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Abstract: We consider a task graph to be executed on a set of homogeneous processors. We
aim at minimizing the energy consumption while enforcing two constraints: a prescribed bound
on the execution time (or makespan), and a reliability threshold. Dynamic voltage and frequency
scaling (DVFS) is a model frequently used to reduce the energy consumption of a schedule, but
it has negative effect on its reliability. In this work, to improve the reliability of a schedule while
reducing the energy consumption, we allow for the re-execution of some tasks. We assess the
complexity of the tri-criteria scheduling problem (makespan, reliability, energy) with two different
speed models: either processors can have arbitrary speeds (continuous speeds), or a processor can
run at a finite number of different speeds, and it can change its speed during a computation. We
propose several novel tri-criteria scheduling heuristics under the continuous speed model, and we
evaluate them through a set of simulations. Our two best heuristics turn out to be very efficient
and complementary.

Key-words: Scheduling; energy; fault-tolerance; reliability; re-execution; models; complexity;
polynomial heuristics.



Minimisation de l’énergie d’un ordonnancement sous

contraintes de fiabilité et de temps d’exécution

Résumé : Considérons un graphe de tâches devant être exécutées sur un ensemble de processeurs
homogènes. Notre but est de minimiser la consommation d’énergie, sans dépasser une limite de
temps, et en respectant une borne de fiabilité. Un modèle fréquemment utilisé pour réduire la
consommation d’énergie, est le changement dynamique de voltage et de fréquence (DVFS). Mal-
heureusement ses effets sur la fiabilité du systèmes sont négatifs. Dans ce travail, afin de concilier
diminution de l’énergie du système et contrainte sur la fiabilité, nous autorisons la ré-exécution de
certaines tâches. Nous donnerons la complexité du problème d’ordonnancement tri-critère intro-
duit (énergie, fiabilité, temps d’exécution) pour deux modèles de vitesse différents : d’une part les
processeurs peuvent utiliser n’importe quelle vitesse (modèle continu), ou un processeur ne peut
travailler que sur un nombre fini de vitesses, mais il peut changer de vitesse pendant son exécution.
Nous proposons plusieurs heuristiques polynomiales pour résoudre ces problèmes tri-critères. Puis
nous les évaluons au travers d’un ensemble de simulation. Il se trouve que nos deux meilleures
heuristiques sont très efficaces et complémentaires.

Mots-clés : Ordonnancement; modèles énergétiques; tolérance aux fautes; fiabilité; ré-exécution;
modèles; complexité; heuristiques polynômiales.
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1 Introduction

Energy-aware scheduling has proven an important issue in the past decade, both for economical
and environmental reasons. This holds true for traditional computer systems, not even to speak
of battery-powered systems. More precisely, a processor running at speed s dissipates s3 watts per
unit of time [4, 6, 7], hence it consumes s3 × d joules when operated during d units of time. To
help reduce energy dissipation, processors can run at different speeds. A widely used technique
to reduce energy consumption is dynamic voltage and frequency scaling (DVFS), also known as
speed-scaling [4, 6, 7]. Two popular models for processor speeds are the following:

Continuous: Processors can have arbitrary speeds, and can vary them continuously in the
interval [fmin, fmax]. This model is unrealistic (any possible value of the speed, say

√
eπ , cannot

be obtained) but it is theoretically appealing [6].
Vdd-Hopping: A processor can run at a finite number of different speeds (f1, ..., fm). It can

also change its speed during a computation (hopping between different voltages, and hence speeds).
Any rational speed can therefore be simulated [13]. The energy consumed during the execution of
one task is the sum, on each time interval with constant speed f , of the energy consumed during
this interval at speed f .

While energy consumption can be reduced by using speed scaling techniques, it was shown in
[24, 8] that speed scaling increases the number of transient fault rates of the system. In order to
make up for the loss in reliability due to the energy efficiency, different models have been proposed
for fault-tolerance.

• Re-execution: this is the model under study in this work, and it consists in re-executing a
task that does not meet the reliability constraint. It was also studied in [24, 16].

• Replication: this model, studied in [1, 10], consists in executing the same task on p different
processors simultaneously, in order to meet the reliability constraints.

• Checkpointing: this model, studied in [12, 22], consists in ”saving” the work done at some
certain points of the work, hence reducing the amount of work lost when a failure occurs.

This work focuses on the re-execution model, for several reasons. On the one hand, replication
is too costly in terms of energy consumption: even if the first execution turns out successful
(no failure occurred), the other executions will still have to take place. On the other hand,
checkpointing is hard to manage with parallel processors, and too costly if there are not too many
failures. Altogether, it is the ”online/no-waste” characteristic of the corresponding algorithms that
lead us focus on re-execution.

Consider a Directed Acyclic Graph (DAG) of n tasks that has to be computed on p identical
processors. The traditional scheduling objective consists in minimizing the execution time, or
makespan, to process the DAG. In order to do so, the DAG is mapped on the processors and
an execution speed is assigned to each task of the DAG. Using these speeds, we can define an
energy and a reliability for the DAG. In this work, we present theoretical results and novel tri-
criteria heuristics that use re-execution in order to minimize the energy consumption under the
constraints of both a reliability threshold and a deadline bound. These criteria are formally defined
in Section 3.

The rest of the paper is organized as follows. We survey related work in Section 2 before
presenting our three main contributions. The first contribution is a formal model of the tri-
criteria scheduling problem under consideration (Section 3). The second contribution is to provide
theoretical results for the different speed models, Continuous (Section 4) and Vdd-Hopping

(Section 5). The third contribution is the design of tri-criteria scheduling heuristics that use re-
execution to increase the reliability of a system under the continuous model (Section 6), and their
evaluation through extensive simulations (Section 7). To the best of our knowledge, this is the
first attempt to propose practical solutions to this tri-criteria problem. Finally, we give concluding
remarks in Section 8.

RR n° 7757
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2 Related work

Since the introduction of DVFS, many papers have dealt with the optimization of energy consump-
tion while enforcing a deadline [4, 6, 7, 3]. In our previous work [3], we consider a task graph to be
executed on a set of processors. We assume that the mapping is given, and we aim at optimizing
the energy consumption while enforcing a prescribed bound on the execution time. While it is
not possible to change the allocation of a task, it is possible to change its speed. This technique,
which consists in exploiting the slack due to workload variations, is called slack reclaiming [11, 17].
In [3], we have shown that this problem has polynomial complexity both for the Continuous and
Vdd-Hopping speed models, but it is NP-hard for discrete speeds. In this work, we tackle a much
more challenging problem, since we do not assume that the mapping of the graph is given, and we
investigate the impact of re-execution to increase reliability.

Even though it has been pointed out that DVFS increases the probability of failures exponen-
tially, and that this probability cannot be neglected in large-scale computing [14], very few authors
have tackled the problem of optimizing the three criteria simultaneously: makespan, reliability and
energy. The closest works to ours are [16, 24, 1].

Izosinov et al [16] study a tri-criteria optimization problem. They consider heterogeneous
architectures. However, the DAG is already mapped on the architecture and each processor has
the same set of speeds, so the fact that the architecture is heterogeneous does not really appear.
They do not have any formal energy model. Furthermore, and this is the reason why we will not
be able to compare our work to their method, they assume that the user will specify the maximum
number of failures per processor tolerated to satisfy the reliability constraint.

Zhu et al [24] are also addressing a tri-criteria optimization problem: minimizing the energy
consumption while enforcing a deadline and matching reliability constraints. In order to do so,
they choose some tasks that will have to be re-executed in order to match the reliability constraint.
They simplify the scheduling problem by working on a single processor (as we will see, the problem
is still NP-complete).

Finally, Assayad et al [1] have recently proposed an off-line tri-criteria scheduling heuristic
(TSH). TSH uses active replication to minimize the schedule length, its global failure rate and
its power consumption. They work on a homogeneous platform, fully connected. TSH is an
improved critical-path list scheduling heuristic that takes into account power and reliability before
deciding which task to assign and to duplicate onto the next free processors. The complexity of
this heuristic is unfortunately exponential in the number of processors. Their heuristic however
has the advantage of taking communication costs between processors into account. Future work
will be devoted to compare our heuristics to TSH.

