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Optimal Control Problem

state x(t) ∈ R
n, control u(t) ∈ R

m .

Dynamics and Boundary Conditions

ẋ(t) = f (t, x(t), u(t)), a.e. t ∈ [0, tf ],

x(t) = x̄0 , ψ(x(tf )) = 0 (ψ : R
n → R

r ).

Control and State Constraints

c(x(t), u(t)) ≤ 0 , 0 ≤ t ≤ tf , ( c : R
n × R

m → R
k )

s(x(t)) ≤ 0 , 0 ≤ t ≤ tf , ( s : R
n → R

l )

Minimize

J(u, x) = g(x(tf )) +

∫

tf

0
f0(t, x(t), u(t)) dt
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Discretization

For simplicity consider a MAYER–type problem with cost functional

J(u, x) = g(x(tf )) .

This can achieved by considering the additional state variable x0

with
ẋ0 = f0(x , u) , x0(0) = 0 .

Then we have

x0(tf ) =

∫

tf

0
f0(t, x(t), u(t)) .

Choose an integer N ∈ N, a stepsize h and grid points ti :

h = tf /N , ti : = ih , (i = 0, 1, . . . ,N) .

Approximation of control and state at grid points:

u(ti ) ≈ ui ∈ R
m , x(ti ) ≈ xi ∈ R

n (i = 0, . . . ,N)
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Large-scale NLP using EULER’s method

Minimize

J(u, x) = g(xN)

subject to

xi+1 = xi + h · f (ti , xi , ui ), i = 0, ..,N − 1,

x0 = x̄0 , ψ(xN) = 0,

c(xi , ui ) ≤ 0 , i = 0, ..,N,

s(xi ) ≤ 0 , i = 0, ..,N,

Optimization variable for full discretization:

z := (u0, x1, u1, x2, ..., uN−1, xN , uN) ∈ R
N(m+n)+m
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NLP Solvers

AMPL : Programming language (Fourer, Gay, Kernighan)

IPOPT : Interior point method (Andreas Wächter)

LOQO : Interior point method (Vanderbei et al.)

Other NLP solvers embedded in AMPL : cf. NEOS server

NUDOCCCS : optimal control package (Christof Büskens)

WORHP : SQP solver (Christof Büskens, Matthias Gerdts)

Special feature: solvers provide LAGRANGE-multipliers as
approximations of the adjoint variables.
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Optimal Control Problem with Control-State Constraints

State x(t) ∈ R
n, Control u(t) ∈ R

m.
All functions are assumed to be suffciently smooth

Dynamics and Boundary Conditions

ẋ(t) = f (x(t), u(t)), a.e. t ∈ [0, tf ],

x(0) = x0 ∈ R
n, ψ(x(tf )) = 0 ∈ R

k ,

( 0 = ϕ(x(0), x(tf )) mixed boundary conditions )

Mixed Control-State Constraints

α ≤ c(x(t), u(t)) ≤ β , t ∈ [0, tf ], c : R
n × R

m → R

Control bounds α ≤ u(t) ≤ β are included by c(x , u) = u.

Minimize

J(u, x) = g(x(tf )) +

∫

tf

0
f0(x(t), u) dt
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Hamiltonian

Hamiltonian

H(x , λ, u) = λ0 f (x , u) + λ f (x , u) λ ∈ R
n (row vector)

Augmented Hamiltonian

H(x , λ, µ, u) = H(x , λ, u) + µ c(x , u)
= λ0 f (x , u) + λ f (x , u) + µ c(x , u), µ ∈ R .

Let (u, x) ∈ L∞([0,T ],Rm) ×W1,∞([0,T ],Rn) be a

locally optimal pair of functions.

Regularity assumption

cu(x(t), u(t)) 6= 0 ∀ t ∈ Ja

Ja := { t ∈ [0, tf ] | c(x(t), u(t)) = α or = β }
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Minimum Principle of Pontryagin et al. and Hestenes

Let (u, x) ∈ L∞([0, tf ],R
m) ×W1,∞([0, tf ],R

n) be a locally
optimal pair of functions that satisfies the regularity
assumption. Then there exist

an adjoint (costate) function λ ∈ W1,∞([0, tf ],R
n) and a

scalar λ0 ≥ 0 ,

a multiplier function µ ∈ L∞([0, tf ],R),

and a multiplier ρ ∈ R
r associated to the boundary

condition ψ(x(tf )) = 0

that satisfy the following conditions for a.a. t ∈ [0, tf ], where
the argument (t) denotes evaluation along the trajectory
(x(t), u(t), λ(t)) :
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Minimum Principle of Pontraygin et al. and Hestenes

(i) Adjoint ODE and transversality condition:

