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Abstract—IOLTS (input output labeled transition system) is
a versatile model and is frequently used in model based testing
to model the functional behavior of an IUT (implementation
under test). However when a system is tested remotely, its
observed behavior can be different from its actual functional
behavior. In [2], we defined a notion of remotely observed
behavior of an IOLTS in terms of its actual behavior. This
paper contributes by proposing a methodology to simulate a
PDA (push down automaton) from the given IOLTS such that
the simulated PDA precisely expresses the remotely observed
behavior of the IOLTS. The simulated PDA can be thought of
as an automatic test generator for remote testing.
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I. I NTRODUCTION

Most of the reactive systems are safety critical, thus it
is vital to test them before their deployment. Testing in its
most basic form comprises two steps. In the first step the
tester simulates the IUT with some inputs and observes the
response of the IUT. Next, the tester appraises the response
of the IUT vis-a-vis the given specification.

In model based testing, first of all a model is created for
the IUT , and then test generation is carried out based on
this model. There are primarily two advantages to model
based testing. One, a model serves as a unifying point of
reference for everyone involved in the project. Two, most
of the models have rich underlying theory, which makes the
IUT amenable to formal analysis.

IOLTS is one such model which is commonly used to
depict the functional behavior of an IUT. We consider a case
wherein the functional behavior represented by an IOLTS is
observed remotely through a pair of FIFO queues— input
queue and the output queue. What makes the remotely
observed behavior different from the actual behavior is the
fact that the two queues are presumably disjoint, and there-
fore the actions through them can be observed in an order
different from the one in which they actually happened. To
this end, in [2] we formulated a notion of remotely observed
behavior of a given IOLTS. Further in [1], we proved that the
remote behavior of an IOLTS can be captured by a context
free grammar. Based on the well-known result from the
theory of formal languages that any language expressed by a
context free grammar can also be automatically generated by

a push-down automaton (PDA) [3], this paper contributes by
proposing a methodology to simulate a PDA from the given
IOLTS. The simulated PDA can generate test cases required
to test the IOLTS remotely.

The paper is organised as follows: Section 1 comprises the
ongoing introduction; Section 2 formally defines the IOLTS
and some notations relevant to it; Section 3 recalls the notion
of remote behavior of an IOLTS; Section 4 explains how
to define a PDA corresponding to an IOLTS such that the
PDA precisely captures the remote behavior of the IOLTS;
and finally Section 5 concludes the paper.

II. IOLTS: DEFINITION AND NOTATIONS

An IOLTS (input output labeled transition system) is
a state-based model which is widely used to explain the
behavior of an interactive system [4], [5]. A characteristic
feature of an IOLTS is that it exhibits in a mutually
distinctive manner the actions whereby the system
sends/receives messages to/from its environment. Formally,
an IOLTS can be defined as follows:

Definition 1: An IOLTS is a quadruple
M = (QM , AM ,→M , qM

0 ), where QM is a non
empty set of states; AM is a set of actions, and is
further partitioned into an input alphabet AM

I and an
output alphabet AM

O ; qM
0 ∈ QM is the initial state of the

IOLTS; and →M⊆ QM ×AM ×QM is a transition relation.

We now state some definitions and notations with respect
to an IOLTSM = (QM , AM ,→M , qM

0 ).

• ∀q, q′ ∈ QM , ∀a ∈ AM : (q
a
−→M q′) is true iff

(q, a, q′) ∈→M . ∀q ∈ QM , ∀a ∈ AM : (q
a
−→M )

is true iff ∃q′ ∈ QM : (q, a, q′) ∈→M . We can
generalize this to strings of all lengths.∀q, q′ ∈
QM , ∀a1.a2. · · · .an ∈ (AM )⋆ : q

a1.a2··· .an−−−−−−−→M q′

is a run of M iff ∃q1, q2, · · · , qn−1 : (q
a1−→M

q1) ∧ (q1

a2−→M q2) ∧ · · · ∧ (qn−1

an−−→M q′).

• For σ ∈ (AM )⋆ and X ⊆ AM , σ ↓X is called the
projection of σ on X . It can be defined inductively.
Base case:ǫ ↓X= ǫ. Induction step:σ ↓X= a.(σ′ ↓X),



when a ∈ X and σ = a.σ′; σ ↓X= σ′ ↓X , when
a 6∈ X andσ = a.σ′

• A state is called deadlocked, if the system cannot
perform any output action in that state. Formally,
q ∈ QM is called deadlocked iff∀x ∈ AM

O : ¬(q
x
→M )

We make two structural assumptions about each IOLTS
that we consider in this paper.

