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Enhanced convergence estimates for
semi-lagrangian schemes

Application to the Vlasov-Poisson equation
Frédérique Charles, Bruno Després, Michel Mehrenberger

October 5, 2011

Abstract
We prove enhanced error estimates for high order semi-lagrangian dis-

cretizations of the Vlasov-Poisson equation. It provides new insights into
optimal numerical strategies for the numerical solution of this problem.
The new error estimate

O

(
min

(
∆x

∆t
, 1
)

∆xp + ∆t2
)

is based on advanced error estimates for semi-lagrangian schemes, also
equal to shifted Strang’s schemes, for the discretization of the advection
equation.

1 Introduction
The aim in this work is to prove enhanced error estimates for high order semi-
lagrangian discretizations of the Vlasov-Poisson equation [12]. In this work
enhanced means two things. First it means enhanced with respect to the time
step ∆t, that is we do not want the error estimate to be spoiled by a 1

∆t which is
very often encountered in the numerical analysis of the Vlasov-Poisson equation
as in [6, 1, 10]. Second, in the case of advection equation in dimension one, it
means enhanced with respect to the norm, that is the error and the regularity
of the solution are evaluated in the same norm.

Our main result is stated in Theorem 1. Estimate (6) has the advantage that
it is non singular for small ∆t. It is a strong improvement with respect to the
literature [6, 1, 10]. This new error estimate is based on new estimates for the
advection equation on a regular periodic grid for which we use sharp properties
of semi-lagrangian schemes also equal to shifted Strang’s stencil [14, 8, 9], see
also [2, 3, 4, 5]. We will make use of the connection of these numerical schemes
with B-Splines techniques [11, 13].
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Theorem 1. Consider the Vlasov-Poisson equation

∂f

∂v
+ v

∂f

∂x
+ E(t, x)∂f

∂v
= 0, (1)

with
∂E

∂x
(t, x) =

ˆ +∞

−∞
f(t, x, v)dv − 1, (2)

where f(t, x, v) is the distribution function of charged particles (ions or elec-
trons) and E(t, x) the self-consistent electric field. We consider periodic bound-
ary conditions on the variable x ∈ [0, 1], that is

f(t, 0, v) = f(t, L, v), v ∈ R, t ≥ 0, (3)

and
E(t, 0) = E(t, L). (4)

Assume the exact solution is sufficiently smooth and has compact support. Con-
sider a semi-lagrangian scheme of order p direction by direction for the dis-
cretization of (63-66) with Strang’s splitting in time. Assume the grid is such
that ∆v = α∆x is proportional to ∆x, α kept constant. Assume n∆t ≤ T .

There exists a constant C > 0 which depends on T , on the regularity of
the solution and of the parameters of the problem such that the numerical error
en = fn − f(tn) is bounded in the L2 norm1 by

||en||L2 ≤ C
(

min
(

∆x
∆t , 1

)
∆xp + ∆t2

)
. (6)

The organization of this work is as follows. First in Section 2 we detail opti-
mal numerical strategies which are immediate consequence of the error estimate
(6). The next section is devoted to the design of enhanced error estimates for

1We will use natural notations for the norm of discrete functions over the real line R
discretized with a mesh length ∆x > 0. For example the Lp norm of a discrete function
w = (wi)i∈Z defined over the entire real line is

‖w‖p =

(
∆x
∑

i

|wi|p
) 1
p

1 ≤ p <∞, and ‖w‖∞ = sup
i

|wi|.

If the domain is finite, for example Ω =]0, 1[2, then N∆x = 1 is required for some N ∈ N: in
this case the discrete function is w = (wij)1≤i,j≤N with norms defined by

‖w‖p =

(
∆x

∑
1≤i,j≤N

|wij |p
) 1
p

1 ≤ p <∞, and ‖w‖∞ = sup
1≤i,j≤N

|wij |. (5)

These notations are compatible with the standard definition of the Lp norm of a function

‖z‖Lp(Ω) =
(ˆ

Ω
|z(x)|pdx

) 1
p

1 ≤ p <∞, and ‖z‖L∞(Ω) sup
x∈Ω
|z(x)|.
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the numerical discretization of the advection equation in dimension one with
semi-lagrangian schemes of arbitrary orders (also equal to shifted Strang’s sten-
cils). After that we prove the main theorem. In the appendix we provide the
reader with more advanced formulas for the numerical approximation of the
advection equation.

2 Application
The computation of a numerical solution to the Vlasov-Poisson equation is very
heavy task from the CPU point of view. It is therefore of major interest to study
optimal numerical strategies such the upper bound (6) of the error is as small
as possible as a function of ∆x and ∆t. We consider three different strategies
with p ≥ 3 since it corresponds to the situation we are interested in. It will
appear that the fact that singularity for very small ∆t is removed in the right
hand side of (6) due to the term min

(∆x
∆t , 1

)
has an immediate consequence on

the optimal scaling laws. Essentially we will obtain that

∆t ≈ ∆x
p
2 << ∆x

which yields that min
(∆x

∆t , 1
)

= 1. Note that the results would not be the
same, if we would consider higher order discretizations in time (see [6], for a
discussion).

2.0.1 Minimizing the error at given storage

The storage is the memory requirement needed to run a given computation.
Since the storage is proportional to 1/∆x∆v ≈ 1/∆x2, it means that we look
for an optimal time step ∆t which minimizes the error at a given (but small)
∆x.
So we are looking for a scaling law

∆t = ∆xβ , β > 0

such that the right hand side (6) is as small as possible when ∆x goes to zero.
Since min

(∆x
∆t , 1

)
∆xp + ∆t2 ≤ ∆xp + ∆t2 it is immediate that β ≥ p

2 ≥
3
2 >

1. In this case min
(∆x

∆t , 1
)

= min
( ∆x

∆xβ , 1
)

= 1 for small ∆x. We obtain
asymptotically ||en||L2 ≤ C∆xp with a larger constant. Our interest being
to have nevertheless the biggest time step to minimize the overall cost of the
computation we obtain the scaling law

β = p

2 .

2.0.2 Minimizing the error at given CPU cost

The CPU cost is proportional to the total number of cells and to the number of
time steps, that is after normalization

CPU ≈ 1
∆t∆x2 .
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Therefore ∆t = 1
α∆x2 where α >> 1 is the normalized numerical value of the

CPU cost. Plugging in the error formula (6) we find

Error ≈ C
(

min(α∆x3, 1)∆xp + 1
α2∆x4

)
.

The minimum is approximatively obtained by equating the two contributions

1 = min(α∆x3, 1)
(
α∆x3)2 ∆xp−2.

Therefore 1 ≤ α2∆xp+4 and ∆x ≥ α−
2
p+4 . So α∆x3 ≥ α1− 6

p+4 ≥ α1− 6
3+4 >> 1

since p ≥ 3 by hypothesis. So min(α∆x3, 1) = 1. In conclusion the optimal
strategy that minimizes the error at given CPU cost proportional to α is

∆x ≈ α−
2
p+4 and ∆t ≈ α−1+ 4

p+4 = α−
p
p+4 .

We observe ∆t ≈ ∆x
p
2 that for large p: this is the scaling law of the previous

strategy.

2.0.3 Minimizing the CPU cost a given error

The CPU cost is a strictly convex function with respect to (∆t,∆x). Assume
the error ε is very small, that is

min
(

∆x
∆t , 1

)
∆xp + ∆t2 = ε, with ε << 1.

