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THE CACTUS RANK OF CUBIC FORMS

ALESSANDRA BERNARDI, KRISTIAN RANESTAD

Abstract. We prove that the smallest degree of an apolar 0-dimensional scheme of a
general cubic form in n+1 variables is at most 2n+2, when n ≥ 8, and therefore smaller
than the rank of the form. For the general reducible cubic form the smallest degree of an
apolar subscheme is n+ 2, while the rank is at least 2n.

Introduction

The rank of a homogeneous form F of degree d is the minimal number of linear forms
L1, . . . , Lr needed to write F as a sum of pure d-powers:

F = Ld
1 + · · ·+ Ld

r .

Various other notions of rank, such as cactus rank and border rank, appear in the study of
higher secant varieties and are closely related to the rank. The cactus rank is the minimal
length of an apolar subscheme to F , while the border rank is the minimal r such that F is a
limit of forms of rank r. The notion of cactus rank is inspired by the cactus varieties studied
in [Buczynska, Buczynski 2010]. For irreducible cubic forms that do not define a cone, the
cactus rank is minimal for cubics of Fermat type, e.g. F = x3

0 + · · · + x3
n. In this case all

three ranks coincide. There are however other cubic forms with minimal cactus rank whose
border rank is strictly higher. We show that the cactus rank is smaller than the rank for a
general form, as soon as the degree is at least 3 and the number of variables is at least 9.
This result follows from the computation of a natural upper bound for the cactus rank that
we conjecture is sharp for general cubic forms.

The rank of forms has seen growing interest in recent years. This work is close in line
to [Iarrobino 1994], [Iarrobino, Kanev 1999] and [Elias, Rossi 2011], in their study of apo-
larity and the local Gorenstein algebra associated to a polynomial. Applications to higher
secant varieties can be found in [Chiantini, Ciliberto, 2002], [Buczynska, Buczynski 2010] and
[Landsberg, Ottaviani 2011], while the papers [Landsberg, Teitler 2010], [Brachat et al. 2010],
[Bernardi et al. 2011] and [Carlini et al. 2011] concentrate on effective methods to compute
the rank and to compute an explicit decomposition of a form. In a different direction, the rank
of cubic forms associated to canonical curves has been computed in [De Poi, Zucconi 2011a]
and [De Poi, Zucconi 2011b].

1. Apolar Gorenstein subschemes

We consider homogeneous polynomials F ∈ S = C[x0, . . . , xn], and consider the dual ring
T = C[y0, . . . , yn] acting on S by differention:

yj(xi) =
d

dxj

(xi) = δij .

With respect to this action S1 and T1 are natural dual spaces and < x0, . . . , xn > and
< y0, . . . , yn > are dual bases. In particular T is naturally the coordinate ring of P(S1) the
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projective space of 1-dimensional subspaces of S1, and vice versa. The annihilator of F is an
ideal F⊥ ⊂ T , and the quotient TF = T/F⊥ is graded Artinian and Gorenstein.

Definition 1. A subschemeX ⊂ P(S1) is apolar to F if the homogeneous ideal IX ⊂ F⊥ ⊂ T .

F admits some natural finite local apolar Gorenstein subschemes. Any local Gorenstein
subscheme is defined by an (in)homogeneous polynomial: For any f ∈ Sx0

= C[x1, . . . , xn],
the annihilator f⊥ ⊂ Ty0

= C[y1, . . . , yn] defines an Artinian Gorenstein quotient Tf =
Ty0

/f⊥. Now, Spec(Tf ) is naturally a subscheme in P(S1). Taking f = F (1, x1, . . . , xn) we
show that Spec(Tf ) is apolar to F . In fact, F admits a natural apolar Gorenstein subscheme
for any linear form in S.

Any nonzero linear form l ∈ S belongs to a basis (l, l1, . . . , ln) of S1, with dual basis
(l′, l′1, . . . , l

′
n) of T1. In particular the homogeneous ideal in T of the point [l] ∈ P(S1) is

generated by {l′1, . . . , l
′

n}, while {l1, . . . , ln} generate the ideal of the point φ([l]) ∈ P(T1),
where φ : P(T1) → P(S1), yi 7→ xi, i = 0, . . . , n.