1) An IOLTS does not have a loop comprising only
output symbols. Formally∀q ∈ QM , ∀x1.x2 · · ·xn ∈
(AM

O )+ : q
x1.x2···xn−→ M q is false. This restriction is

quite justified, because such a loop indicates that the
modeled system could produce an infinite behavior
spontaneously. On the other hand, imposition of this
restriction ensures that each IOLTS has at least one
deadlocked state.

2) An IOLTS in a deadlocked state is ready to accept
every input from its environment. This restriction is
also justified, because when a system is not in a state to
produce any output for its environment, then it should
be ready to accept every input from its environment.
One particular state of an IOLTS is designated as a
dead state and every deadlocked state has a transition
on every input symbola ∈ AM

I to that dead state. The
dead state in turn has a self loop on every input symbol
in the setAM

I . To avoid clutter, the dead state is
note shown in the IOLTS diagrams. Nevertheless, the
formal definition of the remotely observed behavior
assumes that such a state exists.

III. R EMOTE TESTING

In remote testing, the tester and the IUT are separated by
a medium which is modeled as a pair of FIFO queues. The
tester and the IUT interact with each other complementarily,
that is, the input (output) queue of the tester is the output
(input) queue of the IUT. Based on how the behavior of the
IUT is observed, remote testing can be classified as static
testing or dynamic testing.

A. Static testing

In static testing the tester supplies the entire input upfront
to the IUT and then waits for the entire response of the
IUT. When a system is subjected to static testing, it exhibits
a static test behavior which is formally defined as follows:

Definition 2: For a given IOLTSM = (QM , AM ,→M

, qM
0 ), the static test behaviorSTB(M) is the set of pairs

(u, v) ∈ (AM
I )⋆× (AM

O )⋆ such that there is a runq0

w
→M qd

in M , where:
• q0 is the initial state andqd is a deadlocked state.
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Figure 1. M1 andM2 with different actual behaviors but same static test
behavior.

• u = w ↓AM

I

.
• v = w ↓AM

O

.

Intuitively, (u, v) ∈ STB(M) means that when the tester
simulates the IUT with inputu, it gets outputv as response.

Example 1: Figure 1 shows two systemsM1 and M2

over AM1

I = AM2

I = {a} and AM1

O = AM2

O = {x, y}. M1

and M2 have different actual behaviors but same static
test behavior which is given below using regular expressions.

STB(M1) = STB(M2) = (ǫ, ǫ) + (a, x) + (aa, xy) +
(a, xy) + (aa+, x) + (aaa+, xy) + (aa+xy)

Both in M1 andM2, the deadlocked states comprises the
root node, the left leaf node, the middle leaf node, and the
right leaf node. The static test behavior w.r.t the root node
is (ǫ, ǫ), and with respect to the left leaf node is(a, x) +
(aa+, x) and so on.

B. Dynamic testing

In dynamic testing, the tester has an additional
discrimination power. Unlike in static testing, wherein
it supplies all the inputs upfront to the system, here it
supplies the inputs incrementally. The next sequence of
inputs to be supplied is decided on the fly. When a system
is subjected to dynamic testing, it exhibits a dynamic test
behavior which is formally defined as follows:

Definition 3: For a given IOLTSM = (QM , AM ,→M

, qM
0 ), the dynamic test behaviorDTB(M) is the set

of sequences of pairs(u1, v1).(u2, v2) · · · (uk, vk) ∈
((AM

I )⋆ × (AM
O )⋆)⋆ such that there is a runq0

w1→M q1

w2→M

· · ·
wk→M qk in M , where:

• q0 is the initial state, andq1, q2, · · · , qk are some of the
(not necessarily all) deadlocked states on the run.

• vj = wj ↓AM

O

for all 1 ≤ j ≤ k

• uj = wj ↓AM

I

for all 1 ≤ j < k

Example 2: Figure 2 shows two systemsM1 and M2

over AM1

I = AM2

I = {a} andAM1

O = AM2

O = {x, y} which
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Figure 2. M1 andM2 with different actual behaviors but same dynamic
test behaviors.

have different actual behaviors but same dynamic behavior.
The dynamic test behavior of the two systems is given
below using regular expressions.

DTB(M1) = DTB(M2) = (ǫ, ǫ) + {(a+, x) +
(a+, xy)+(aa+, xx)}.(a+ǫ)⋆ +(ǫ, ǫ).{(a+, x)+(a+, xy)+
(aa+, xx)}.(a+, ǫ)⋆

We would like to mention that even though the systems
dealt with in this section were finite systems, the behavior
exhibited by them was infinite. This is because of the
structural assumption on the IOLTS that there is an implicit
edge from every deadlocked state, on every missing input,
to a dead state. This dead state in turn has a self loop on
every input symbol inAM

I .