We formulate the problem as a minimum problem with a constraint. We dis-
tinguish two cases.

First case: ∆t > ∆x: Minimum solutions, if they exist, are the critical point
of the Lagrangian

L = 1
∆t∆x2 − λ

(
∆xp+1

∆t + ∆t2 − ε
)

where λ is the Lagrange multiplier. The optimality conditions are ∂∆tL = − 1
∆t2∆x2 − λ

(
−∆xp+1

∆t2 + 2∆t
)

= 0,

∂∆xL = − 2
∆t∆x3 − λ(p+ 1)∆xp

∆t = 0.

Since p ≥ 3 one may approximate

−∆xp+1

∆t2 + 2∆t ≈ 2∆t

for small ∆x. Therefore the optimality conditions imply{
− 1

∆t2∆x2 ≈ λ2∆t,

− 2
∆t∆x3 = λ(p+ 1)∆xp

∆t .
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It yields
2∆t
∆x ≈

p+ 1
2

∆xp

∆t2
that is

∆t ≈
(
p+ 1

4

) 1
3

∆x
p+1

3 << ∆x

since p ≥ 3. It is in contradiction with the hypothesis ∆t < ∆x. It means
that there is no solution in this case.

Second case: ∆t ≤ ∆x: The Lagrangian is

L = 1
∆t∆x2 − λ

(
∆xp + ∆t2 − ε

)
.

The optimality conditions are{
∂∆tL = − 1

∆t2∆x2 − λ2∆t = 0,

∂∆xL = − 2
∆t∆x3 − λp∆xp−1 = 0

whose solution is given by

∆t =
(
p+ 1

4

) 1
2

∆x
p
2 << ∆x.

Once again this scaling law is very close to the first one.

2.0.4 Exponential integrators in time

Suppose that for each splitting step, instead of solving over ∆t the 1D advection
equation, one solves N times the same equation with time step ∆t/N , and that
we consider the limit as N goes to infinity of such scheme. In the previous
analysis [10], we cannot conclude that the scheme converges. On the contrary,
in our new framework, one obtains the rate

O(∆xp + ∆t2).

3 A pedagogical example for the advection equa-
tion

We consider in this section the numerical discretization of the advection equation
with initial condition {

∂tu+ v∂xu = 0, v > 0,

u(0, x) = u0(x)
(7)
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in one dimension by means of a semi-lagrangian scheme. We recall that the
solution of problem (7) verifies

u(t+ s, x) = u(t, x− vs) ∀t ≥ 0, s ≥ 0. (8)

We introduce a Cartesian regular discretization {xi}i∈Z = {i∆x}i∈Z of R and a
time step ∆t. For the sake of simplicity the numerical initial condition is always
exact, that is

u0
j = u0(xj) ∀j ∈ Z. (9)

Assuming that we know the approximation of the solution of (7) at the time
tn = n∆t on the mesh, we set for all i

un+1
i = ũni (xi − v∆t) (10)

where ũn is a continuous function obtain by means of an interpolation of values
{uni }i∈{k1,...,k2}. Such a procedure is called semi-lagrangian because the discrete
solution is given on a eulerian fixed mesh, but on the other hand the scheme
relies on the construction of ũn (xi − v∆t) which is used in the lagrangian ap-
proximation (10). This is described in Figure 1.

In order to fully understand the main difficulty about the design of optimal
estimates, we consider, in a first part for pedagogical purposes, a second order
lagrangian interpolation (that is k2 = k1 + 1). It will enlighten the interest
of having an interpretation of such scheme both in terms of a semi-lagrangian
interpolation and in terms of a standard numerical approximation of a partial
differential equation. Then we will develop both approaches for general high
order semi-lagrangian schemes.

3.0.5 Numerical scheme

The function ũn is obtained by a lagrangian interpolation from the two neigh-
boring points. Let xi − v∆t be the foot of the characteristics and r ∈ Z such
that

xi+r ≤ xi − v∆t < xi+r+1,

that is r ≤ −v ∆t
∆x < r + 1. In other terms we set

r = E

(
−v ∆t

∆x

)
≤ −1. (11)

Since v > 0 then r + 1 ≤ 0 for any ∆t > 0 and ∆x > 0. This is illustrated in
Figure 1.

The second order reconstruction of ũn on [xi+r, xi+r+1[ is

ũni (x) = xi+r+1 − (xi − v∆t)
∆x uni+r + (xi − v∆t)− xi+r

∆x uni+r+1. (12)

Introducing this expression in (10) one obtains

un+1
i = νuni+r + (1− ν)uni+r+1, (13)
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r=−2 r+1=−1

t

n

(n+1) ∆

x
∆

t

t

Figure 1: Stencil of the second order lagrangian (p+ 1 = 2) interpolant with a
shift of one cell: here r = −2.

where we set
ν := r + 1 + v∆t

∆x . (14)

We deduce from the definitions of r (11) that

0 < ν ≤ 1. (15)

The standard way to evaluate the error in space attached to this procedure
is the following. First the interpolation error of (12) is O(∆x2) for a smooth
function. Second it is without to say that (13) is stable in the maximum norm.
So one just sums the errors from one time step to the following and obtain

max
i
|u(n∆t, xi)− uni | ≤ n O(∆x2) ≤ CT ∆x2

∆t , n∆t ≤ T. (16)

The constant C is independent of ∆t, ∆x and v. The estimate (16) is second
order in space but is clearly non optimal for small ∆t. Indeed (16) corresponds
to the upwind scheme for r−1: in this case it is well known that the error can be
bounded by O(∆x). This analysis enlightens the fact that a naive interpolation
error estimate is not optimal in our context.

3.0.6 The truncation error

We now desire to explain how to recast the previous analysis of the interpolation
error so as to obtain optimal estimate for small ∆t. An idea is to rewrite
(16) under the form of the Finite Difference scheme but with skewed discrete
derivatives

un+1
i − uni+r+1

∆t +
(
v + (r + 1)∆x

∆t

)
uni+r+1 − uni+r

∆x = 0. (17)
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It is usual to introduce the truncation error εn = (εni )i∈Z

εni =u ((n+ 1)∆t, xi)− u (n∆t, xi+r+1)
∆t

+
(
v + (r + 1)∆x

∆t

)
u (n∆t, xi+r+1)− u (n∆t, xi+r)

∆x ,

(18)

where u is the solution of equation (7). The next task consists is showing that
it can be related to a more standard truncation error.

The unit time ∆x
v is the one needed for a characteristics to travel in a cell

of length ∆x, from one side to the other. Let ∆s ≥ 0 be defined as ∆t minus
a d∆x

v where d+ 1 is the largest as possible integer. A convenient definition of
∆s is

∆s := (r + 1)∆x
v

+ ∆t. (19)

We deduce from the definition of r (11) and ν (14) :

0 < ∆s ≤ ∆t, ν = v∆s
∆x . (20)

Let ε̄ be the truncation error of the same scheme but with the time step ∆s

εni+r+1 = u (n∆t+ ∆s, xi+r+1)− u (n∆t, xi+r+1)
∆s (21)

+vu (n∆t, xi+r+1)− u (n∆t, xi+r)
∆x .

Proposition 2. One has the formula εni = ∆s
∆t ε

n
i+r+1.