The form F ∈ S defines a hypersurface {F = 0} ⊂ P(T1). The Taylor expansion of
F with respect to the point φ([l]) may naturally be expressed in the coordinates functions
(l, l1, . . . , ln). Thus

F = a0l
d + a1l

d−1f1(l1, . . . , ln) + · · ·+ adfd(l1, . . . , ln).

We denote the corresponding dehomogenization of F with respect to l by Fl, i.e.

Fl = a0 + a1f1(l1, . . . , ln) + · · ·+ adfd(l1, . . . , ln).

Also, we denote the subring of T generated by {l′1, . . . , l
′

n} by Tl′ . It is the natural coordinate
ring of the affine subspace {l′ 6= 0} ⊂ P(S1).

Lemma 1. The Artinian Gorenstein scheme Γ(Fl) defined by F⊥

l ⊂ Tl′ is apolar to F , i.e.

the homogenization (F⊥

l )h ⊂ F⊥ ⊂ T .

Proof. If g ∈ F⊥

l ⊂ C[l′1, . . . , l
′
n], then g = g1 + · · · + gr where gi is homogeneous in degree

i. Similarly Fl = f = f0 + · · · + fd. The annihilation g(f) = 0 means that for each e ≥ 0,
∑

j gjfe+j = 0. Homogenizing we get

gh = G = (l′)r−1g1 + · · ·+ gr, fh = F = ldf0 + · · ·+ fd

and
G(F ) =

∑

e

∑

j

ld−r−egjfe+j =
∑

e

ld−r−e
∑

j

gjfe+j = 0.

�

Remark 1. (Suggested by Mats Boij) The ideal (F⊥

l )h may be obtained without deho-
mogenizing F . Write F = leFd−e, such that l does not divide Fd−e. Consider the form
F2(d−e) = ld−eFd−e. Unless d − e = 0, i.e. F = ld, the degree d − e part of the annihilator

(F2(d−e))
⊥

d−e generates an ideal in (l)⊥ and the saturation sat(F2(d−e))
⊥

d−e) coincides with

(F⊥

l )h. In fact if G ∈ Td−e then

G(F2(d−e)) = G(ld−eFd−e) = G(ld−e)Fd−e + lG(ld−e−1)Fd−e

so G(F2(d−e)) = 0 only if G(ld−e) = 0.

Apolarity has attracted interest since it characterizes powersum decompositions of F , cf.
[Iarrobino, Kanev 1999], [Ranestad, Schreyer 2000]. The annihilator of a power of a linear
form ld ∈ S is the ideal of the corresponding point pl ∈ PT in degrees at most d. Therefore
F =

∑r

i=1 l
d
i only if IΓ ⊂ F⊥ where Γ = {pl1 , . . . , plr} ⊂ PT . On the other hand, if
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IΓ,d ⊂ F⊥

d ⊂ Td, then any differential form that annihilates each ldi also annihilates F , so, by
duality, [F ] must lie in the linear span of the [ldi ] in P(Sd). Thus F =

∑r

i=1 l
d
i if and only if

IΓ ⊂ F⊥.
Various notions of rank for F are therefore naturally defined by apolarity : The cactus

rank cr(F ) is defined as

cr(F ) = min{lengthΓ | Γ ⊂ P(T1), dimΓ = 0, IΓ ⊂ F⊥},

the smoothable rank sr(F ) is defined as

sr(F ) = min{lengthΓ | Γ ⊂ P(T1) smoothable, dimΓ = 0, IΓ ⊂ F⊥}

and the rank r(F ) is defined as

r(F ) = min{lengthΓ | Γ ⊂ P(T1) smooth, dimΓ = 0, IΓ ⊂ F⊥}.

Clearly cr(F ) ≤ sr(F ) ≤ r(F ). A separate notion of border rank, br(F ), often considered,
is not defined by apolarity. The border rank is rather the minimal r, such that F is the limit
of polynomials of rank r. Thus br(F ) ≤ sr(F ). These notions of rank coincide with the no-
tions of length of annihilating schemes in Iarrobino and Kanev book [Iarrobino, Kanev 1999,
Definition 5.66]: Thus cactus rank coincides with the scheme length, cr(F ) = lsch(F ), and
smoothable rank coincides with the smoothable scheme length, sr(F ) = lschsm(F ), while
border rank coincides with length br(F ) = l(F ). In addition they consider the differential
length ldiff(F ), the maximum of the dimensions of the space of k-th order partials of F as
k varies between 0 and degF . This length is the maximal rank of a catalecticant or Hankel
matrix at F , and is always a lower bound for the cactus rank: ldiff(F ) ≤ cr(F ).