IV. T EST GENERATION

This section describes how to simulate a PDA from the
given IOLTS. We will consider two cases. In the first case
the simulated PDA generates test cases for the static testing,
and in the second case the simulated PDA generates test
cases for the dynamic testing.

A. Static testing

Given an IOLTSM = (QM , AM ,→M , qM
0 ), we can

define a PDAN = (QN , AN , Γ, qN
0 ,⊥, qf ,→N ), where:

• QN is the set of states of the PDA such thatQN = QM .

• AN is the tape alphabet of the PDA such that
AN = AM .

• Γ is the stack alphabet of the PDA such that
Γ = {⊥} ∪ AM

O .

• qN
0 is the initial state of the PDA such thatqN

0 = qM
0 .

• ⊥ is the initial stack symbol of the PDA.

• qf is the final state of the PDA.

• →N⊆ (QN × AN ∪ {ǫ} × Γ × QN × Γ⋆) is the
transition relation of the PDA defined by the following

four rulesR1 − R4.

Before we state the rules, it should be noted that the
interpretation of an element of the set→N is standard [3].
For example,(q, a, α, q′, β) ∈→N means the following: The
PDA in stateq scans an input symbola, while the top symbol
of the stack isα. As a result, the PDA changes its state to
q′, moves paste the input symbola, and replaces the stack’s
top symbolα ∈ Γ with a stringβ ∈ Γ⋆. And, had it beenǫ
in place ofa, it would mean that the PDA does everything
similar, except that it does not move paste the current symbol
being scanned.

R1 ∀a ∈ AM
I , ∀q, q′ ∈ QM : If (q, a, q′) ∈→M ,

then (q, a, α, q′, α) ∈→N

R2 ∀x ∈ AM
O , ∀q, q′ ∈ QM : if (q, x, q′) ∈→M ,

then (q, ǫ, α, q′, x.α) ∈→N

R3 ∀q ∈ QM , ∀x ∈ AM
O : if q is deadlocked, then

(q, x, x, q, ǫ) ∈→N

R4 ∀q ∈ QM : if q is deadlocked, then
(q, ǫ,⊥, qf ,⊥) ∈→N .

As is customary, a tuple(q, w, α) denotes a configuration
of the PDA, whereq is the control state of the PDA,w is
string scanned till now, andα is the contents of the stack
(left most symbol ofα indicates the top of the stack). If a
PDA makes a transition on some stringσ ∈ (AN )⋆ from a
configuration(q, w, β) to (q′, w′, β′), then we denote it by
(q, w, β)

σ
⇒ (q′, w′, β′).

Lemma1: For all w ∈ (AM )⋆, there is a
run q0

w
→M qd in the IOLTS M such that

w ↓AM

I

= u1.u2 · · ·um andw ↓AM

O

= v1.v2 · · · vn if and only

if (q0, ǫ,⊥)
u1.u2···um=⇒ (qd, u1.u2 · · ·um, vn.vn−1 · · · v1.⊥).

Proof: We can prove this by induction on|w|, that is, the
length ofw. Base Case: Let|w| = 0. It means thatq0

ǫ
→M

qd is the run of the IOLTSM . Since a transition onǫ is
not defined in the IOLTSM , therefore we haveq0 = qd.

Since it is the case thatǫ ↓ AM
I = ǫ ↓AM

O

= ǫ, we have

(q0, ǫ,⊥)
ǫ
⇒ (q0, ǫ,⊥). This completes the base case step of

the proof.
Induction Step: Letq0

w
→M q

a
→M q′ is the run of the

IOLTS M such thatw ∈ (AM )⋆, q ∈ AM . If w ↓AM

I

= u

and w ↓AM

O

= v, then by the induction hypothesis we

have (q0, ǫ,⊥)
u
⇒ (q, u, vR.⊥), where vR is the reverse

of the string v. Now two cases arise. (1) Ifa ∈ AM
I ,

then by the ruleR1 we get (q0, ǫ,⊥)
u
⇒ (q, u, vR.⊥)

a
⇒

(q′, u.a, vR.⊥). (2) If a ∈ AM
O , then by R2 we get

(q0, ǫ,⊥)
u
⇒ (q, u, vR.⊥)

ǫ
⇒ (q′, u, a.vR.⊥). Both the cases

thus prove that the left hand side implies the right hand
side. Similarly, we can prove the converse, by applying



induction on|u1.u2 · · ·um| + |v1.v2 · · · vn|.