3 Models

Consider an application task graph G = (V, E), where V = {T1, T2, . . . , Tn} is the set of tasks,
n = |V |, and where E is the set of precedence edges between tasks. For 1 ≤ i ≤ n, task Ti has a
weight wi, that corresponds to the computation requirement of the task. We assume that we have
a parallel platform made up of p identical processors. Each processor has a set of available speeds
that is either continuous (in the interval [fmin, fmax]) or discrete (with m modes {f1, · · · , fm}),
depending on the speed model. The goal is to the minimize the energy consumed during the
execution of the graph while enforcing a deadline bound and matching a reliability threshold.
To match the reliability threshold, some tasks will be executed once, and some tasks will be
re-executed. We detail below the conditions that are enforced on the corresponding execution
speeds.

In this section, for the sake of clarity, we assume that a task is executed at the same (unique)
speed throughout execution. In Section 4, we show that this strategy is optimal for the Continu-

ous model; in Section 5, we show that only two different speeds are needed for the Vdd-Hopping

model (and we update the corresponding formulas accordingly).

RR n° 7757
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3.1 Makespan

The makespan of a schedule is its total execution time. The first task is scheduled at time 0, so that
the makespan of a schedule is simply the maximum time at which one of the processors finishes
its computations. We consider a deadline bound D, which is a constraint on the makespan. A
schedule specifies the tasks that are re-executed, and the speed at which each task is executed
(and possibly re-executed), and its makespan should not be greater than D.

Let Exe(wi, fi) be the execution time of a task Ti of weight wi at speed fi. We assume that
the cache size is adapted to the application, therefore ensuring that the execution time is linearly
related to the frequency [12]: Exe(wi, fi) =

wi

fi
. When a task is scheduled to be re-executed at two

different speeds f1
i and f2

i , we always account for both executions, even when the first execution is
successful: in other words, we consider a worst-case execution scenario, and the deadline D must
be matched even in the case where all tasks that are re-executed fail during their first execution.

3.2 Reliability

We use the fault model of Zhu and Aydin [23]. Transient failures are faults caused by software
errors for example. They invalidate only the execution of the current task and the processor
subject to that failure will be able to recover and execute the subsequent task assigned to it (if
any). In addition, we use the reliability model introduced by Shatz and Wang [21], which states
that the radiation-induced transient faults follow a Poisson distribution. The parameter λ of the
Poisson distribution is then:

λ(f) = λ̃0 e
d̃ fmax−f

fmax−fmin , (1)

where fmin ≤ f ≤ fmax is the processing speed, the exponent d̃ ≥ 0 is a constant, indicating the
sensitivity of fault rates to DVFS, and λ̃0 is the average fault rate corresponding to fmax. We see
that reducing the speed for energy saving increases the fault rate exponentially. The reliability of
a task Ti executed once at speed fi is:

Ri(fi) = e−λ(fi)×Exe(wi,fi).

Because the fault rate is usually very small, of the order of 10−6 per time unit in [5, 16], 10−5

in [1], we can use the first order approximation of Ri(fi) as

Ri(fi) = 1− λ(fi)× Exe(wi, fi)

= 1− λ̃0 e
d̃

fmax−fi
fmax−fmin × wi

fi

= 1− λ0 e−dfi × wi

fi
, (2)

where d = d̃
fmax−fmin

and λ0 = λ̃0e
dfmax .

We want the reliability of each task Ti to be greater than a given threshold, namely Ri(frel).
If task Ti is executed only once, then frel is the minimum speed at which Ti must be executed to
match the reliability constraint (recall that the reliability of a task increases with its speed). If

task Ti is re-executed, then let f
(1)
i be the speed of the first execution and f

(2)
i be the speed of

the second execution. The execution of Ti is successful if and only if both attempts do not fail, so

that the reliability of Ti with re-execution is Ri = 1 − (1 − Ri(f
(1)
i ))(1 − Ri(f

(2)
i )), and we want

this quantity to be at least equal to Ri(frel). If task Ti is executed only once at speed fi, we let
Ri = Ri(fi), and the reliability constraint finally writes:

Reliability : Ri ≥ Ri(frel) for 1 ≤ i ≤ n . (3)

RR n° 7757
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3.3 Energy

If task Ti is executed once at speed fi , the consumed energy is

Ei = Ei(fi) = Exe(wi, fi)× f3
i , (4)

which corresponds to the dynamic part of the classical energy models of the literature [4, 6, 7, 3].
Note that we do not take static energy into account, because all processors are up and alive during
the whole execution.

If task Ti is re-executed at speeds f
(1)
i and f

(2)
i , it is natural to add up the energy consumed

during both executions, just as we add up both execution times when enforcing the makespan
deadline. Again, this corresponds to the worst-case execution scenario. We obtain:

Ei = Ei(f
(1)
i ) + Ei(f

(2)
i ) . (5)

Note that some authors [23] consider only the energy spent for the first execution, which seems
unfair: re-execution comes at a price both in the deadline and in the energy consumption. The
total energy consumed by the schedule is

Energy : E =

n
∑

i=1

Ei , (6)

where Ei is defined by Equation (4) if Ti is not re-executed, and by Equation (5) otherwise.

3.4 Optimization problem

With two speed models, we have two variants of the tri-criteria optimization problem.

Definition 1. Tri-Crit-Cont. Given an application graph G = (V, E) and p homogeneous
processors with continuous speeds, Tri-Crit-Cont is the problem of minimizing the energy
consumption in Equation (6), subject to the deadline bound D and to the reliability constraint of
Equation (3).

Definition 2. Tri-Crit-Vdd. This is the same problem as Tri-Crit-Cont, but with the
Vdd-Hopping speed model.

4 Continuous model

If we assume that fmin = frel = fmax, we can easily reduce Tri-Crit-Cont to a classical
scheduling problem that is NP-complete as soon as there are two processors [9]. However this
result is not very interesting. We want to show that even without considering the mapping issue,
the problem is still NP-hard. In order to do so, in this section we consider linear chains of tasks.
For a linear chain, we have E = ∪n−1

i=1 {Ti → Ti+1}, and any list scheduling mapping is always
optimal, for any processor number (there is always only one order to map the tasks).

In this section, after establishing the optimality of unique-speed execution per task, we show
that finding the solution of Tri-Crit-Cont on a linear chain and with a single processor is NP-
hard. We conclude with additional results that will guide the design of the heuristics in Section 6.

4.1 Optimality of unique-speed execution per task

Lemma 1. With the Tri-Crit-Cont model, it is optimal to execute each task at a unique speed
throughout its execution.

Proof. First let us assume that the function that gives the speed of the execution of a task is a
piecewise-constant function. The general proof is a direct corollary from the theorem that states
that any piecewise-continuous function defined on an interval [a, b] can be uniformly approximated

RR n° 7757
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as closely as desired by a piecewise-constant function [19]. Therefore, this proof is valid for any
piecewise-continuous function.

Suppose that in the optimal solution, there is a task whose speed changes during the execution.
Consider the first time-step at which the change occurs: the computation begins at speed f from
time t to time t′, and then continues at speed f ′ until time t′′. The total energy consumption
for this task in the time interval [t, t′′] is E = (t′ − t) × f3 + (t′′ − t′) × (f ′)3. Moreover, the
amount of work done for this task is W = (t′ − t)× f + (t′′ − t′)× f ′. The reliability of the task is

exactly 1− λ0

(

(t′ − t)× e−df + (t′′ − t′)× e−df ′

+ r
)

, where r is a constant due to the reliability

of the rest of the process, which is independent from what happens during [t, t′′]. The reliability
is a function that increases when the function h(t, t′, t′′, f, f ′) = (t′ − t)× e−df + (t′′ − t′)× e−df ′

decreases.
If we run the task during the whole interval [t, t′′] at constant speed W/(t′′ − t), the same

amount of work is done within the same time, and the energy consumption during this interval
of time becomes E′ = (t′′ − t) × (W/(t′′ − t))3. Note that the new speed can be expressed as

fd = af + (1− a)f ′, where 0 < a = t′−t
t′′−t < 1. Therefore, because of the convexity of the function

x 7→ x3, we have E′ < E. Similarly, since x 7→ e−dx is a convex function, h(t, t′, t′′, f, f ′) <
h(t, t′, t′′, fd, fd), and the reliability constraint is also matched. This contradicts the hypothesis of
optimality of the first solution, and concludes the proof.

