Data-Driven Trajectory Smoothing - Archive ouverte HAL Access content directly
Reports (Research Report) Year : 2011

Data-Driven Trajectory Smoothing

(1) , (2) , (2) , (2) , (3)
1
2
3
Frédéric Chazal
Daniel Chen
  • Function : Author
  • PersonId : 911696
Leonidas J. Guibas
  • Function : Author
  • PersonId : 850076
Xiaoye Jiang
  • Function : Author
  • PersonId : 911697
Christian Sommer
  • Function : Author
  • PersonId : 911698

Abstract

Motivated by the increasing availability of large collections of noisy GPS traces, we present a new data-driven framework for smoothing trajectory data. The framework, which can be viewed of as a generalization of the classical moving average technique, naturally leads to efficient algorithms for various smoothing objectives. We analyze an algorithm based on this framework and provide connections to previous smoothing techniques. We implement a variation of the algorithm to smooth an entire collection of trajectories and show that it perform well on both synthetic data and massive collections of GPS traces.
Fichier principal
Vignette du fichier
RR-7754.pdf (1.65 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00629932 , version 1 (07-10-2011)

Identifiers

  • HAL Id : inria-00629932 , version 1

Cite

Frédéric Chazal, Daniel Chen, Leonidas J. Guibas, Xiaoye Jiang, Christian Sommer. Data-Driven Trajectory Smoothing. [Research Report] RR-7754, INRIA. 2011. ⟨inria-00629932⟩
182 View
743 Download

Share

Gmail Facebook Twitter LinkedIn More