Proof. The exact solution is constant along the characteristics, that is

u ((n+ 1)∆t, xi) = u (n∆t+ ∆s, xi+r+1) .

We use this relation in (18) to eliminate u ((n+ 1)∆t, xi). The claim is evident
on the resulting quantity.

Proposition 3. Assume that u0 ∈ W 2,∞(R). There is a constant C > 0,
independent of ∆t, ∆x and v, such that

‖εn‖∞ ≤ Cv ‖u
′′
0‖L∞(R) ∆x. (22)

Proof. A standard Taylor-Lagrange expansion on the error εni gives

εni = (∂tu+ v∂xu) (n∆t, xi)

+ ∆s
2 ∂ttu(n∆t+ τ∆s, xi) + v∆x

2 ∂xxu(n∆t, xi + ξ∆x)
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and then

‖εn‖∞ = O
(

∆s ‖∂ttu‖L∞(R)

)
+O

(
v ∆x ‖∂xxu‖L∞(R)

)
= O

(
v2∆s ‖∂xxu‖L∞(R)

)
+O

(
v ∆x ‖∂xxu‖L∞(R)

)
= O

(
(1 + ν)v∆x ‖u′′0‖L∞(R)

)
thanks to (20). Using (15) it proves the claim.

3.0.7 An optimal error estimate

The numerical error is en = (eni )i∈Z. with eni = u(n∆t, xi)− uni .

Proposition 4. One has the error estimate for all n such that n∆t ≤ T

‖en‖∞ ≤
(
CT ‖u′′0‖L∞(R)

) v∆s∆x
∆t . (23)

The constant C > 0 is independent of ∆t, ∆x and v.

Proof. Let us denote the iteration operator Rν so that (13)-(17) is rewritten as
un+1 = Rνun. Thanks to (21) one has

u ((n+ 1)∆t, ·) = Rνu (n∆t, ·) + ∆t εn.

Therefore the error en satisfies en+1 = Rνen + ∆t εn. Since the numerical
scheme satisfies the maximum principle, then ‖Rν‖∞ ≤ 1. Therefore∥∥en+1∥∥

∞ ≤ ‖e
n‖∞ + ∆t ‖εn‖∞ .

Summation over n yields ‖en‖∞ ≤ n∆t v∆s
∆t ‖ε

n‖∞. Using (22) it proves the
claim.

Remark 5. This error estimate is now optimal with respect to ∆t. If ∆s = ∆t
which means that the characteristics does not go out the first cell, then we recover
the first order estimate of convergence characteristics of the upwind scheme. If
∆s << ∆t one can use the bound v∆s ≤ ∆x which is always true and recover the
standard error estimate obtained in the numerical analysis of semi-lagrangian
numerical methods. We also notice that the error estimate is optimal with respect
to v since the error vanishes if v → 0+.

Remark 6. The estimate (23) can be enhanced with a term 1− ν in the right
hand side. This is due to the fact that the scheme is exact if ν = 1. This term
is visible in the general estimate (40).

4 Semi-lagrangian interpolation schemes of or-
der p + 1

This section is devoted to the study of arbitrary order semi-lagrangian schemes.
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4.1 Numerical scheme
In this section the interpolation function ũn is obtained by a lagrangian inter-
polation of p+ 1 points. Like in previous section, we introduce r ∈ Z such that
xi+r ≤ xi − v∆t < xi+r+1. and we introduce also k ∈ Z: the expression of
ũn on [xi+r+1+k−p, xi+r+1+k] is obtained with a lagrangian interpolation of the
values {ui+r+1+k−p, . . . , ui+r+1+k}

ũn(x) =
k∑

l=k−p
Li+r+l(x)uni+r+1+l (24)

where the Lagrange polynomials are Li+r+1+l(x) =
∏k

h=k−p,h6=l
(x−xi+r+1+h)∏k

h=k−p,h6=l
(xi+r+l−xi+r+1+h)

.

t

n

(n+1) ∆

x
∆

t

t

r=−2

Figure 2: Example of a semi-lagrangian scheme: here r = −2, k = 1 and p = 3.

We define for convenience

αl(ν, k, p) = Li+r+1+l (xi − v∆t) =
∏k
h=k−p,h6=l (h+ ν − 1)∏k
h=k−p,h6=l (h− l)

.

The reduced Courant number is ν = v∆s
∆x ∈]0, 1] and ∆s = (r + 1)∆x

v + ∆t as
before. The scheme can be written as

un+1
i =

k∑
l=k−p

αl (ν, k, p)uni+r+1+l, i ∈ Z. (25)

Four parameters characterize this formula: p + 1 is the interpolation order, k
determines the local stencil shift and ν is the reduced Courant number; the
number of cells that are crossed by the characteristics is (11) is r. The iteration
operator is conveniently defined as Rν,k,p so that (25) is equivalent to

un+1 = Rν,k,pun. (26)
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4.2 Stability properties
Introducing the discrete Fourier transform of the vector un

ūn(ψ) =
∞∑

j=−∞
e−ijψunj , i2 = −1, (27)

we get from (25)
ūn+1(ψ) = λν,k,p(ψ)ūn(ψ), (28)

where

λν,k,p(ψ) =
k∑

l=k−p
αl (ν, k, p) ei (r+1+l)ψ (29)

is the amplification factor for Fourier modes of this scheme. We also introduce
the reduced amplification factor is given by

µν,k,p(ψ) =
k∑

l=k−p
αl (ν, k, p) ei lψ, (30)

and we have the relation

λν,k,p(ψ) = ei(r+1)ψµν,p,k(ψ). (31)

Proposition 7. The amplification factor satisfies

|λν,k,p(ψ)| ≤ 1, ∀ψ ∈ R (32)

if and only if p ∈ {2k, 2k + 1, 2k + 2}.

Many proves are available in the case r + 1 = 0. We refer to the seminal
work of Strang in another context [14, 8, 9]. See also [5, 10, 7]. In consequence
one has the following stability property.

Proposition 8. Assume that p ∈ {2k, 2k + 1, 2k + 2}. The iteration operator
is bounded as an operator over discrete functions with bounded L2 norm. More
precisely

‖Rν,k,pu‖2 ≤ ‖u‖2 , ∀u = (uj)j∈Z. (33)

4.3 Interpolation-based error estimate in L2

We introduce the numerical error of the scheme defined by eni := u(n∆t, xi)−uni
and en = (eni )i∈Z. One has the standard decomposition

en+1 = Rν,k,p en + gn (34)

where gn = (gni ) is the interpolation error

gni = u (n∆t, xi − v∆t)−
k∑

l=k−p
αl(ν, k, p)u (n∆t, xi+r+1+l) .

11



We will use the following standard interpolation formula for which we refer
the reader to [13] page 124. Let Qp+1

i be the spline function over the p + 2
points xi − v∆t and xi+r+1+l for l = k − p ≤ i ≤ k. Qp+1

i is a piecewise
polynomial of degree n and has compact support in ]xi+r+1+k−p, xi+r+1+k[ since
xi − v∆t ∈]xi+r+1+k−p, xi+r+1+k[ by definition of r. The interpolation formula
writes

gni = ωi
p!

ˆ xi+r+1+k

xi+r+1+k−p

Qp+1
i (t)u(p+1)(t)dt (35)

with

ωi =
l=i+r+1+k∏
l=i+r+1+k−p

(xi − v∆t− xl).