λ̇(t) = −Hx(t) = −(λ0 f0 + λ f )x(t) − µ(t) cx(t) ,

λ(tf ) = (λ0 g + ρψ)x(x(tf )) ,

(iia) Minimum Condition for Hamiltonian:

H(x(t), λ(t), u(t)) = min {H(x(t), λ(t), u) | α ≤ c(x(t), u) ≤ β }

(iib) Local Minimum Condition for Augmented Hamiltonian:

0 = Hu(t) = (λ0 f0 + λ f )u(t) + µ(t) cu(t)

(iii) Sign of multiplier µ and complementarity condition:

µ(t) ≤ 0, if c(x(t), u(t)) = α ; µ(t) ≥ 0, if c(x(t), u(t)) = β ,

µ(t) = 0 , if α < c(x(t), u(t)) < β .
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Evaluation of the Minimum Principle: boundary arc

Boundary arc: Let [t1, t2] , 0 ≤ t1 < t2 < tf , be an interval with

c(x(t), u(t)) = α or c(x(t), u(t)) = β ∀ t1 ≤ t ≤ t2 .

For simplicity assume a scalar control, i.e., m = 1 .
Due to the regularity condition cu(x(t), u(t)) 6= 0 there exists a
smooth function ub(x) satisfying

c(x , ub(x)) ≡ α (≡ β) ∀ x in a neighborhood of the trajectory.

The control ub(x) is called the boundary control and yields the

optimal control by the relation u(t) = ub(x(t)) .

It follows from the local minimum condition 0 = Hu = Hu + µ cu

that the multiplier µ is given by

µ = µ(x , λ) = −Hu(x , λ, ub(x)) / cu(x , ub(x)) .
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Case I : Regular Hamiltonian, u is continuous

CASE I : Consider optimal control problems which satisfy the

Assumption: The Hamiltonian H(x , λ, u) is regular, i.e., it admits a
unique minimum u. The strict Legendre condition holds:

Huu(t) > 0 ∀ t ∈ [0, tf ] .

(a) Then there exists a ”free control” u = u free(x , λ) satisfying

Hu(x , λ, u free(x , λ)) ≡ 0 .

(b) The optimal control u(t) is continuous in [0, tf ] .

Claim (b) follows from the continuity and regularity of H.

The continuity of the control implies junctions conditions at
junction points tk (k = 1, 2) with the boundary:

u free(x(tk), λ(tk)) = ub(x(tk)) , µ(tk) = 0 (k = 1, 2).
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Rayleigh Problem with Quadratic Control

The Rayleigh problem is a variant of the van der Pol Oszillator,
where x1 denotes the electric current.

Control problem for the Rayleigh Equation

Minimize J(x , u) =
tf
∫

0

(u2 + x2
1 ) dt (tf = 4.5)

subject to

ẋ1 = x2, x1(0) = −5,
ẋ2 = −x1 + x2(1.4 − 0.14x2

2 ) + 4u, x2(0) = −5.

Three types of constraints:

Case (a) : no control constraints.
Case (b) : control constraint −1 ≤ u(t) ≤ 1 .
Case (c) : mixed control-state constraint

α ≤ u(t) + x1(t)/6 ≤ 0, α = −1,−2
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Case I (a) : Rayleigh problem, no constraint

Normal Hamiltonian:

H(x , λ, u) = u2 + x2
1 + λ1 x2 + λ2 (−x1 + x2(1.4 − 0.14x2

2 ) + 4u)

Adjoint Equations:

λ̇1 = −Hx1 = −2x1 + λ2 λ1(tf ) = 0,

λ̇2 = −Hx2 = −λ1 − λ2(1.4 − 0.42x2
2 ) λ2(tf ) = 0,

Minimum condition:

0 = Hu = 2u + 4λ2 ⇒ u = u free(x , λ) = −2λ2 .

Shooting method for solving the boundary value problem for (x , λ):
Determine unknown shooting vector s = λ(0) ∈ R

2 that satisfies
the terminal condition λ(tf ) = 0 : use Newton’s method
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Case I : Rayleigh problem without constraints
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Note: Hamiltionian is regular, control u(t) is continuous (analytic).
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Case I (b) : Rayleigh problem, constraint −1 ≤ u(t) ≤ 1

Hamiltonian H and adjoint equations are as in Case (a).
The free control is given by u free(x , λ) = −2λ2 .
Structure of optimal control:

u(t) =















1 for 0 ≤ t ≤ t1
−2λ2(t) for t1 ≤ t ≤ t2

−1 for t2 ≤ t ≤ t3
−2λ2(t) for t3 ≤ t ≤ tf















Junction conditions: Continuity of the control implies

u(tk) = −2λ2(tk) = 1 | − 1 | − 1 , k = 1, 2, 3 .