Next we show that not only a task is executed at a single speed, but that its re-execution
(when it occurs) is executed at the same speed as the first execution:

Lemma 2. With the Tri-Crit-Cont model, it is optimal to re-execute each task (whenever
needed) at the same speed as its first execution.

Proof. Consider a task Ti executed a first time at speed fi, and a second time at speed f ′
i > fi.

Assume first that d = 0, i.e., the reliability of task Ti executed at speed fi is Ri(fi) = 1 − λ0
wi

fi
.

We show that executing task Ti twice at speed f =
√

fif ′
i improves the energy consumption while

matching the deadline and reliability constraints. Clearly the reliability constraint is matched,
since 1 − λ2

0w
2
i

1
f2 = 1 − λ2

0w
2
i

1
fif ′

i
. The fact that the deadline constraint is matched is due to

the fact that
√

fif ′
i ≥ 2fif

′

i

fi+f ′

i
(by squaring both sides of the equation we obtain (fi − f ′

i)
2 ≥ 0).

Then we use the fact that fd =
2fif

′

i

fi+f ′

i
is the minimal speed such that ∀f ≥ fd,

2wi

f < wi

fi
+ wi

f ′

i
.

Finally, it is easy to see that the energy consumption is improved since 2fif
′
i ≤ f2

i + f ′2
i , hence

2wifif
′
i ≤ wif

2
i + wif

′2
i .

In the general case when d 6= 0, instead of having a closed form formula for the new speed
f common to both executions, we have f = max(f1, f2), where f1 is dictated by the reliability
constraint, while f2 is dictated by the deadline constraint. f1 is the solution to the equation
2(dX + lnX) = (dfi + ln fi)+ (df ′

i + ln f ′
i); this equation comes from the reliability constraint: the

minimum speed X to match the reliability is obtained with 1− λ2
0w

2
i
e−dfi

fi
e−df′

i

f ′

i
= 1− λ2

0w
2
i
e−2dX

X2 .

The deadline constraint must also be enforced, and hence f2 =
2fif

′

i

fi+f ′

i
(minimum speed to match

the deadline). Then the fact that the energy does not increase comes from the convexity of this
function.

Note that the unique-speed result applies to any solution of the problem, not just optimal
solutions, hence all heuristics of Section 6 will assign a unique speed to each task, be it re-executed
or not.

4.2 Intractability of Tri-Crit-Cont

Theorem 1. The Tri-Crit-Cont problem is NP-hard, but not known to be in NP.

RR n° 7757
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Proof. Consider the associated decision problem: given a deadline, and energy and reliability
bounds, can we schedule the graph to match all these bounds? Since the speeds could take any
real values, the problem is not known to be in NP. For the completeness, we use a reduction from
SUBSET-SUM [9]. Let I1 be an instance of SUBSET-SUM: given n strictly positive integers
a1, . . . , an, and a positive integer X, does there exist a subset I of {1, . . . , n} such that

∑

i∈I ai =
X? Let S =

∑n
i=1 ai.

We build the following instance I2 of our problem. The execution graph is a linear chain with
n tasks, where:

• task Ti has weight wi = ai;
• λ0 = fmax

100maxi ai
;

• fmin =
√
λ0 maxi aifmax = 1

10fmax;

• D0 = S
fmax

+ X
cfmax

, where

c = 4
√

2
7 cos

1
3 (π − tan−1 1√

7
)− 1 (≈ 0.2838);

• frel = fmax; d = 0; R0
i = Rfrel

i = 1− λ0
wi

frel
;

• E0 = 2X(
2c

1 + c
frel)

2 + (S −X)f2
rel

.

Clearly, the size of I2 is polynomial in the size of I1.
Suppose first that instance I1 has a solution, I. For all i ∈ I, Ti is executed twice at

speed
2c

1 + c
frel. Otherwise, for all i /∈ I, it is executed at speed frel one time only. The ex-

ecution time is
∑

i/∈I
ai

frel
+
∑

i∈I 2
ai

2c
1+c frel

= S−X
frel

+ 2X 1+c
2cfrel

= D0. The reliability constraint is

obviously met for tasks not in I. It is also met for all tasks in I, since
2c

1 + c
frel > fmin and two ex-

ecutions at fmin suffice to match the reliability constraint. Indeed, 1−λ2
0

a2
i

f2
min

= 1−λ0
ai

frel
· a2

i

maxi ai
≥

1− λ0
ai

frel
= R0

i . The energy consumption is exactly E0. All bounds are respected, and therefore
the execution speeds are a solution to I2.

Suppose now that I2 has a solution. Let I = {i | Ti is executed twice in the solution }. Let
Y =

∑

i∈I ai. We prove in the following that necessarily Y = X in order to match the energy
constraint E0.

We first point out that tasks executed only once are necessarily executed at maximum speed
to match the reliability constraint. Then consider the problem of minimizing the energy of a
set of tasks, some executed twice, some executed once at maximum speed, and assume that we
have a deadline D0 to match, but no constraint on reliability or on fmin. We will verify later
that these additional two constraints are indeed satisfied by the optimal solution when the only
constraint is the deadline. Thanks to Corollary 2, for all i ∈ I, fi = f ′

i (where f ′ is the speed of
the second execution). Because the deadline is the sonly constraint, either Y = 0 (no tasks are
re-executed), or it is optimal to match the deadline (otherwise we could just slow down one of the
re-executed tasks and this would decrease the total energy). Hence the problem amounts to find
the values of Y and f that minimize the function E = 2Y f2 + (S − Y )f2

rel
with the constraint

(S − Y )/frel + 2Y/f ≤ D0. First, denote that if Y = 0 then E > E0. Hence, we can assume
that Y > 0. Then we have f = 2Y

D0frel−(S−Y )frel because of the previous remark (tight deadline).

Plugging back the value of f in E, we have:

E(Y ) =

(

(2Y )3

(D0frel − (S − Y ))2
+ (S − Y )

)

f2
rel

,

which admits a unique minimum when Y = c(D0frel − S) = X. To see this, define Ỹ = Y
D0frel−S .

Then we have: E(Ỹ ) =
(

(2Ỹ )3

(1+Ỹ )2
+ ( S

D0frel−S − Ỹ )
)

(D0frel − S)f2
rel

. Differentiating, we ontain

E′(Ỹ ) =
(

3·23Ỹ 2

(1+Ỹ )2
− 24Ỹ 3

(1+Ỹ )3
− 1
)

(D0frel − S)f2
rel

. Then E′ = 0 iff

24Ỹ 2(1 + Ỹ )− 16Ỹ 3 − (1 + Ỹ )3 = 0. (7)
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The only positive solution of Equation (7) is Ỹ = c, hence the result. Note that when Y = X,
then E = E0, so any other value of Y will not be valid. There remains to check that the solution
matches both constraints on fmin and on reliability. We have f = 2c

1+cfrel > fmin, which shows
that both constraints hold for task in I. Other tasks are executed at speed frel. Altogether, we
have

∑

i∈I ai = Y = X, and therefore I1 has a solution. This concludes the proof.

4.3 Additional results

Proposition 1. Consider a linear chain execution on a single processor, with the Tri-Crit-

Cont model. Suppose frel < fmax. In any optimal solution, either all tasks are executed only

once, and at constant speed max(
∑n

i=1
wi

D , frel), or at least one task is re-executed, and then all
those tasks that are not re-executed are executed at speed frel.