For a general form F in S of degree d the rank, the smoothable rank and the border rank
coincide and equals, by the Alexander Hischowitz theorem,

br(F ) = sr(F ) = r(F ) =

⌈

1

n+ 1

(

n+ d

d

)⌉

,

when d > 2, (n, d) 6= (2, 4), (3, 4), (4, 3), (4, 4). The local Gorenstein subschemes considered
above show that the cactus rank for a general polynomial may be smaller. Let

Nd =

{

2
(

n+k
k

)

when d = 2k + 1
(

n+k
k

)

+
(

n+k+1
k+1

)

when d = 2k + 2
(1)

and denote by Diff(F ) the subspace of S generated by the partials of F of all orders, i.e. of
order 0, . . . , d = degF .

Theorem 1. Let F ∈ S = C[x0, . . . , xn] be a homogeneous form of degree d, and let l ∈
S1 =< x0, . . . , xn > be any linear form. Let Fl be a dehomogenization of F with respect to l.
Then

cr(F ) ≤ dimKDiff(Fl).

In particular

cr(F ) ≤ Nd.

Proof. According to Lemma 1 the subscheme Γ(Fl) ⊂ P(T1) is apolar to F . The subscheme
Γ(Fl) is affine and has length equal to

dimkTl′/F
⊥

l = dimKDiff(Fl).
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If all the partial derivatives of Fl of order at most ⌊d
2⌋ are linearly independent, and the

partial derivatives of higher order span the space of polynomials of degree at most ⌊d
2⌋, then

dimKDiff(Fl) = 1 + n+

(

n+ 1

n− 1

)

+ · · ·+

(

n+ ⌊d
2⌋

n− 1

)

+ · · ·+ n+ 1 = Nd.

Clearly this is an upper bound so the theorem follows. �

Question 1. What is the cactus rank cr(n, d) for a general form F ∈ C[x0, . . . , xn]d?

If Γ computes the rank (resp. smoothable rank or cactus rank) of F , then Γ is locally
Gorenstein [Buczynska, Buczynski 2010, proof of Proposition 2.2]. Every local Gorenstein
scheme Γ in PT is isomorphic to Spec(C[y1, . . . , yr]/g

⊥) for some polynomial g ∈ C[x1, . . . , xr]
(cf. [Iarrobino 1994, Lemma 1.2]). If Γ is a local Gorenstein component of an apolar sub-
scheme to F , then the number r of variables in the polynomial g defining Γ is at most n
but the degree of g may be larger than the degree of F . In particular, even local apolar
subschemes of minimal length may not be of the kind Γ(Fl), described above.

2. Cubic forms

If F ∈ S is a general cubic form, then the cactus rank according to Theorem 1 is at most
2n+ 2.

If F is a general reducible cubic form in S and l is a linear factor, then f = Fl is a quadratic
polynomial and Γ(f) is smoothable of length at most n + 2: The partials of a nonsingular
quadratic polynomial in n variables form a vector space of dimension n + 2, so this is the
length of Γ(f). On the other hand let E be an elliptic normal curve of degree n+2 in Pn+1.
Let T (E) be the homogeneous coordinate ring of E. A quotient of T (E) by two general linear
forms is artinian Gorenstein with Hilbert function (1, n, 1) isomorphic to Tq for a quadric q
of rank n. Thus Tf is isomorphic to Tq and Γ(f) is smoothable.

Theorem 2. For a general cubic form F ∈ C[x0, . . . , xn], the cactus rank is

cr(F ) ≤ 2n+ 2.

For a general reducible cubic form F ∈ C[x0, . . . , xn] with n > 1, the cactus rank and the

smoothable rank are

cr(F ) = sr(F ) = n+ 2.