Shooting method for solving the boundary value problem for (x , λ):
Determine shooting vector s = (λ(0), t1, t2, t3) ∈ R

2+3 that
satisfies 2 terminal conditions λ(tf ) = 0 and 3 junction conditions.
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Rayleigh problem with control constraint | u(t) | ≤ 1
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Note: Hamiltonian is regular, control u(t) is continuous.
Junction conditions: −2λ2(tk) = 1 | − 1 | − 1 , k = 1, 2, 3
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Case I (c) : Rayleigh problem, −1 ≤ u + x1/6 ≤ 0

Augmented (normal) Hamiltonian:

H(x , λ, µ, u) = u2 + x2
1 + λ1 x2

+λ2 (−x1 + x2(1.4 − 0.14x2
2 ) + 4u) + µ(u + x1/6)

Adjoint Equations:

λ̇1 = −Hx1 = −2x1 + λ2 − µ/6 , λ1(tf ) = 0,

λ̇2 = −Hx2 = −λ1 − λ2(1.4 − 0.42x2
2 ) λ2(tf ) = 0,

Free control : u free(x , λ) = −2λ2 .

Boundary control : ub(x) = α− x1/6 for α ∈ {−1, 0} .

Multiplier :

µ = µ(x , λ) = −Hu(x , λ, ub(x)) / cu(x , ub(x)) = 2ub(x) + 4λ2 .
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Case I (c) : Rayleigh problem, −1 ≤ u + x1/6 ≤ 0
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Hamiltonian is regular, control u(t) is continuous.
Junction conditions: −2λ(tk) = α− x1(tk)/6 , α ∈ {0,−1}.
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Case I (c) : Rayleigh problem, structure of optimal control
for mixed constraint −1 ≤ u + x1/6 ≤ 0
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mixed constraint  -1 <= u + x1/6  <= 0

u(t) =































−x1/6 for 0 ≤ t ≤ t1
−2λ2(t) for t1 ≤ t ≤ t2

−1 − x1/6 for t2 ≤ t ≤ t3
−2λ2(t) for t3 ≤ t ≤ t4
−x1/6 for t4 ≤ t ≤ t5

−2λ2(t) for t5 ≤ t ≤ tf






























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Case II : control u appears linearly

CASE II : Control appears linearly in the cost functional, dynamics
and mixed control-state constraint. Let u be scalar.

Dynamics and Boundary Conditions

ẋ(t) = f1(x(t)) + f2(x(t)) · u(t), a.e. t ∈ [0, tf ],

x(0) = x0 ∈ R
n, ψ(x(tf )) = 0 ∈ R

k ,

Mixed Control-State Constraints

α ≤ c1(x(t)) + c2(x(t)) · u(t) ≤ β ∀t ∈ [0, tf ]. c1, c2 : R
n → R

Minimize

J(u, x) = g(x(tf )) +

∫

tf

0
( f01(x(t)) + f02(x(t) ) · u(t) dt
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Case II : Hamiltonian and switching function

Normal Hamiltonian

H(x , λ, u) = f01(x) + λf1(x) + [ f02(x) + λf2(x) ] · u .

Augmented Hamiltonian

H(x , λ, µ, u) = H(x , λ, u) + µ (c1(x) + c2(x) · u)

The optimal control u(t) solves the minimization problem

min {H(x(t), λ(t), u) | α ≤ c1(x(t)) + c2(x(t)) · u ≤ β }

Define the switching function

σ(x , λ) = Hu(x , λ, u) = f02(x) + λf2(x) , σ(t) = σ(x(t), λ(t)) .
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Case II : Hamiltonian

The minimum condition is equivalent to the minimization problem

min {σ(t) · u) | α ≤ c1(x(t)) + c2(x(t)) · u ≤ β }

We deduce the control law

c1(x(t))+c2(x(t))·u(t) =







α , if σ(t) · c2(x(t)) > 0
β , if σ(t) · c2(x(t)) < 0

undetermined if σ(t) ≡ 0







The control u is called bang-bang in an interval I ⊂ [0, tf ], if
σ(t) · c2(x(t)) 6= 0 for all t ∈ I . The control u is called singular in
an interval Ising ⊂ [0, tf ], if σ(t) · c2(x(t)) ≡ 0 for all t ∈ Ising.

For the control constraint α ≤ u(t) ≤ β with c1(x) = 0, c2(x) = 1
we get the classical control law

u(t) =







α , if σ(t) > 0
β , if σ(t) < 0

undetermined , if σ(t) ≡ 0






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Bang-Bang and Singular Controls
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Case II : Rayleigh problem with −1 ≤ u(t) ≤ 1

Rayleigh problem with control appearing linearly

Minimize J(x , u) =
tf
∫

0

(x2
1 + x2

2 ) dt (tf = 4.5)

subject to

ẋ1 = x2, x1(0) = −5 ,
ẋ2 = −x1 + x2(1.4 − 0.14x2

2 ) + 4u , x2(0) = −5,

−1 ≤ u(t) ≤ 1 .