Proof. Consider an optimal schedule. If all tasks are executed only once, the smallest energy

consumption is obtained when using the constant speed
∑n

i=1
wi

D . However if
∑n

i=1
wi

D < frel, then
we have to execute all tasks at speed frel to match both reliability and deadline constraints.

Now, assume that some task Ti is re-executed, and assume by contradiction, that some other
task Tj is executed only once at speed fj > frel. Note that the common speed fi used in both
executions of Ti is smaller than frel, otherwise we would not need to re-execute Ti. We have
fi < frel < fj , and we prove that there exist values f ′

i (new speed of Ti) and f ′
j (new speed of

Tj) such that fi < f ′
i ≤ frel ≤ f ′

j < fj , and the energy consumed with the new speeds is strictly
smaller, while the execution time is unchanged. The constraint on reliability will also be met,
since the speed of Ti is increased while the speed of Tj remains above the reliability threshold.

Our problem writes: does there exist ǫ, ǫ′ > 0 such that:

wif
2
i + wjf

2
j > wi(fi + ǫ′)2 + wj(fj − ǫ)2;

D =
wi

fi
+

wj

fj
=

wi

fi + ǫ′
+

wj

fj − ǫ
;

fi < fi + ǫ′ ≤ frel ≤ fj − ǫ < fj .

This is equivalent to:

wif
2
i + wjf

2
j > wi(fi + ǫ′)2 + wj(fj − ǫ)2;

ǫ′ =
wi

D − wj

fj−ǫ

− fi;

0 < ǫ ≤ fj −max

(

frel,
wi + wj
wi

fi
+

wj

fj

)

.

Let φ : ǫ 7→ wif
2
i +wjf

2
j −
(

wi(fi + ǫ′)2 + wj(fj − ǫ)2
)

. Then φ(ǫ) =
w3

i f
2
j

(Dfj−wj)2
− w3

i (fj−ǫ)2

(D(fj−ǫ)−wj)2
+

wjf
2
j −wj(fj − ǫ)2. We want to prove that φ is positive when 0 < ǫ ≤ fj −max

(

frel,
wi + wj
wi

fi
+

wj

fj

)

.

Differentiating, we obtain φ′(ǫ) =

2w3
i (fj − ǫ)

(D(fj−ǫ)−wj)2
− 2Dw3

i (fj − ǫ)2

(D(fj−ǫ)−wj)3
+ 2wj(fj − ǫ),

which simplifies into the polynomial

X3 + 3X2 + 3X +
w3

i

w3
j

+ 1 = 0,

by multiplying each side of the equation by
(D(fj−ǫ)−wj)

3

w3
j (fj−ǫ)

, and defining X =
D(fj−ǫ)−wj

wj
. The

only real solution to this polynomial is −wi

wj
− 1 < 0, hence ∀ǫ > 0, φ′(ǫ) < 0. We deduce that φ

is minimal when ǫ is maximal, that is: ǫ = fj −max

(

frel,
wi + wj
wi

fi
+

wj

fj

)

.
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Altogether we have found f ′
i and f ′

j that improve the energy consumption of the schedule.
However it was supposed to be optimal, we have a contradiction.

In essence, Proposition 1 states that when dealing with a linear chain, we should first slow
down the execution of each task as much as possible. Then, if the deadline is not too tight, i.e., if

frel >
∑n

i=1
wi

D , there remains the possibility to re-execute some of the tasks (and of course it is
NP-hard to decide which ones). Still, this general principle “first slow-down and then re-execute”
will guide the design of type A heuristics in Section 6.

Lemma 3. With the Tri-Crit-Cont model, when all the task of a DAG have the same weight w,
then in any optimal solution, each task is executed (or re-executed) at least at speed f , with:

λ0w
e−2df

f
=

e−dfrel

frel
. (8)

Proof. Let us assume first that a task is executed only once at a speed f1 < f . Then, the reliability
constraint is not satisfied, and indeed we must have in this case f1 ≥ frel > f .

If the task is re-executed, with one execution at speed f1 and the other at speed f2, then if both
f1 and f2 are strictly smaller than f , the reliability constraint is not satisfied either because of
Equation (8). The last case to consider is such that f1 < f ≤ f2, but in this case the solution would
not be optimal since it is strictly better to execute the task twice at the same speed, following
Lemma 2.

In the following, we consider a DAG made of identical tasks, and since a task will never be
executed at a speed lower than the speed f defined by Equation (8), we assume that fmin is at
least equal to f ; otherwise, we can let fmin = f , thanks to Lemma 3.

Proposition 2. Consider a fork graph of n + 1 identical tasks (a source and n ≥ 2 independent
successors, all of same weight w), executed on n+ 1 processors, with the Tri-Crit-Cont model.
In the optimal solution, the source is executed at speed fsrc, and the n successors are executed at
the same speed fleaf. If D < 2w

fmax
, then there is no solution. Otherwise, the number of executions

and the values of fsrc and fleaf depend upon the deadline D as follows:

1. No task is re-executed:

• if 2w
fmax

≤ D ≤ w
fmax

(1 + n
1
3 ), then fsrc = fmax and fleaf =

w
Dfmax−wfmax;

• if w
fmax

(1 + n
1
3 ) < D ≤ w

frel
1+n

1
3

n
1
3

, then fsrc =
w
D (1 + n

1
3 ) and fleaf =

w
D

1+n
1
3

n
1
3

;

• if w
frel

1+n
1
3

n
1
3

< D ≤ 2w
frel

, then fsrc =
w

Dfrel−wfrel and fleaf = frel;

• if 2w
frel

< D ≤ w
frel

(1+2n
1
3 )

3
2√

1+n
, then fsrc = fleaf = frel.

2. The source is executed once, and the successors are re-executed:

• if w
frel

(1+2n
1
3 )

3
2√

1+n
< D ≤ w

frel
(1 + 2n

1
3 ), then fsrc =

w
D (1 + 2n

1
3 ) and fleaf =

w
D

1+2n
1
3

n
1
3

;

• if w
frel

(1+2n
1
3 ) < D ≤ w

frel
2
√
2(1+n

1
3 ), then fsrc = frel and fleaf = max( 2w

Dfrel−wfrel, fmin).

3. Each task is re-executed: this case is more difficult to characterize. Indeed, it depends
on fmin, which is dependent on the system and on the weight w of the tasks (see Lemma 3).

Hence, even when D > w
frel

2
√
2(1 + n

1
3 ), the source is not necessarily re-executed, since it

may be better to slow down all the successors, if it is possible to run them slow enough. We
do not detail these cases.

Proof. First we recall preliminary results that are valid for any optimal solution of the Tri-Crit-

Cont problem:
• the re-execution of any task will always be at the same speed than its execution;
• if a task is executed only once, then frel ≤ f ≤ fmax;
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• if a task is re-executed, then fmin ≤ f < 1√
2
frel.

Thanks to these preliminary results, we know that if two tasks of same weight w have the same
energy consumption in the optimal solution, then they are executed the same number of times
(once or twice) and at the same speed: when the number of execution is the same, the bijection
Energy-Speed is obvious. Because of the intervals of speed depending on the number of execution,
we see that for a given energy, if the energy is greater or equal than wf2

rel
then necessarily there

is one execution, if it is lower than wf2
rel

then necessarily there are two executions.
We prove that in any solution, the energy consumed for the execution of each successor task,

also called leaf, is the same. If it was not the case, since each task has the same weight, and since
each leaf is independent from the other and dependent on the source of the fork, if a leaf Ti is
consuming more than another leaf Tj , then we could execute Ti the same number of times and
at the same speed than Tj , hence matching the deadline bound and the reliability constraint, and
obtaining a better solution. Thanks to this result, we now assume that all leaves are executed at
the same speed(s), denoted fleaf. The source task may be executed at a different speed, fsrc.