Other properties of Qp+1
i are ([13] page 124)ˆ xi+r+1+k

xi+r+1+k−p

Qp+1
i (t)dt = 1

p+ 1 , (36)

and
0 ≤ Qp+1

i (t) ≤ 1
xi+r+1+k − xi+r+1+k−p

= 1
p∆x. (37)

Proposition 9. One has the inequality

‖gn‖2 ≤ Ck,pν(1− ν)
∥∥∥u(p+1)

0

∥∥∥
L2(R)

∆xp+1 (38)

where

Ck,p = 1
(p+ 1) 1

2
×


(k+1)!k!
(2k+1)! p = 2k + 1,
(k)!(k)!
(2k)! p = 2k,

(k+1)!(k+1)!
(2k+2)! p = 2k + 2.

Proof. First we use (19) to eliminate v∆t = v∆s−(r+1)∆x in the interpolation
formula (35). We obtain

ωi =
k∏

l=k−p
(−v∆s− l∆x) = (−1)p+1∆xp+1

k∏
l=k−p

(l + ν),

so

|ωi| ≤ ∆xp+1

∣∣∣∣∣∣
k∏

l=k−p
(l + ν)

∣∣∣∣∣∣ .
Consider for example the case p = 2k + 1. A rearrangement shows that∣∣∣∣∣∣

k∏
l=k−p

(l + ν)

∣∣∣∣∣∣ = ν(1− ν) (1 + ν)(2− ν)︸ ︷︷ ︸
≤1×2

· · · (k + ν)(k + 1− ν)︸ ︷︷ ︸
≤k×k+1

≤ ν(1− ν) (1× · · · × k) (2× · · · × (k + 1))

≤ ν(1− ν)p!(p+ 1) 1
2Ck,p.

(39)

12



A similar trick shows that
∣∣∣Πk

l=k−p(l + ν)
∣∣∣ ≤ ν(1− ν)p!Ck,p(p+ 1) 1

2 in all cases.
Secondly we set Ii =]xi+r+1+k−p, xi+r+1+k[. The Cauchy-Schwarz inequality

applied to (35) yields

|gni | ≤
|ωi|
p!

∥∥∥Qp+1
i

∥∥∥
L2

∥∥∥u(p+1)
∥∥∥
L2(Ii)

≤ |ωi|
p!

∥∥∥Qp+1
i

∥∥∥ 1
2

L1

∥∥∥Qp+1
i

∥∥∥ 1
2

L∞

∥∥∥u(p+1)
∥∥∥
L2(Ii)

≤ |ωi|
p!

(
1

p+ 1

) 1
2
(

1
p∆x

) 1
2 ∥∥∥u(p+1)

∥∥∥
L2(Ii)

.

Therefore

‖gn‖2 =
(

∆x
∑
i

|gni |2
) 1

2

≤ ∆x 1
2
|ωi|
p!

(
1

p+ 1

) 1
2
(

1
p∆x

) 1
2
(∑

i

∥∥∥u(p+1)
∥∥∥2

L2(Ii)

) 1
2

.

We notice that∑
i

∥∥∥u(p+1)
∥∥∥2

L2(Ii)
= p

∥∥∥u(p+1)
∥∥∥2

L2(R)
= p

∥∥∥u(p+1)
0

∥∥∥2

L2(R)
.

Finally we use all these inequalities and obtain the claim (38) after simplifica-
tion.

Proposition 10. Assume that p ∈ {2k, 2k + 1, 2k + 2}. Then the following
error estimate hold for all n such that n∆t ≤ T :

‖en‖2 ≤ Ck,p (1− ν) v∆s∆xp

∆t T‖u(p+1)
0 ‖L2(R). (40)

Proof. One gets from (33-34)
∥∥en+1

∥∥
2 ≤ ‖e

n‖2 + ‖gn‖2 , that is, since e0 = 0,

‖en‖2 ≤ nCk,pν(1− ν)
∥∥∥u(p+1)

0

∥∥∥
L2(R)

∆xp+1.

It proves the claim after rearrangements.

Remark 11. A crude estimate based on the Stirling formula shows that

Ck,p = O
(
2−2k)

is very small for large p.

13



Proof. Consider for example the case p = 2k + 1: the constant is

Ck,p = 1
22k+2 ×

22k+1

(p+ 1) 1
2

(
2k + 2
k + 1

) . (41)

Since the Stirling formula shows that 22k+1(
2k + 2
k + 1

) ≈ Ck 1
2 for some constant C

when k is large, it shows the bound of the remark.

4.4 Truncation-based error estimate in L2

In this section we propose another analysis of the error, which is based on
the analysis of the truncation error. The philosophy is rather different. The
analysis will fill the gap between interpolation error analysis based on (35) and
the Fourier analysis as used in the work of Thomée [16]. The conclusions will
be the same, but with a slightly better constant for large p. This analysis is
confirmed with a different approach discussed in the appendix. In both cases
the key is the use of advanced formulas which ultimately may be used to provide
sharper L2 estimates for B-splines.

4.4.1 Truncation error

It is convenient to write the scheme in the incremental form

un+1
j − unj

∆t + v
un
j+ 1

2
− un

j− 1
2

∆x = 0 (42)

where un
j+ 1

2
is the flux. The Fourier symbol of the flux is the function ψ 7→

γν,k,p(ψ) such that
ūj+ 1

2
(ψ) = γν,k,p(ψ)ūj(ψ),

where ū is defined by (27). We deduce from the expressions (28) and (42) the
following expression for γν,k,p :

Proposition 12. The Fourier symbol of the flux is

γν,k,p (ψ) = λν,k,p (ψ)− 1
(eiψ − 1)

v∆t
∆x . (43)

The method we propose here is use this expression of the Fourier symbol of
the flux in the truncation error εni to obtain the analogous of Proposition 2 for
arbitrary order schemes. The truncation error can here be written under the
form

εni = u((n+ 1)∆t, xi)− u(n∆t, xi)
∆t + v

φ (u(n∆t, ·)) (xi)− φ (u(n∆t, ·)) (xi−1)
∆x .

(44)
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Let
û(·, θ) =

ˆ
R
u(·, x) e−iθxdx. (45)

be the Fourier transform û in the x variable of u. Then the Fourier symbol of
the operator φ in (44) is given by γν,k,p (θ∆x).

Moreover, we easily verify, thanks to the relations u(n∆t+∆t, x) = u(n∆t, x−
v∆t) and v∆t = v∆s− (r + 1)∆x that

û(n∆t+ ∆t, θ) = eiθ((r+1)−ν)∆xû(n∆t, θ).

Assuming that u(t, ·) ∈ L2(R) for all t, we have the following relation

u(·, x) = 1
2π

ˆ
R
û(·, θ)eiθxdθ. (46)

Now let express with thanks to the inversion formulae (46) the truncation error :

εni = 1
2π

ˆ
R

(
ei((r+1)−ν)θ∆x − 1

∆t + v
γν,k,p (θ∆x)

(
1− eiθ∆x)

∆x

)
û(n∆t, θ)eiθxidθ

= 1
2π

ˆ
R

(
ei((r+1)−ν)θ∆x − λν,k,p (θ∆x)

∆t

)
û(n∆t, θ)eiθxidθ

= 1
2π

∆s
∆t

ˆ
R

(
e−iνθ∆x − µν,k,p (θ∆x)

∆s

)
û(n∆t, θ)eiθxi+r+1dθ

(47)
thanks to (43) and (31). We now recognize at the right side the truncation
operator εni+r+1 of the semi-lagrangian scheme but with a time step equal to
∆s. At last, we obtain the following Proposition,

Proposition 13. One has the formula εni = ∆s
∆t ε

n
i+r+1 for all i and n, and for

all coefficients ν, p, k.