Adjoint Equations:

λ̇1 = −Hx1 = −2x1 + λ2 , λ1(tf ) = 0,

λ̇2 = −Hx2 = −2x2 − λ1 − λ2(1.4 − 0.42x2
2 ) , λ2(tf ) = 0,

The switching function σ(t) = Hu(t) = 4λ2(t) gives the
control law

u(t) = −sign (λ2(t))

.
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Case II : Rayleigh problem, −1 ≤ u(t) ≤ 1
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Control u(t) is bang-bang-singular.
Switching conditions: λ(t1) = 0 , λ2(t) ≡ 0 ∀ t ∈ [t2, tf ].
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Case II : Rayleigh problem, α ≤ u + x1/6 ≤ 0

Minimize J(x , u) =
tf
∫

0

(x2
1 + x2

2 ) dt (tf = 4.5)

subject to

ẋ1 = x2, x1(0) = −5 ,
ẋ2 = −x1 + x2(1.4 − 0.14x2

2 ) + 4u , x2(0) = −5,

and the mixed control-state constraint

α ≤ u(t) + x1(t)/6 ≤ 0 ∀ 0 ≤ t ≤ tf .

Adjoint Equations:

λ̇1 = −Hx1 = −2x1 + λ2 − µ/6 , λ1(tf ) = 0,

λ̇2 = −Hx2 = −2x2 − λ1 − λ2(1.4 − 0.42x2
2 ) , λ2(tf ) = 0,
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Control law for α ≤ u + x1/6 ≤ 0

The switching function is σ(t) = Hu(t) = 4λ2(t) .
In view of c2(x) ≡ 1 we have the control law

u + x1/6 =







α < 0 , if λ2(t) > 0
0 , if λ2(t) < 0
undetermined , if λ2(t) ≡ 0






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Case II : Rayleigh problem, −1 ≤ u + x1/6 ≤ 0
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Note: constraint u(t) + x1(t)/6 is ”bang-bang”.
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Case II : Rayleigh problem, −2 ≤ u + x1/6 ≤ 0
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Note: constraint u(t) + x1(t)/6 is ”bang-singular-bang-singular”.
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Optimal Fishing, Clark, Clarke, Munro

Colin W. Clark, Frank H. Clarke, Gordon R. Munro:
The optimal exploutation of renewable resource stock: problem of

irreversible investment, Econometric 47, pp. 25–47 (1979).

State variables and control variables:

x(t) : population biomass at time t ∈ [0, tf ] ,
renewable resource, e.g., fish,

K (t) : amount of capital invested in the fishery,
e.g., number of ”standardized” fishing vessels available,

E (t) : fishing effort (control), h(t) = E (t)x(t) is harvest rate ,

I (t) : investment rate (control),
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Optimal Fishing: optimal control model

Dynamics in [0, tf ] ( here: a = 1, b = 5, γ = 0 )

ẋ(t) = a · x(t) · (1 − x(t)/b) − E (t) · x(t) , x(0) = x0 ,

K̇ (t) = I (t) − γ · K (t) , K (0) = K0 .

Mixed Control-State Constraint and Control Constraint

0 ≤ E (t) ≤ K (t) , 0 ≤ I (t) ≤ Imax , t ∈ [0, tf ],

Maximize benefit ( parameters: r = 0.05, cE = 2, cI = 1.1 )

J(u, x) =

∫

tf

0
exp(−r · t)( p · E (t) · x(t) − cE · E (t) − cI · I (t) ) dt
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Optimal Fishing: x0 = 0.5, K0 = 0.2, Imax = 0.5
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Optimal Fishing: x0 = 0.5,K0 = 0.6, Imax = 0.5
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 controls E, I  and state variables  0.5*x , K   
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Fishing rate : E (t) = 0, E (t) = singular, E (t) = K (t).

Investment rate : I (t) = 0, I (t) = Imax , I (t) = 0.
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Optimal Fishing: x0 = 0.2,K0 = 0.1, Imax = 0.1
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Fishing rate : E (t) = 0, E (t) = K (t), E (t) singular, E (t) = K (t).

Investment rate : 2 arcs with I (t) = Imax .

Helmut Maurer Tutorial on Control and State Constrained Optimal Control Problems



Optimal Control Problems with Control and State Constraints Numrical Method: Discretize and Optimize Theory of Optimal Control

Optimal Fishing: x0 = 1.0, K0 = 0.5, Imax = 3
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Fishing rate : E (t) = 0, E (t) singular E (t) = K (t),

Investment rate : 1 ”impulse” with I (t) = Imax .
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