Next, let us show that the energy consumption of the source is always greater or equal than the
one from any leaf in any optimal solution. First, since the source and leaves have the same weight,
if we invert the execution speed(s) of the source and of the leaves, then the reliability of each task
is still matched, and so is the execution time. Moreover, the energy consumption is equal to the
energy consumption of the source plus n times the energy consumption of any leaf (recall that
they all consume the same amount of energy). Hence, if the energy consumption of the source is
smaller than the one of the leaves, permuting those execution speeds would reduce by (n− 1)×∆
the energy, where ∆ is the positive difference between the two energy consumptions. Thanks to
this result, we can say that the source should never be executed twice if the leaves are executed
only once since it would mean a lower energy consumption for the source (recall that n ≥ 2).

We have now fully characterized the shape of any optimal solution. There are only three
possibilities:

1. no task is re-executed;
2. the source is executed once and the successors (leaves) are re-executed;
3. each task is re-executed.
Next, we study independently the three cases, i.e., we aim at determining the values of fsrc and

fleaf in each case. We will then give conditions on the deadline that indicate what the shape of the
solution should be. First we introduce some notations: δs is the number of times that the source
is executed (δs = 1 or δs = 2), and fsrc is its execution speed(s). Similarly, δl is the number of
times that the leaves are executed, and fleaf their execution speeds. Note that with the previous
results, δl ≥ δs. With these notations the problem we want to minimize becomes:

Minimize wδsf
2
src

+ n× wδlf
2
leaf

subject to (i) δs
w
fsrc

+ δl
w

fleaf
≤ D

(ii) 1− λδs
0

wδs

fδs
src

e−δsfsrc ≥ 1− λ0
w
frel

e−dfrel

(iii) 1− λδl
0

wδl

f
δl
leaf

e−δlfleaf ≥ 1− λ0
w
frel

e−dfrel

(9)

1. No task is re-executed. Let us assume first that the optimal solution is such that each
task is executed only once. From the proof of Theorem 1 in [3], we obtain the optimal speeds with
no re-execution; they are given by the following formulas:

• if D < 2w
fmax

then there is no solution;

• if 2w
fmax

≤ D ≤ w
fmax

(1 + n
1
3 ), then fsrc = fmax and fleaf =

w
Dfmax−wfmax;

• if w
fmax

(1 + n
1
3 ) < D, then fsrc =

w
D (1 + n

1
3 ) and fleaf =

w
D

1+n
1
3

n
1
3

.

Because there is a minimum speed frel to match the reliability, there is a condition when
fleaf < frel which makes an amendment on the last item:
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• if w
frel

1+n
1
3

n
1
3

< D ≤ 2w
frel

, then fsrc =
w

Dfrel−wfrel and fleaf = frel;

• if 2w
frel

< D, then fsrc = fleaf = frel.

2. The source is executed once and the leaves are re-executed. Assume now that all
leaves are re-executed. We can consider an equivalent DAG where leaves are of weight 2w, and
a schedule with no re-execution. Then the optimal solution when there is no maximum speed

is: fsrc = w
D (1 + 2n

1
3 ) and fleaf = w

D
1+2n

1
3

n
1
3

. Note that if fleaf ≥ 1√
2
frel, then there is a better

solution without re-execution (or there is no solution). Indeed, the solution where the leaves are

executed once at speed max(wD
1+2n

1
3

n
1
3

, frel) is a solution, matches the reliability obviously, the

deadline ( w

max(w
D

1+2n
1
3

n
1
3

,frel)

< 2
√
2w

frel
≤ 2w

w
D

1+2n
1
3

n
1
3

), and it has a better energy consumption (because

w
D

1+2n
1
3

n
1
3

≥ 1√
2
frel).

Since we are in case 2 with re-execution of the leaves, we can assume that w
frel

√
2 1+2n

1
3

n
1
3

< D.

Then, depending if fsrc ≥ frel or fsrc < frel:

• if fsrc ≥ frel, it means that D ≤ w
frel

(1 + 2n
1
3 ), ( w

frel
(1 + 2n

1
3 ) > w

frel

√
2 1+2n

1
3

n
1
3

is true when

n > 2), then fsrc =
w
D (1 + 2n

1
3 ) and fleaf =

w
D

1+2n
1
3

n
1
3

;

• if fsrc < frel, it means thatD > w
frel

(1+2n
1
3 ), then fsrc = frel and fleaf = max( 2w

Dfrel−wfrel, fmin).

3. Each task is re-executed. If the solution is such that each task is re-executed (source or
leaf), it is equivalent to consider a DAG with tasks of weight 2w and no re-execution. Then the

optimal solution when there is no maximum speed is: fsrc = 2w
D (1 + n

1
3 ) and fleaf = 2w

D
1+n

1
3

n
1
3

.

Note that if fsrc ≥ 1√
2
frel, then there is a better solution in which the source is not re-executed.

Indeed, the solution where the source is executed once at speed max( 2wD
1+n

1
3

n
1
3

, frel) is a solution,

matches the reliability obviously, the deadline ( w

max( 2w
D

1+n
1
3

n
1
3

,frel)

< 2
√
2w

frel
≤ 2w

2w
D

1+n
1
3

n
1
3

) and has a

better energy consumption (because 2w
D

1+n
1
3

n
1
3

≥ 1√
2
frel).

Therefore, if D ≤ w
frel

2
√
2(1 + n

1
3 ), the source should not be re-executed.

No re-execution → leaves re-executed. To complete the proof, there remains to establish
the value of the deadline at which re-execution will be used by the optimal solution, i.e., at which
point we will move from case 1 to case 2. We know that the minimum energy consumption is a
function decreasing with the deadline: if D > D′, then any solution for D′ is a solution for D. Let
us find the minimum deadline D such that the energy when the leaves are re-executed is smaller
than the energy when no task is re-executed.

As we have seen before, necessarily if D ≤ w
frel

√
2 1+2n

1
3

n
1
3

, then it is better to have no re-

execution. Let D = w
frel

√
2 1+2n

1
3

n
1
3

+ ǫ. Suppose first that D ≤ w
frel

(1 + 2n
1
3 ), then the energy

when the leaves are re-executed is: E2 = w3

D2 (1 + 2n
1
3 )3. With no re-execution the total energy is:

E1 = (1 + n)wf2
rel

= 2 w3

(D−ǫ)2 (1 + n)

(

1+2n
1
3

n
1
3

)2

.

We now check the condition E1 ≥ E2:

2
w3

(D − ǫ)2
(1 + n)

(

1 + 2n
1
3

n
1
3

)2

≥ w3

D2
(1 + 2n

1
3 )3
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2

(D − ǫ)2
1 + n

n
2
3

≥ 1 + 2n
1
3

D2

D2

(D − ǫ)2
≥ n

2
3 + 2n

2 + 2n

D ≥ w

frel

(1 + 2n
1
3 )

3
2

√
1 + n

Furthermore, the set w
frel

(1+2n
1
3 )

3
2√

1+n
≤ D ≤ w

frel
(1 + 2n

1
3 ) is not empty when n > 2.

This completes the proof for the boundary between cases 1 and 2: if the deadline is smaller

than the threshold value w
frel

(1+2n
1
3 )

3
2√

1+n
, the optimal solution will not do any re-execution. However,

if the deadline is larger, then it is better to re-execute the leaves, and hence the optimal solution
will be in the shape of case 2.

Source executed once → source re-executed. As we have seen earlier, when D ≤
w
frel

2
√
2(1 + n

1
3 ), the source should not be re-executed, and therefore the optimal solution will

be in the shape of case 1 or 2. As stated in the proposition, the cases with larger deadlines are
not fully developed here. Hence the proof is complete.

Beyond the proof itself, the result of Proposition 2 is interesting: we observe that in all cases,
the source task is executed faster than the other tasks. This shows that Proposition 1 does not hold
for general DAGs, and suggests that some tasks may be more critical than others. A hierarchical
approach, that categorizes tasks with different priorities, will guide the design of type B heuristics
in Section 6.