This expression is the generalization of Proposition 2 at any order.

4.4.2 Bounds

To continue we use a formula which is proved in [5]. We consider here the
scheme of time step ∆s and the amplification factor µν,k,p ; the truncation error
corresponding to this scheme is ε̄ni . According to [5] (1.5), the amplification
factor can be written on the following form :

µν,k,p (ψ) = e−iνψ(1− α(ψ))

where we have set for convenience

α(ψ) = ip+1αk,p(ν)2p
ˆ ψ

0
sinp

(ϕ
2

)
ei(k− p2 +ν)(ϕ)dϕ (48)
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and

αk,p(ν) =

p∏
q=0

(k + ν − q)

p! . (49)

Therefore the corresponding truncation error is, thanks to (47)

εni = 1
2π

1
∆s

ˆ
R
α(θ∆x)û(n∆t, θ)eiθxidθ (50)

A direct use of the kernel α is possible using the theory of Thomée [15, 16].
But it is much more efficient for our purposes to use the following trick. We
rewrite first (50) with a backward Fourier transform

û(n∆t, θ) =
ˆ
R
u(n∆t, x)e−iθxdx.

One obtains

εni = 1
2π∆s

ˆ
R
u(n∆t, x)

(ˆ
R
α(θ∆x)eiθ(xi−x)dθ

)
dx. (51)

Then we integrate p+ 1 times by parts with respect to x

εni = 1
2π∆s

ˆ
R
∂(p+1)
x u(n∆t, x)

(ˆ
R

α(θ∆x)
ip+1θp+1 e

iθ(xi−x)dθ

)
dx.

A restriction is that we must consider p ≥ 2 so that the internal integral is
absolutely convergent. This is not a real restriction since the case p = 1 is
elementary and can be treated separately as in Section 3. The kernel in the
integral is

βi(x) :=
ˆ
R

α(θ∆x)
ip+1θp+1 e

iθ(xi−x)dθ. (52)

One has the property :

Lemma 14. The kernel βi has compact support in [xi + (k− p)∆x, xi + k∆x].

Proof. The formula εni = 1
2π∆s

´
R ∂

(p+1)
x u(n∆t, x)βi(x)dx shows that the trun-

cation error is a function of ∂(p+1)
x u only, but not of the other derivatives. It is

evident that there exists an integral representation

εni =
ˆ xi+k∆x

xi+(k−p)∆x
K(x)∂(p+1)

x u(n∆t, x)dx

in the compact interval [xi + (k − p)∆x, xi + k∆x] for some kernel K. This is
due to two facts: the stencil of the scheme is compact; the order of the scheme
is p. Since the function ∂(p+1)

x u is arbitrary in these representation formulas, it
implies that

βi(x) = 2π∆sK(x) if xi + (k − p)∆x < x < xi + k∆x,
= 0 otherwise.
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This is why βi has indeed a compact support

εni = 1
2π∆s

ˆ xi+k∆x

xi+(k−p)∆x
∂(p+1)
x u(n∆t, x)βi(x)dx. (53)

See also Remark 17.

Proposition 15. There exists C > 0 such that

‖εn‖2 ≤ C
Ck,p

p
1
4

(1− ν)(v∆xp)
∥∥∥u(p+1)

0

∥∥∥
L2(R)

(54)

where Ck,p is defined by (39).

Proof. Thanks to (53), we get

|εni | ≤
1

2π∆s ‖βi‖L2(R)

∥∥∥∂(p+1)
x u(n∆t, ·)

∥∥∥
L2(xi+(k−p)∆x,xi+k∆x)

.

Since∑
i

∥∥∥∂(p+1)
x u(n∆t, ·)

∥∥∥2

L2(xi+(k−p)∆x,xi+k∆x)
= p

∥∥∥∂(p+1)
x u(n∆t, ·)

∥∥∥2

L2(R)

one gets that

‖εn‖2 =
(

∆x
∑
i

|εni |
2

) 1
2

≤ (p∆x) 1
2

2π∆s sup
i
‖βi‖L2(R)

∥∥∥∂(p+1)
x u(n∆t, ·)

∥∥∥
L2(R)

.

Now let us estimate ‖βi‖L2(R), for i ∈ Z. According to (52) and Proposition 14,
we have

‖βi‖L2(R) =
(ˆ

R

∣∣∣∣ˆ
R

α(θ∆x)
ip+1θp+1 e

iθ(xi−x)dθ

∣∣∣∣2 dx
)1/2

≤ C

(ˆ
R

|α(θ∆x)|2

θ2p+2 dθ

) 1
2

≤ C|αk,p(ν)|2p
ˆ

R

(ˆ θ∆x

0
| sinp(ϕ2 )|dϕ

)2
dθ

θ2p+2

 1
2

.

(55)

thanks to (48). Elementary changes of variable show that

ˆ
R

(ˆ θ∆x

0
| sinp(ϕ2 )|dϕ

)2
dθ

θ2p+2 = ∆x2p+1

22p−1

ˆ ∞
0

(ˆ θ

0
| sinp(ϕ)|dϕ

)2
dθ

θ2p+2 .
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Using (82) (see Annexe B) we get that

‖βi‖L2(R) ≤M
∆xp+ 1

2 |αk,p(ν)|
p1+ 1

4

from which we deduce

‖εn‖2 ≤
C

∆s
|αk,p(ν)|
p

1
2 + 1

4
∆xp+1

∥∥∥u(p+1)
0

∥∥∥
L2(R)

.

Finally we notice that |αk,p(ν)| = 1
p!

∣∣∣∣∣∣
k∏

l=k−p
(l + ν)

∣∣∣∣∣∣ and thanks to estimate (39),

we obtain
‖εn‖2 ≤ C

Ck,p

p
1
4

(1− ν)ν∆xp+1

∆s

∥∥∥u(p+1)
0

∥∥∥
L2(R)

. (56)

Since ν = v∆s/∆x, the claim is proved.

Theorem 16. Assume p = 2k, 2k + 1 or 2k + 2. One has the optimal error
estimate for all n such that n∆t ≤ T :

‖en‖2 ≤ Dk,p

(
1− v∆s

∆x

)
v∆s∆xp

∆t T‖u(p+1)
0 ‖L2(R) (57)

Proof. From Proposition 13 one gets the estimate for the true truncation error

‖εn‖2 ≤ Dk,p(1− ν)v∆s∆xp

∆t

∥∥∥u(p+1)
0

∥∥∥
L2(R)

.

Since by definition of the truncation error

en+1 = Rν,k,p en + ∆tεn (58)

one has the estimate
∥∥en+1

∥∥
2 ≤ ‖e

n‖2 +∆t ‖εn‖2. After summation over n time
steps (n∆t ≤ T ), one gets the result.

