Metric graph reconstruction from noisy data - Archive ouverte HAL Access content directly
Conference Papers Year : 2011

Metric graph reconstruction from noisy data

(1) , (2) , (1) , (2) , (1) , (3)
1
2
3
Mridul Aanjaneya
  • Function : Author
  • PersonId : 842740
Frédéric Chazal
Daniel Chen
  • Function : Author
  • PersonId : 911696
Marc Glisse
Leonidas J. Guibas
  • Function : Author
  • PersonId : 850076

Abstract

Many real-world data sets can be viewed of as noisy samples of special types of metric spaces called metric graphs. Building on the notions of correspondence and Gromov-Hausdorff distance in metric geometry, we describe a model for such data sets as an approximation of an underlying metric graph. We present a novel algorithm that takes as an input such a data set, and outputs the underlying metric graph with guarantees. We also implement the algorithm, and evaluate its performance on a variety of real world data sets.
Fichier principal
Vignette du fichier
ijcga.pdf (695.05 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00630774 , version 1 (10-10-2011)

Identifiers

Cite

Mridul Aanjaneya, Frédéric Chazal, Daniel Chen, Marc Glisse, Leonidas J. Guibas, et al.. Metric graph reconstruction from noisy data. 27th Annual Symposium on Computational Geometry, 2011, Paris, France. pp.37-46, ⟨10.1145/1998196.1998203⟩. ⟨inria-00630774⟩

Collections

INRIA INRIA2
381 View
394 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More