5 Vdd-Hopping model

Contrarily to the Continuous model, the Vdd-Hopping model uses discrete speeds. A processor
can choose among a set {f1, ..., fm} of possible speeds. A task can be executed at different speeds.
In this section we first show that only two different speeds are needed for the execution of a
task under the Vdd-Hopping model. Then we state the intractability of the Tri-Crit-Vdd

optimization problem.

5.1 Optimality of two-speed execution per task

In the Vdd-Hopping model, we define α(i,j) as the time of computation of task Ti at speed
fj . The execution time of a task Ti is Exe(Ti) =

∑m
j=1 α(i,j), and the energy consumed during

the execution is E(Ti) =
∑m

j=1 α(i,j)f
3
j . Finally, for the reliability, the approximation used in

Equation (2) still holds. However, the reliability of a task is now the product of the reliabilities for
each time interval with constant speed, hence Ri =

∏m
j=1(1 − λ0 e−dfjα(i,j)). Using a first order

approximation, we obtain

Ri = 1− λ0

m
∑

j=1

e−dfjα(i,j) = 1− λ0

m
∑

j=1

hjα(i,j), (10)

where hj = e−dfj for 1 ≤ j ≤ m.

Proposition 3. With the Vdd-Hopping model, each task is computed using at most two different
speeds.

Proof. Suppose that a task is computed with three speeds, f1 ≤ f2 ≤ f3, and let hj = e−dfj , for
j = 1, 2, 3. We show that we can get rid of one of those speeds. The proof will follow by induction.
Let αi be the time spent by the processor at speed fi. We aim at replacing each αi by some α′

i so
that we have a better solution. The constraints write:
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1. Deadline not exceeded:
α1 + α2 + α3 ≥ α′

1 + α′
2 + α′

3. (11)

2. Same amount of work:

α1f1 + α2f2 + α3f3 = α′
1f1 + α′

2f2 + α′
3f3. (12)

3. Reliability preserved:

α1h1 + α2h2 + α3h3 ≥ α′
1h1 + α′

2h2 + α′
3h3. (13)

4. Less energy spent:

α1f
3
1 + α2f

3
2 + α3f

3
3 > α′

1f
3
1 + α′

2f
3
2 + α′

3f
3
3 . (14)

We show that α′
1 = α1 − ǫ1, α

′
2 = α2 + ǫ1 + ǫ3, and α′

3 = α3 − ǫ3 is a valid solution:
• Equation (11) is satisfied, since α1 + α2 + α3 = α′

1 + α′
2 + α′

3.

• Equation (12) gives ǫ1 = ǫ3

(

f3 − f2
f2 − f1

)

.

• Next we replace the α′
i and ǫi in Equation (13) and we obtain h2(f3 − f1) ≤ h1(f3 − f2) +

h3(f2 − f1), which is always true by convexity of the exponential (since hj = e−dfj ).
• Finally, Equation (14) gives us ǫ1f

3
1 + ǫ3f

3
3 > (ǫ3 + ǫ1)f

3
2 , which is necessarily true since

f1 < f2 < f3 and f → f3 is convex (barycenter).

Since we want all the α′
i to be nonnegative, we take ǫ1 = min

(

α1, α3

(

f3 − f2
f2 − f1

))

and ǫ3 =

min

(

α3, α1

(

f2 − f1
f3 − f2

))

.

We have either ǫ1 = α1 or ǫ3 = α3, which means that α′
1 = 0 or α′

3 = 0, and we can indeed
compute the task with only two speeds, meeting the constraints and with a smaller energy.

5.2 Intractability of Tri-Crit-Vdd

Theorem 2. The Tri-Crit-Vdd problem is NP-complete.

The proof is similar to that of Theorem 1, assuming that there are only two available speeds,
fmin and fmax. Then we reduce the problem from SUBSET-SUM.

Proof. Consider the associated decision problem: given an execution graph, a deadline, m speeds,
a reliability, and a bound on the energy consumption, can we find the time each task will spend
for each speed such that the deadline, the reliability and the bound on energy are respected?
The problem is clearly in NP: given the execution speeds of each task, computing the execution
time, the reliability and the energy consumption can be done in polynomial time. To establish the
completeness, we use a reduction from SUBSET-SUM [9]. Let I1 be an instance of SUBSET-SUM:
given n strictly positive integers a1, . . . , an, and a positive integer X, does there exist a subset I
of {1, . . . , n} such that

∑

i∈I ai = X? Let S =
∑n

i=1 ai.

We build the following instance I2 of our problem: the execution graph is a linear chain with
n tasks, where:

• task Ti has weight wi = ai;
• the processor can run at m = 2 different speeds, fmin and fmax;

• λ0 =
fmax

100maxi=1..n ai
;

• fmin =
√
λ0fmax maxi=1..n ai =

fmax

10 ;

• D0 = 2X
fmin

+ S−X
fmax

;

• frel = fmax; d = 0; R0
i = Rfmax

i = 1− λ0
wi

fmax
;
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• E0 = 2Xf2
min + (S −X)f2

max.

Clearly, the size of I2 is polynomial in the size of I1.
Suppose first that instance I1 has a solution, I. For all i ∈ I, Ti is executed twice at speed fmin

(one re-execution also at speed fmin). Otherwise, for all i /∈ I, it is executed at speed fmax one

time only. The execution time is
2
∑

i∈I ai

fmin
+

∑
i/∈I ai

fmax
= 2X

fmin
+ S−X

fmax
= D. The reliability is met for

all tasks not in I. It is also met for all tasks in I: ∀i ∈ I, 1 − λ2
0

x2
i

f2
min

≥ 1 − λ0
wi

fmax
. The energy

consumption is E =
∑

i∈I 2aif
2
min +

∑

i/∈I aif
2
max = 2Xf2

min + (S −X)f2
max = E0. All bounds are

respected, and therefore the execution speeds are a solution to I2.
Suppose now that I2 has a solution. Let I = {i | Ti is executed twice in the solution }. Let

Y =
∑

i∈I ai. We prove in the following that necessarily Y = X in order to match the energy
constraint E0.

Suppose now that I2 has a solution. In our model, each task can be executed only once or twice.
Since we consider the Vdd-Hopping models, each execution can be run partly at speed fmin, and
partly at speed fmax. We first point out that tasks executed only once are necessarily executed
only at maximum speed to match the reliability constraint.

Let I = {i | Ti is executed twice in the solution }. Note that we have
∑

i/∈I ai = S −∑i∈I ai.
Let us call Y =

∑

i∈I ai, we know that 2Y = Y1 + Y2 where Y1 is the total weight of each
execution and re-execution (2Y ) of tasks in I that are executed at speed fmin, and Y2 the total
weight that is executed at speed fmax.

Let us show that necessarily Y1 = 2X = 2Y .
First let us show that 2X ≤ 2Y . The energy consumption of the solution of I2 is E = Y1f

2
min +

Y2f
2
max+(S−Y )f2

max = Y1f
2
min+(S−Y1+Y )f2

max. By differentiating this function (with regards
to Y1, E

′ = f2
min − f2

max < 0), we can see it is minimized when Y1 = 2Y (because Y1 ∈ [0, 2Y ]).
Then, when Y1 = 2Y , since we want a solution such that E ≤ E0, this is true if and only if
E − E0 = (Y −X)(2f2

min − f2
max) ≤ 0. Which gives X ≤ Y .

Then let us show that Y1 ≤ 2X. Suppose at first by contradiction that Y1 > 2X, the execution
time of the solution of I2 is D = Y1

fmin
+ Y2

fmax
+ S−Y

fmax
= Y1

fmin
+ S−Y1+Y

fmax
. By differentiating this

function (with regards to Y1), we can see it is strictly increasing when Y1 goes from 2X to 2Y .
However, when Y1 = 2X + ǫ, D − D0 = ǫ

fmin
+ Y−X+ǫ

fmax
> 0 (indeed, every value of the sum is

strictly positive). Hence, Y1 ≤ 2X.
Finally let us show that Y1 = 2X = 2Y . Because I2 is a solution, we know that E ≤ E0. Which

gives us: 2X − Y1 ≥ (Y + X − Y1)
f2
max

f2
min

≥ (Y + X − Y1). (the last equality is only met when

Y +X − Y1 = 0) Hence 2X ≥ X + Y which is only possible if 2X = X + Y This gives us the final
result: Y1 = 2X = 2Y (only case where all equalities are met which was the only possibility).