Remark 17. The comparison of (34) and (58) shows that gn = ∆tεn, that is
the interpolation error is proportional to the truncation error. In consequence
the kernel Qp+1

i is proportional to the kernel βi. So we understand that the
Fourier formula (55) is just a more accurate way to bound the L2 norm of the
B-spline, at least more accurate than the crude estimate of

∥∥∥Qp+1
i

∥∥∥
L∞

together
with ∥∥∥Qp+1

i

∥∥∥
L2
≤
∥∥∥Qp+1

i

∥∥∥ 1
2

L1

∥∥∥Qp+1
i

∥∥∥ 1
2

L∞
(59)

that was used in the proof of Proposition 9. This is why the constant Dk,p is
better than the constant Ck,p by a factor p− 1

4 for large p. More material about
the L∞ norm of Qp+1

i is provided in Appendix A.
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4.5 L∞ and L1 error estimates for odd order schemes
We first have the fundamental result [5].

Proposition 18. Assume that p = 2k+1. Then powers of the iteration operator
are uniformly bounded in Lq norms. More precisely there exists C > 0 such that∥∥∥(Rν,k,p)l

∥∥∥
q
≤ C, ∀l ∈ N, ∀ 1 ≤ q ≤ ∞, ∀v ∆t

∆x ≤ 1. (60)

It must be understood that r = −1.

The shifting technique of semi-lagrangian schemes allows to treat all values
of the CFL number, that is all values of r. We obtain

Proposition 19. Assume that p = 2k+1. Then powers of the iteration operator
are uniformly bounded in Lq norms. More precisely there exists C > 0 such that∥∥∥(Rν,k,p)l

∥∥∥
q
≤ C, ∀l ∈ N, ∀ 1 ≤ q ≤ ∞, ∀r. (61)

It is then easy to generalize the approach developed in Proposition 9 to
obtain

Theorem 20. Assume p = 2k + 1. One has the optimal error estimate for all
n such that n∆t ≤ T

‖en‖q ≤ Ek,p
(

1− v∆s
∆x

)
v∆s∆xp

∆t ‖u(p+1)
0 ‖Lq(R). (62)

5 Periodic domains
All results of the previous sections hold true in periodic domains. In particular
we will use the L2 error estimate (40) or (57) in the next section.

6 The Vlasov-Poisson equation
We propose in this section to apply estimates obtained in the previous section
to improve the error estimate proposed in [10] in the context of semi-lagrangian
schemes for the Vlasov-Poisson system. The adimensional Vlasov-Poisson equa-
tion in one dimension in space and in velocity reads

∂f

∂v
+ v

∂f

∂x
+ E(t, x)∂f

∂v
= 0, (63)

with
∂E

∂x
(t, x) =

ˆ +∞

−∞
f(t, x, v)dv − 1, (64)
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where f(t, x, v) is the distribution function of charged particles (ions or elec-
trons) and E(t, x) the self-consistent electric field. We consider periodic bound-
ary conditions on the variable x ∈ [0, L], that is

f(t, 0, v) = f(t, L, v), v ∈ R, t ≥ 0, (65)

and
E(t, 0) = E(t, L). (66)

In order to have a well-posed problem, we add to equation (63)–(66) the zero-
mean condition on the field E

ˆ L

0
E(t, x)dx = 0, t ≥ 0 (67)

and a initial condition

f(0, x, v) = f0(x, v), x ∈ L, v ∈ R. (68)

The electric field E is given by

E(t, x) =
ˆ L

0
K(x, y)

(ˆ
R
f(t, y, v)dv − 1

)
dy

where K is computed from the kernel of the Poisson equation.
We refer to [12], for example, for the existence, uniqueness and regularity of

the Vlasov-Poisson system (63)–(68). We will also assume that the initial data
has compact support. In consequence the solution has also a compact support
in velocity. It is enough to consider the domain v ∈ [−vmax, vmax] for t ≤ T .
The domain of simulation can be taken as

Ω = [0, L]per × [−vmax, vmax]per.

6.1 Numerical strategy and convergence
Let Nx, Nv ∈ N∗. We a define numerical approximation f (n) ∈ RNx×Nv , by

f
(n)
i,j , i = 0, . . . , Nx − 1, j = 0, . . . , Nv − 1, n ∈ N.

The L2 norm of a discrete function is defined in (5).
We introduce the reconstruction operator in the x direction Rx : RNx×Nv →
L∞([0, L])× RNv or Rx : RNx → L∞([0, L])

f(·) = Rxf.

In practice we use a Lagrangian interpolation of order p + 1 in the x direction
as described in (24).
We have the same definition for the reconstruction in the v direction Rv :
RNx×Nv → RNx × L∞([−vmax, vmax]) or Rv : RNv → L∞([−vmax, vmax])

f(·) = Rvf,
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with also a Lagrangian reconstruction of order p+ 1 but in the v direction.
We also define the reconstruction in both directions Rx ⊗ Rv : RNx×Nv →
L∞(Ωm) which is the "tensorial" product of the one dimensional reconstructions
Rx and Rv: that is we reconstruct first in the v direction and second in the x
direction. Notice that the result may be different if one reconstructs first in the
x direction and after that in the v direction, unless a compatibility condition is
satisfied for commutativity. In the context of this work, such a compatibility
condition is not required: the only thing is to guarantee the error estimate (72).
For a continuous function g ∈ C(Ω), we define the projected discrete function
Πg ∈ RNx×Nv , by

(Πg)i,j = g(xi, vj), i = 0, . . . , Nx − 1, j = 0, . . . , Nv − 1.

Definition 21. We define the discrete transport operator in the x direction
based on a semi-lagrangian scheme of order p+ 1 by Tx,s : RNx×Nv → RNx×Nv .

Definition 22. We define the discrete transport operator in the v direction based
on a semi-lagrangian scheme of order p+ 1 by Tv,E,s : RNx×Nv → RNx×Nv .

A fundamental result deduced from the stability property (33) is

‖Tx,s‖2 ≤ 1 and ‖Tv,E,s‖2 ≤ 1 (69)

for all s and E. This is automatically true is one uses the semi-Lagrangian
schemes or Strang’s stencil discussed in the first part of this paper.

We will also use the exact transport operators T̃x,s and T̃v,E,s defined for
functions.

6.1.1 Algorithm

The Vlasov-Poisson discrete scheme [6, 1, 10] reads

f (n+1) = Tx,∆t/2Tv,Enh ,∆tTx,∆t/2f
(n), n ∈ N, f (0) = Πf(0),

with the electric field calculated with the following approximation of the exact
kernel

Enh (x) =
ˆ L

0
K(x, y)

(ˆ vmax

−vmax

(
Rx ⊗RvTx,∆t/2f (n)

)
(y, v)dv − 1

)
dy. (70)

Remark 23. It can be checked that (70) is equivalent to

Enh (x) =
ˆ L

0
K(x, y)Rx

(ˆ vmax

−vmax

(
RvTx,∆t/2f (n)

)
(·, v)dv − 1

)
dy

which is more convenient for implementation purposes. On can notice that the
internal integral is

ρi =
ˆ vmax

−vmax

Rv
(
Tx,∆t/2f

(n)
i,·

)
(v)dv − 1 = ∆v

Nv−1∑
j=0
Tx,∆t/2f

(n)
i,j − 1,
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which provides an easy way to compute it. Another possibility could be to define
the discrete electric field with

Enh (x) =
ˆ L

0
K(x, y)

(ˆ vmax

−vmax

T̃x,∆t/2Rx ⊗Rvf (n)(y, v)dv − 1
)
dy.