Proof. It remains to show that for a general reducible cubic form cr(F ) ≥ n + 2. If Γ ⊂ PT

has length less than n + 1 it is contained in a hyperplane, so IΓ ⊂ F⊥ only if the latter
contains a linear form. If {F = 0} is not a cone, this is not the case. If Γ ⊂ PT has length
n + 1, then, for the same reason, this subscheme must span PT . Its ideal in that case is
generated by

(

n+1
2

)

quadratic forms. If F is general, F⊥

2 is also generated by
(

n+1
2

)

, so they
would have to coincide. On the other hand this equality is a closed condition on cubic forms.
If F = x0(x

2
0 + · · ·+ x2

n), then

F⊥

2 =< y1y2, . . . , yn−1yn, y
2
0 − y21, . . . , y

2
0 − y2n > .

In particular dimF⊥

2 =
(

n+1
2

)

, But the quadrics F⊥

2 do not have any common zeros, so
cr(F ) ≥ n + 2. The general reducible cubic must therefore also have cactus rank at least
n+ 2 and the theorem follows. �

Remark 2. By [Landsberg, Teitler 2010, Theorem 1.3] the lower bound for the rank of a
reducible cubic form that depends on n+ 1 variables and not less, is 2n.
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If F = x0F1(x1, . . . , xn) where F1 is a quadratic form of rank n, then cr(F ) = sr(F ) =
n+ 1, the same as for a Fermat cubic, while the rank is at least 2n.

We give another example with cr(F ) = n+ 1 < sr(F ). Let G ∈ C[x1, . . . , xm] be a cubic
form such that the scheme Γ(G) = Spec(C[y1, . . . , ym]/G⊥) has length 2m + 2 and is not
smoothable. By [Iarrobino 1984, Section 4A]m ≥ 6 suffice. Denote byG1 = y1(G), . . . , Gm =
ym(G) the first order partials of G. Let

F = G+ x0x1xm+1 + · · ·+ x0xmx2m + x2
0x2m+1 ∈ C[x0, . . . , x2m+1].

Then
Fx0

= G+ x1xm+1 + · · ·+ xmx2m + x2m+1

and
Diff(Fx0

) =< Fx0
, G1 + xm+1, . . . , Gm + x2m, x1, . . . , xm, 1 >

so dimDiff(Fx0
) = 2m + 2. Therefore Γ(Fx0

) is apolar to F and computes the cactus rank
of F . Since {F = 0} is not a cone, Γ(Fx0

) is nondegenerate, so its homogeneous ideal is
generated by the quadrics in the ideal of F⊥. In particular Γ(Fx0

) is the unique apolar
subscheme of length 2m + 2. Since this is not smoothable, the smoothable rank is strictly
bigger.

By Theorem 2 the cactus rank of a generic cubic form F ∈ C[x0, . . . , xn] is at most 2n+2.
The first n for which 2n+2 is smaller than the rank r(F ) = ⌈ 1

n+1

(

n+3
3

)

⌉ of the generic cubic

form in n+ 1 variables is n = 8, where r(F ) = 19 and cr(F ) ≤ 18.

Conjecture 1. The cactus rank cr(F ) of a generic homogeneous cubic F ∈ k[x0, . . . , xn]
equals the rank when n ≤ 7 and equals 2n+ 2 when n ≥ 8.

In the third Veronese embedding Pn → P(
n+3

3 )−1, the span of each subscheme Γ ⊂ Pn of
length d is a linear space LΓ of dimension at most d− 1. The cactus rank of a general cubic
form is then the minimal d such that the linear spaces LΓ spanned by length d subschemes

Γ fill P(
n+3

3 )−1.
For this minimum it suffices to consider the subscheme of the Hilbert scheme parameteriz-

ing locally Gorenstein schemes, i.e. all of whose componenets are local Gorenstein schemes, cf.
[Buczynska, Buczynski 2010]. Furthermore, any local Gorenstein scheme of length at most
10 is smoothable (cf. [Casnati, Notari 2011a]), so the conjecture holds for n ≤ 5. Casnati and
Notari has recently extended their result to length at most 11, (cf. [Casnati, Notari 2011b]),
which means that the conjecture holds also when n = 6. There are nonsmoothable local
Gorenstein algebras of length 14 (cf. [Iarrobino 1984]), so for n ≥ 7 a different argument is
needed to confirm or disprove the conjecture.
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