We conclude that
∑

i∈I ai = X, and therefore I1 has a solution. This concludes the proof.

The following result identifies a polynomial instance of the problem:

Theorem 3. If we consider the Tri-Crit-Vdd model where re-execution is not allowed, the
problem for a linear chain of tasks can be solved in polynomial time (via linear programming).

Proof. As above, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, α(i,j) is the time spent at speed fj for executing
task Ti. There are n×m variables. The constraints are:

•
∑n

i=1 Exe(Ti) =
∑n

i=1

∑m
j=1 α(i,j) ≤ D: the total execution time for all tasks does not exceed

the deadline;
• ∀1 ≤ i ≤ n,

∑m
j=1 α(i,j) × fj ≥ wi: task Ti is completely executed;

• ∀1 ≤ i ≤ n,
∑m

j=1 α(i,j) × hj ≤ 1−Ri(frel)
λ0

(see Equation (10));
• ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m, α(i,j) ≥ 0: all times are positive.

The objective function is then min
(

∑n
i=1

∑m
j=1 α(i,j)f

3
j

)

. The size of this linear program is

clearly polynomial in the size of the instance, all nm variables are rational, and therefore it can
be solved in polynomial time [20].
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6 Heuristics for Tri-Crit-Cont

In this section, we propose some polynomial-time heuristics for Tri-Crit-Cont, which was shown
NP-hard (see Theorem 1). We start by outlining the general principles that have guided the design
before exposing the details for each heuristic.

6.1 General principles

The heuristics work in two steps: first we apply a simple list scheduling algorithm in order
to map the DAG onto the p processors. More precisely, we apply a critical-path list schedul-
ing, which assigns the most urgent ready task (with largest bottom-level) to the first avail-
able processor. The bottom-level is defined as bl(Ti) = wi if Ti has no successor task, and
bl(Ti) = wi + max(Ti,Tj)∈E bl(Tj) otherwise. At the end of this first step, each task has been
mapped on a processor, and it is scheduled for a single execution at maximum speed.

Then, the core of the heuristics consists in reducing the energy consumption of the schedule.
We do not change the allocation of the tasks during this second step, but we can slow them down
and/or re-execute them.

The first energy reduction technique comes from Proposition 1. The idea is to start by search-
ing for the optimal solution of the problem instance without re-execution, a phase that we call
deceleration: here we slow down some tasks if it can save energy without violating one of the con-
straints. Then we refine the schedule and choose the tasks that we want to re-execute, according
to some criteria. We call type A heuristics such heuristics that obey this general scheme: first
deceleration then re-execution. Type A heuristics are expected to be efficient on a DAG with a
low degree of parallelism (optimal for a chain). However, Proposition 2 (with fork graphs) shows
that it might be better to re-execute the highly parallel tasks before decelerating. Therefore we
introduce type B heuristics, which first choose the set of tasks to be re-executed, and then try to
slow down the tasks that could not be re-executed. We need to find good criteria to select tasks to
be re-executed, so that type B heuristics prove efficient for DAGs with a high degree of parallelism.
In summary, type B heuristics obey the opposite scheme: first re-execution then deceleration.

For both heuristic types, the approach for each phase can be sketched as follows. Let ri be the
start time of task Ti in the current configuration, and di be its finish time.

Deceleration: We select a set of tasks that we execute at speed max(frel,
maxi=1..n di

D fmax), which
is the slowest possible speed meeting both the reliability and deadline constraints.

Re-execution: We greedily select tasks for re-execution. The selection criterion is either by de-
creasing weights wi, or by decreasing super-weights Wi. The super-weight of a task Ti is
defined as the sum of the weights of the tasks (including Ti) whose execution interval is
included into Ti’s execution interval. The rationale is that the super-weight of a task that
we slow down is an estimation of the total amount of work that can be slowed down together
with that task, hence of the energy potentially saved: this corresponds to the total slack
that can be reclaimed.

6.2 List of heuristics

In this section, we describe the different energy-reducing heuristics in more details. We first
introduce a few notations:

• SUS (Slack-Usage-Sort) is a function that sorts tasks by decreasing super-weights.

• ReExec is a function that tries to re-execute the current task Ti, at speed fre-ex = 2c
1+cfrel

(note that fre-ex is the optimal speed in the proof of Theorem 1). If it succeeds, it also re-
executes at speed fre-ex all the tasks that are taken into account to compute the super-weight
of Ti. Otherwise, it does nothing.
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• ReExec&SlowDown performs the same re-executions as ReExec when it succeeds. But if the
re-execution of the current task Ti is not possible, it slows down Ti as much as possible and
does the same for all the tasks that are taken into account to compute the super-weight of
Ti.

We now detail the heuristics:
Hfmax. In this heuristic, tasks are simply executed once and at maximum speed, by the

processor assigned to them by the list scheduling heuristic.

Hno-reex. In this heuristic, we do not allow any re-execution, and we simply consider the pos-
sible deceleration of the tasks. We set a uniform speed for all tasks, equal to max(frel,

maxi=1..n di

D fmax),
so that both the reliability and deadline constraints are matched.

A.Greedy. This is a type A heuristic, where we first set the speed of each task to max(frel,
maxi=1..n di

D fmax), so that both the reliability and deadline constraints are matched (deceleration).
Let Greedy-List be the list of all the tasks sorted according to decreasing weights wi. Each task Ti

in Greedy-List is re-executed at speed fre-ex whenever possible. Finally, if there remains some
slack at the end of the processing, we slow down both executions of each re-executed task as much
as possible.

A.SUS-Crit. This is a type A heuristic, where we first set the speed of each task to
max(frel,

maxi=1..n di

D fmax), just as in the previous heuristic. Let List-SW be the list of all tasks that
belong to a critical path, sorted according to SUS. We apply ReExec to List-SW (re-execution).
Finally we reclaim slack for re-executed tasks, similarly to the final step of A.Greedy.

B.Greedy. This is a type B heuristic. We use Greedy-List as in heuristic A.Greedy. We try
to re-execute each task Ti of Greedy-List when possible. Then, we slow down both executions of
each re-executed task Ti of Greedy-List as much as possible. Finally, we slow down the speed of
each task of Greedy-List that turn out not re-executed, as much as possible.

B.SUS-Crit. This is a type B heuristic. We use List-SW as in heuristic A.SUS-Crit. We
apply ReExec to List-SW (re-execution). Then we run Heuristic B.Greedy.

B.SUS-Crit-Slow. This is a type B heuristic. We use List-SW, and we apply ReExec&SlowDown
(re-execution). Then we use Greedy-List: for each task Ti of Greedy-List, if there is enough time,
we execute twice Ti at speed fre-ex (re-execution); otherwise, we execute Ti only once, at the
slowest admissible speed.

Best. This is simply the minimum value over the six previous heuristics, for reference.

The complexity of all these heuristics is bounded by O(n4 log n). The most time-consuming
operation is the computation of List-SW (the list of all elements that belong to a critical path,
sorted according to SUS).

7 Simulations

In this section, we report extensive simulations to assess the performance of the heuristics presented
in Section 6. All the source-code (our heuristics were coded using the programming language
OCaml), together with additional results that were omitted due to lack of space, are publicly
available at [2].

