simultaneously T 1 images and 50 fiber bundles consistently extracted in 12 subjects. Results show the improvement of fibers alignment while maintaining, and sometimes improving image registration. Further comparisons with non-linear T 1 and tensor registration demonstrate the superiority of the Geometric Demons over their purely iconic counterparts.
Type de document :
Communication dans un congrès
Liu, Tianming and Shen, Dinggang and Ibanez, Luis and Tao, Xiaodong. Multimodal Brain Image Analysis First International Workshop, MBIA 2011, Held in Conjunction with MICCAI 2011, Sep 2011, Toronto, Canada. Springer Berlin / Heidelberg, 7012, pp.10-18, 2011, Lecture Notes in Computer Science. 〈10.1007/978-3-642-24446-9_2〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00627971
Contributeur : Viviana Siless <>
Soumis le : vendredi 30 septembre 2011 - 09:37:48
Dernière modification le : vendredi 22 juin 2018 - 01:20:34
Document(s) archivé(s) le : samedi 31 décembre 2011 - 02:23:13

Identifiants

Citation

Viviana Siless, Pamela Guevara, Xavier Pennec, Pierre Fillard. Joint T1 and Brain Fiber Diffeomorphic Registration Using the Demons. Liu, Tianming and Shen, Dinggang and Ibanez, Luis and Tao, Xiaodong. Multimodal Brain Image Analysis First International Workshop, MBIA 2011, Held in Conjunction with MICCAI 2011, Sep 2011, Toronto, Canada. Springer Berlin / Heidelberg, 7012, pp.10-18, 2011, Lecture Notes in Computer Science. 〈10.1007/978-3-642-24446-9_2〉. 〈inria-00627971〉

Partager

Métriques

Consultations de la notice

385

Téléchargements de fichiers

402