This formula seems less evident to implement. For theoretical considerations all
formulas are equivalent provided the high order error formula (72) holds.

One notices that Enh may be calculated for any x in the domain, not only at
grid points x = xi. We will use this trick in the term ε4 in the decomposition
that follows.

6.1.2 Error decomposition

The numerical error is by definition e(n) ∈ RNx×Nv

e(n) = Πf(tn)− f (n).

We have the following error decomposition

e(n+1) = ε1 + ε2 + Tx,∆t/2ε3 + Tx,∆t/2ε4 + Tx,∆t/2Tv,Enh ,∆tε5,

with
ε1 =Πf(tn+1)−ΠT̃x,∆t/2T̃v,E,∆tT̃x,∆t/2f(tn),

ε2 =
(

ΠT̃x,∆t/2 − Tx,∆t/2Π
)
T̃v,E,∆tT̃x,∆t/2f(tn).

ε3 =Π
(
T̃v,E,∆t − ˜Tv,En

h
,∆t

)
T̃x,∆t/2f(tn),

ε4 =Π ˜Tv,En
h
,∆tT̃x,∆t/2f(tn)− Tv,En

h
,∆tΠT̃x,∆t/2f(tn),

ε5 =ΠT̃x,∆t/2f(tn)− Tx,∆t/2f (n),

6.1.3 Time error of the Strang’s splitting

We recall the following result (cf [1] for example)

Lemma 24. If f(tn) is bounded in W 1,∞(Ω), then

‖f(tn+1)− T̃x,∆t/2T̃v,E,∆tT̃x,∆t/2f(tn)‖L∞(Ω) ≤ CT∆t3.

We then get
‖ε1‖2 ≤ C1∆t3, (71)

since the domain is bounded and with periodic conditions, and the "initial data"
f(tn) has compact support inside Ω.
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6.1.4 Estimate for the electric field

The third term in the decomposition is

(ε3)i,j =f (tn, xi − (vj − En(xi)∆t)∆t/2, vj − En(xi)∆t)
− f (tn, xi − (vj − Enh (xi)∆t)∆t/2, vj − Enh (xi)∆t) ,

where we denote En the electric field calculated from T̃x,∆t/2f(tn)

En(x) :=
ˆ L

0
K(x, y)

(ˆ
R

(
T̃x,∆t/2f(tn)

)
(y, v)dv − 1

)
dy

One has
En(xi)− Enh (xi) =

ˆ L

0
K(xi, y)

ˆ vmax

−vmax

g(y, v)dvdy,

where
g =T̃x,∆t/2f(tn)−Rx ⊗RvΠT̃x,∆t/2f(tn)

+Rx ⊗Rv(ΠT̃x,∆t/2 − Tx,∆t/2Π)f(tn)
+Rx ⊗RvTx,∆t/2(Πf(tn)− f (n)).

By using (13) in [10], we get the following a priori estimate

max
i∈{0,...,Nx−1}

|En(xi)− Enh (xi)| ≤ C
(

max(∆x,∆v)p+1 + ‖e(n)‖2
)
. (72)

Moreover, since En ∈ L∞(O,L), we get

max
i∈{0,...,Nx−1}

|Enh (xi)| ≤ C ′(1 + ‖e(n)‖2 + max(∆x,∆v)p+1)

≤ C ′′(1 + ‖f (n)‖2 + ‖Πf(tn)‖2)
(73)

and then
sup
n≤ T

∆t

max
i∈{0,...,Nx−1}

|Enh (xi)| < +∞ (74)

by using the fact that

‖Πf(tn)‖2 ≤ 2vmaxL‖f(tn)‖L∞(Ω) ≤ 2vmaxL‖f(0)‖L∞(Ω),

and, from the stability estimates (69)

‖f (n)‖2 ≤ ‖f (0)‖2 ≤ 2vmaxL‖f(0)‖L∞(Ω).

6.1.5 Final proof of Theorem 1

Proof. The triangular inequality implies that

‖e(n+1)‖2 ≤ ‖ε1‖2 + ‖ε2‖2 + ‖ε3‖2 + ‖ε4‖2 + ‖ε5‖2.
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The first term is bounded using (71). The second term is bounded as

‖ε2‖2 ≤ C2ν∆xp+1

using (34)-(38). Using (72) the third term is bounded as

‖ε3‖2 ≤ C3∆t
(

max(∆x,∆v)p+1 + ‖e(n)‖2
)
.

The fourth term can also be written

ε4 =
(

Π ˜Tv,En
h
,∆t − Tv,En

h
,∆tΠ

)
T̃x,∆t/2f(tn) (75)

and then
‖(ε4)‖2 ≤ C4τv∆vp+1

where τv is an upper bound of all ν̃ = |Enh (xi)|∆s
∆v for all possible columns in the

domain of computation. One must be careful that ∆s is a function of v, but
anyway we have ∆s ≤ ∆t. Therefore, a sharp estimate for τv is, thanks to (74),

τv = min
(

sup
n≤ T

∆t

max
i∈{0,...,Nx−1}

|Enh (xi)|
∆t
∆v , 1

)
. (76)

Finally the fifth term can also be written

ε5 =
(

ΠT̃x,∆t/2 − Tx,∆t/2Π
)
f(tn) + Tx,∆t/2e(n), (77)

and then is bounded as

‖ε5‖2 ≤ ‖
(

ΠT̃x,∆t/2 − Tx,∆t/2Π
)
f(tn)‖2 + ‖e(n)‖2

which, using (34)-(38), yields

‖ε5‖2 ≤ C5τx∆xp+1 + ‖e(n)‖2.

In this formula τx is an upper bound of all ν = v∆s
∆x for all possible lines in the

domain of computation. Since v∆s ≤ ∆x and ∆s ≤ ∆t, one can take as sharp
estimate for τx

τx = min
(
vmax

∆t
∆x, 1

)
. (78)

Assuming for simplicity that ∆v = α∆x with a parameter α which is indepen-
dent of ∆x, one finds that, since ∆t ≤ T, ∆x ≤ L,

∆tmax(∆x,∆v)p+1 ≤ max(αp+1, 1)∆t∆xp+1

≤ max(αp+1, 1)(L+ T ) min( ∆t
∆x, 1)∆xp+1,
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and thus

‖e(n+1)‖2 ≤ ‖e(n)‖2 + c

(
min

(
∆t
∆x, 1

)
∆xp+1 + ∆t‖e(n)‖2 + ∆t3

)
≤ ec∆t‖e(n)‖2 + c

(
min

(
∆t
∆x, 1

)
∆xp+1 + ∆t3

)
since 1 + c∆t ≤ ec∆t. Therefore after summation

‖e(n)‖2 ≤ecn∆t‖e(0)‖2

+ c

(
min

(
∆t
∆x, 1

)
∆xp+1 + ∆t3

)(
1 + ec∆t + ec2∆t + · · ·+ ec(n−1)∆t

)
.

Since e(0) = 0 and n∆t ≤ T , it yields

‖e(n)‖2 ≤
(

min
(

∆t
∆x, 1

)
∆xp+1 + ∆t3

)
C

∆t , C > 0.

It ends the proof of Theorem 1.

A More about the L∞ norm of the B-splines
We give more material about B-splines and explain how to recover an opti-
mal L∞ norm starting from advanced results discussed in [11]. It provides an
alternative way to analyze (59).