7.1 Simulation settings

In order to evaluate the heuristics, we have generated DAGs using the random DAG generation
library GGEN [15]. Since GGEN does not give a weight to the tasks of the DAGs, we use a
function that gives a random float value in the interval [0, 10]. Each simulation uses a DAG with
100 nodes and 300 edges. We observe similar patterns for other number of edges, see [2] for further
information. We choose a reliability constant λ0 = 10−5 [1]. We obtain identical results when λ0

varies from 10−5 to 10−6 (see Figure 4). Each reported result is the average on ten different DAGs
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with the same number of nodes and edges, and the energy consumption is normalized with the
energy consumption returned by the Hno-reex heuristic. If the value is lower than 1, it means
that we have been able to save energy thanks to re-execution.

We analyze the influence of three different parameters: the tightness of the deadline D, the
processor number p and the reliability speed frel. In fact, the absolute deadline D is irrelevant,
and we rather consider the deadline ratio:

DeadlineRatio =
D

Dmin

,

where Dmin is the execution time of the list scheduling heuristic when executing each task once
and at speed fmax. Intuitively, when the deadline ratio is close to 1, there is almost no flexibility
and it is difficult to re-execute tasks, while when the deadline ratio is larger we expect to be able
to slow down and re-execute many tasks, thereby saving much more energy.

7.2 Simulation results

We first note that when there is only one processor, heuristics A.SUS-Crit and A.Greedy are
identical, and heuristics B.SUS-Crit and B.Greedy are identical (by definition, the only critical
path is the whole set of tasks).

7.2.1 Deadline ratio

In this set of simulations, we let p ∈ {1, 10, 50, 70} and frel =
2
3fmax. Figure 1 reports results for

p = 1 and p = 50. When p = 1, we see that the results are identical for all heuristics of type A,
and identical for all heuristics of type B. As expected from Proposition 1, type A heuristics are
better (see Figure 1a). With more processors (10, 50, 70), the results have the same general shape:
see Figure 1b with 50 processors. When DeadlineRatio is small, type B heuristics are better.
When DeadlineRatio increases up to 1.5, type A heuristics are closer to type B ones. Finally,
when DeadlineRatio gets larger than 5, all heuristics converge towards the same result, where
all tasks are re-executed.

7.2.2 Number of processors

In this set of simulations, we let DeadlineRatio ∈ {1.2, 1.6, 2, 2.4} and frel = 2
3fmax. Figure 2

confirms that type A heuristics are particularly efficient when the number of processors is small,
whereas type B heuristics are at their best when the number of processors is large. Figure 2a
confirms the superiority of type B heuristics for tight deadlines, as was observed in Figure 1b.

7.2.3 Reliability frel

In this set of simulations, we let p ∈ {1, 10, 50, 70} and DeadlineRatio ∈ {1, 1.5, 3}. In Figure 3,
there are four different curves: the line at 1 corresponds to Hno-reex and Hfmax, then come the
heuristics of type A (that all obtain exactly the same results), then B.SUS-Crit and B.Greedy
that also obtain the same results, and finally the best heuristic is B.SUS-Crit-Slow. Note that
B.SUS-Crit and B.Greedy return the same results because they have the same behavior when
DeadlineRatio = 1: there is no liberty of action on the critical paths. However B.SUS-Crit-
Slow gives better results due to its ability of slowing more tasks down. When DeadlineRatio

is really tight (equal to 1), decreasing the value of frel from frel = 1 down to frel = 0.9 makes
a real difference with type B heuristics. We observe an energy gain of 10% when the number of
processors is small (10 in Figure 3a) and of 20% with more processors (50 in Figure 3b).

7.3 Understanding the results

A.SUS-Crit and A.Greedy, and B.SUS-Crit and B.Greedy, often obtain similar results, which might
lead us to underestimate the importance of critical path tasks. However, the difference between

RR n° 7757



Energy-aware scheduling under reliability and makespan constraints 20

(a) 1 processor (b) 50 processors

Figure 1: Comparative study when the deadline ratio varies.

(a) DeadlineRatio = 1.2 (b) DeadlineRatio = 2.4

Figure 2: Comparative study when the number of processors p varies.

B.SUS-Crit-Slow and B.SUS-Crit shows otherwise. Tasks that belong to a critical path must be
dealt with first.

A striking result is the impact of both the number of processors and the deadline ratio on the
effectiveness of the heuristics. Heuristics of type A, as suggested by Proposition 1, have clearly
better results when there is a small number of processors. When the number of processors increases,
there is a difference between small deadline ratio and larger deadline ratio. In particular, when
the deadline ratio is small, heuristics of type B will have better results. Here is an explanation:
heuristics of type A try to accommodate as many tasks as possible, and as a consequence, no
task can be re-executed. On the contrary, heuristics of type B try to favor some tasks that are
considered as important. This is highly profitable when the deadline is tight.

Altogether we have identified two very efficient and complementary heuristics, A.SUS-Crit and
B.SUS-Crit-Slow. Taking the best result out of those two heuristics always gives the best result
over all simulations.
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(a) DeadlineRatio = 1, 10 processors (b) DeadlineRatio = 1, 50 processors

Figure 3: Comparative study when the reliability frel varies.

(a) DeadlineRatio = 1.1, 50 processors (b) DeadlineRatio = 1.5, 50 processors

Figure 4: Comparative study when the λ0 varies.

8 Conclusion

In this paper, we have introduced a new energy model for re-execution, that seems more realis-
tic and accurate than the best-case model used in [23]. Coupling this model with the classical
reliability model used in [21], we have been able to formulate a tri-criteria optimization problem:
how to minimize the energy consumed given a deadline bound and a reliability constraint? We
have stated two variants of this problem, for processor speeds obeying either the Continuous or
the Vdd-Hopping model. We have assessed the intractability of this tri-criteria problem, even
when the mapping of tasks to processors is already known. In addition, we have provided several
complexity results for particular instances.

We have designed and evaluated some polynomial-time heuristics for the Tri-Crit-Cont

problem that are based on the failure probability, the task weights, and the processor speeds.
These heuristics aim at minimizing the energy consumption of the list-schedule execution of the
application while enforcing reliability and deadline constraints. They rely on dynamic voltage and
frequency scaling (DVFS) to decrease the energy consumption. But because DVFS lowers the
reliability of the system, the heuristics use re-execution to compensate for the loss. After running
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several heuristics on a wide class of problem instances, we have identified two heuristics that are
complementary, and that together are able to produce good results on most instances.

All the heuristics slow down or re-execute tasks without changing their assignment to proces-
sors. In other words, they do not modify the mapping determined by the list-schedule, hence they
can also be used when the mapping of the application is already given, e.g. for affinities or security
reasons [18, 3].

Future work involves several promising directions. On the theoretical side, it would be very
interesting to prove a competitive ratio for the heuristic that takes the best out of A.SUS-Crit
and B.SUS-Crit-Slow. However, this is quite a challenging work for arbitrary DAGs, and one
may try to design approximation algorithms only for special graph structures, e.g. series-parallel
graphs. Also, it would be important to assess the impact of the list scheduling heuristic that
precedes the energy-reduction heuristic. In other words, the classical critical-path list-scheduling
heuristic, which is known to be efficient for deadline minimization, may well be superseded by
another heuristic that trades-off execution time, energy and reliability when mapping ready tasks
to processors. Such a study could open new avenues for the design of multi-criteria list-scheduling
heuristics.

More specifically, we have designed heuristics for the Tri-Crit-Cont model in this paper, but
we could easily adapt them to the Tri-Crit-Vdd model: for a solution given by a heuristic for
Tri-Crit-Cont, if a task should be executed at the continuous speed f , then we would execute it
at the two closest discrete speeds that bound f , while matching the execution time and reliability
for this task. There remains to quantify the performance loss incurred by the latter constraints.

Finally, we point out that energy reduction and reliability will be even more important ob-
jectives with the advent of massively parallel platforms, made of a large number of clusters of
multi-cores. More efficient solutions to the tri-criteria optimization problem (deadline, energy,
reliability) could be achieved through combining replication with re-execution. A promising (and
ambitious) research direction would be to search for the best trade-offs that can be achieved be-
tween these techniques that both increase reliability, but whose impact on execution time and
energy consumption is very different.
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