Theorem1: For a given IOLTSM , ∀u ∈ (AM
I )⋆, ∀v ∈

(AM
O )⋆ : (u, v) ∈ STB(M) if and only if u.vR ∈ L(N),

where vR is the reverse of the stringv and L(N) is the
language generated by the PDAN .

Proof: Suppose that(u, v) ∈ STB(M). By the Definition
2, it means that there is a runqM

0

w
→M qd in M such that

(1) qM
0 is the initial state, (2)qd is the deadlocked state, and

(3) w ↓AM

I

= u andw ↓AM

O

= v. If v = v1.v2 · · · vn, then by

Lemma 1, we have(q0, ǫ,⊥)
u
⇒ (qd, u, vn.vn−1 · · · v1.⊥).

Now if the ruleR3 is appliedn times continuously, we get
(qd, u, vn.vn−1 · · · v1.⊥)

vn.vn−1···v1

=⇒ (qd, u,⊥). Finally by
the virtue of the ruleR4, we have(qd, u,⊥)

ǫ
⇒ (qf , u,⊥).

Now let us prove the converse. Suppose thatu.vR ∈

L(N). It means that we have(q0, ǫ,⊥)
u.vR

⇒ (qf , u.vR, β),
where β ∈ Γ⋆. By R4, we know that the PDA can
reach the final stateqf only when the top of the stack
is ⊥ and the PDA is in a deadlocked state. So, we have

(q0, ǫ,⊥)
u.vR

⇒ (qd, u.vR,⊥)
ǫ
⇒ (qf , u.vR,⊥), where qd

is a deadlocked state. Now byR3, we have(q0, ǫ,⊥)
u
⇒

(qd, u, vR.⊥)
vR

⇒ (qd, u.vR,⊥)
ǫ
⇒ (qf , u.vR,⊥). Finally

by the Lemma 1,q0

w
→M qd such thatw ↓AM

I

= u and
w ↓AM

O

= v. Hence, by the Definition 2(u, v) ∈ STB(M).
With this, the proof is over.

The PDA simulated above can be thought of as a test
generator. For example, if the PDA generates a stringu.vR,
it means that the tester should simulate the IUT with an
input u and should positively expectv as the corresponding
response of the IUT.

B. Dynamic testing

Similar to static testing, we can also simulate a PDA
corresponding to a given IOLTS such that the simulated PDA
expresses precisely the dynamic behavior of the IOLTS.

Given an IOLTSM = (QM , AM ,→M , qM
0 ), we can

define a PDAN = (QN , AN , Γ, qN
0 ,⊥, qf ,→N ), where:

• QN is the set of states of the PDA such thatQN = QM .

• AN is the tape alphabet of the PDA such that
AN = AM ∪ {$}.

• Γ is the stack alphabet of the PDA such that
Γ = {⊥, $} ∪ AM

O .

• qN
0 is the initial state of the PDA such thatqN

0 = qM
0 .

• ⊥ is the initial stack symbol of the PDA.

• qf is the final state of the PDA.

• →N⊆ (QN × AN ∪ {ǫ} × Γ × QN × Γ⋆) is the
transition relation of the PDA defined by the following
six rulesR

′

1
− R

′

6
.

R
′

1
∀a ∈ AM

I , ∀q, q′ ∈ QM : If (q, a, q′) ∈→M ,
then (q, a, α, q′, α) ∈→N

R
′

2
∀x ∈ AM

O , ∀q, q′ ∈ QM : if (q, x, q′) ∈→M ,
then (q, ǫ, α, q′, x.α) ∈→N

R
′

3
∀q ∈ QM , ∀x ∈ AM

O : if q is deadlocked, then
(q, x, x, q, ǫ) ∈→N

R
′

4
∀q ∈ QM : if q is deadlocked, then

(q, ǫ,⊥, qf ,⊥) ∈→N .

R
′

5
∀q ∈ QM : if q is deadlocked, then

(q, $, α, q, $α) ∈→N .

R
′

6
∀q ∈ QM : (q, $, $, q, ǫ) ∈→N .

Theorem2: u1.$.u2.$...$.uk.$.$.vR
k .$...$.vR

2 .$.vR
1 ∈

L(N) iff (u1, v1).(u2, v2)...(uk, vk) ∈ DTB(M), where
∀1 ≤ j ≤ k : uj ∈ (AM

I )⋆, vj ∈ (AM
O )⋆.

Proof: We omit the proof owing to space constraints,
however it is quite similar to that of Theorem 1.

V. CONCLUSION

PDA is a computational model which is mostly used to
depict the control flow of a recursive programme. In this
paper, we have explained the use of PDA in test generation,
which hitherto is unheard of.
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