A.1 B-Splines
We consider here the B-spline over the interval [0, 1] as in [11]. In the even case,
we consider the B2d+1,α spline over the 2d+ 2 points

0 < 1
2d < · · · <

d

2d ≤
d+ α

2d <
d+ 1

2d < · · · < 2d− 1
2d < 1,

and in the odd case, we consider the B2d+2,α spline over the 2d+ 3 points

0 < 1
2d+ 1 < · · · < d

2d+ 1 ≤
d+ α

2d+ 1 <
d+ 1
2d+ 1 < · · · < 2d

2d+ 1 < 1.

The B-splines are here defined so that
ˆ 1

0
B2d+1,α(x)dx = 1

2d+ 1 ,
ˆ 1

0
B2d+2,α(x)dx = 1

2d+ 2 .

We then look for sup
0≤α<1

‖B2d+1,α‖L∞ and sup
0≤α<1

‖B2d+2,α‖L∞ . We have (see

Theorem 5, in [11])

B2d+1,α(x) =
x− d+α

2d
2d B′2d+1,α(x) + B̃2d(x),
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where B̃2d is the uniform B-spline with 2d+ 1 points, and also

B2d+2,α(x) =
x− d+α

2d+1
2d+ 1 B′2d+2,α(x) + B̃2d+1(x),

where B̃2d+1 is the uniform B-spline with 2d+ 2 points. Now, let x∗2d+1,α such
that B2d+1,α(x∗2d+1,α) = ‖B2d+1,α‖L∞ . We have B′2d+1,α(x∗2d+1,α) = 0, and
thus ‖B2d+1,α‖∞ = B̃2d(x∗2d+1,α). We also have B2d+1,0(1/2) = B̃2d(1/2). We
then get

B2d+1,0(1/2) = B̃2d(1/2) = ‖B̃2d‖L∞ ≥ B̃2d(x∗2d+1,α) = ‖B2d+1,α‖L∞ ,

which means that (see proof of Theorem 4 in [11])

sup
0≤α<1

‖B2d+1,α‖L∞ = B̃2d(1/2) = 1
π

ˆ ∞
−∞

(
sin t
t

)2d
dt ∼

√
3
dπ
.

In the even case, we get similarly

B2d+2,1/2(1/2) = B̃2d+1(1/2) = ‖B̃2d+1‖L∞ ≥ B̃2d+1(x∗2d+2,α) = ‖B2d+2,α‖L∞ ,

which gives

sup
0≤α<1

‖B2d+2,α‖L∞ = B̃2d+1(1/2)

= 1
π

ˆ ∞
−∞

(
sin t
t

)2d+1
dt ∼

√
6

(2d+ 1)π ∼
√

3
dπ
.

As a consequence, we get similar formulas for even and odd cases

sup
0≤α<1

‖B2d+1,α‖2L2 ≤
1

(2d+ 1)π

ˆ ∞
−∞

(
sin t
t

)2d
dt ∼

√
3

4πd
−3/2, (79)

and

sup
0≤α<1

‖B2d+2,α‖2L2 ≤
1

(2d+ 2)π

ˆ ∞
−∞

(
sin t
t

)2d+1
dt ∼

√
3

4πd
−3/2. (80)

On Figure 3, we plot the numerical value of these quantities to see how well the
inequalities (79)–(80) behave for value of d = 2, . . . , 9. The numerical slope of
the graphic of d→ sup

0≤α<1
‖B2d+1,α‖2L2 in logarithmic scale increases (in absolute

value) from −1.08 to −1.35. We think that the the asymptotic value of the slope
is ≈ −1.5. It is reasonable to infer that the asymptotic slope is indeed −1.5
which, if it is true, will prove that (79-80) are optimal.
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Figure 3: sup0≤α<1 ‖B2d+1,α‖2L2 , sup0≤α<1 ‖B2d+2,α‖2L2 and
√

3
4πd
−3/2 versus

d (From bottom to top). We observe that the numerical slopes get closer and
closer to the theoretical guess − 3

2 .

A.2 Link with Qp+1
i

Qp+1
i has it support in [xi+r+1+k−p, xi+r+1+k], contains p+ 2 points and

ˆ xi+r+1+k

xi+r+1+k−p

Qp+1
i (x)dx = 1

p+ 1 .

We then consider Sp+1(t) = Qp+1
i (xi+r+1+k−p + tp∆x), which has it support in

[0, 1]. We have ˆ 1

0
Sp+1(t)dt = 1

p(p+ 1)∆x.

On the other hand, Bp+1,α contains p + 2 points, has it support in [0, 1] and´ 1
0 Bp+1,α(t)dt = 1

p+2 . We deduce that

p(p+ 1)∆xSp+1(t) = (p+ 2)Bp+1,α(t),

and thus
Qp+1
i (x) = p+ 2

p(p+ 1)∆xBp+1,α

(
x− xi+r+1+k−p

p∆x

)
.

We finally get the optimal bound

0 ≤ Qp+1
i (x) ≤ p+ 2

p(p+ 1)∆x
1
π

ˆ ∞
−∞

(
sin t
t

)p+1
dt ∼ 1

∆x

√
6
π
p−3/2. (81)
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Remark 25. The comparison of inequality (81) with the non optimal formula
(37) shows that (81) is better by a factor p− 1

2 . Using it in (59), we can improve
the estimation of ‖Qp+1

i ‖L2 by a factor p−1/4 and thus obtain (54) by a different
method.

B A Lemma
Lemma 26. There exists a constant M > 0 independent of p ≥ 2 such thatˆ ∞

0

(ˆ θ

0
| sinp(ϕ)|dϕ

)2
dθ

θ2p+2

 1
2

≤ M

p1+ 1
4
. (82)

Proof. Since | sin(ϕ)| ≤ ϕ for ϕ ≥ 0 one gets
´ θ

0 | sin
p(ϕ)|dϕ ≤ θp+1

p+1 . So

A :=
ˆ ∞

0

(ˆ θ

0
| sinp(ϕ)|dϕ

)2
dθ

θ2p+2 ≤
1

p+ 1

ˆ ∞
0

ˆ θ

0
| sin(ϕ)|pdϕ dθ

θp+1 .

Therefore

A ≤ 1
p+ 1

ˆ ∞
0

(ˆ ∞
ϕ

1
θp+1 dθ

)
| sin(ϕ)|pdϕ = 1

p(p+ 1)

ˆ ∞
0

| sin(ϕ)|p

ϕp
dϕ.

Without restriction, we assume that p ≥ 2 so that all integrals are convergent.
The last integral is bounded as

ˆ ∞
0

| sin(ϕ)|p

ϕp
dϕ =

ˆ 1

0
· · ·+

ˆ ∞
1
· · · ≤

ˆ 1

0

| sin(ϕ)|p

ϕp
dϕ+ 1

p+ 1 .

Moreover there exists a constant k > 0 such that sin(ϕ) ≤ ϕ−kϕ3 for 0 ≤ ϕ ≤ 1.
Then
ˆ 1

0

| sin(ϕ)|p

ϕp
dϕ ≤

ˆ 1

0
(1− kϕ2)pdϕ ≤

ˆ 1

0
e−pkϕ

2
dϕ ≤

ˆ ∞
0

e−pkϕ
2
dϕ = 1

2

√
π

pk
.

Fnally A ≤ 1
p(p+1)

(
1
2

√
π
pk + 1

p+1

)
from which we deduce the claim.
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