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COMPUTING LOW-DEGREE ISOGENIES IN GENUS 2

WITH THE DOLGACHEV–LEHAVI METHOD

BENJAMIN SMITH

ABSTRACT. Let ℓbe a prime, and H a curve of genus 2 over a field kof characteristic not
2 or ℓ. If S is a maximal Weil-isotropic subgroup of JH [ℓ], then JH /S is isomorphic to
the Jacobian JX of some (possibly reducible) curve X . We investigate the Dolgachev–
Lehavi method for constructing the curve X , simplifying their approach and making
it more explicit. The result, at least for ℓ = 3, is an efficient and easily programmable
algorithm suitable for number-theoretic calculations.

1. INTRODUCTION

Let ℓ≥ 3 be prime, and let H be a curve of genus 2 over a perfect field k of character-
istic not 2 or ℓ. Let JH be the Jacobian of H , and let S be a maximal ℓ-Weil isotropic
subgroup of JH [ℓ]; since ℓ is prime, S ∼= (Z/ℓZ)2. The quotient JH /S is isomorphic
(as a principally polarized abelian variety) to a Jacobian JX , where X is some curve of
genus 2 (see [14]); hence, there exists an isogeny

φ : JH →JX

with kernel S (note that X may be reducible, in which case JX is a product of elliptic
curves). Our aim is to compute an explicit form for X given H and S.

In the case ℓ = 2, the problem is resolved by the well-known Richelot construction
(see [3] and [5, Chapter 9]). For ℓ 6= 2 and k finite, we can apply the explicit theta
function-based approach of Lubicz and Robert [10], implemented in the freely-available
avIsogeniespackage [1].

Alternatively, there is the algebraic-geometric approach described by Dolgachev and
Lehavi [7], which computes the image of the theta divisor on JH in the Kummer surface
of JX . As presented in [7], this approach has two drawbacks:

(1) it is not effective for ℓ 6= 3, and
(2) for ℓ= 3, where theta structures are involved, it assumes k⊂C.

In this work, we render the kernel of the Dolgachev–Lehavi method completely ex-
plicit, with a view to computations in number theory. Our intention is to provide a sort
of “user’s guide” to the algorithm and its concrete implementation. For ℓ= 3 we obtain
a simple, efficient, and easily-programmable algorithm (that does not require k ⊂ C).
Our algorithm retains the pleasing geometric flavour of the original, but is better-suited
to everyday calculations.

2. AN OVERVIEW OF THE DOLGACHEV–LEHAVI CONSTRUCTION

We begin by briefly recalling the Dolgachev–Lehavi construction, before treating it in
detail in the following sections. Suppose H /k, S, φ, and X are as above; we assume we
are given an explicit form for H and S, and we want to compute an explicit form for X .
Dolgachev and Lehavi observe that if ΘH and ΘX are theta divisors on JH and JX ,
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respectively, then φ(ΘH ) is in |ℓΘX | (see [7, Proposition 2.4]); and as such the image of
φ(ΘH ) in the Kummer surface KX = JX /〈±1〉 is a degree-2ℓ rational curve1 in P

3 of
arithmetic genus (ℓ2−1)/2 and with (ℓ2−1)/2 ordinary double points corresponding to
the nonzero elements of S, up to sign [7, Proposition 3.1]. For ℓ= 3 we can compute this
curve without knowing φ. We express the map Φ : H ∼=ΘH → JX → KX ⊂ P

3 as the
composition of a double cover ρ2ℓ of a rational normal curve in P

2ℓ with a projection
π :P2ℓ →P

3, whose centre depends on certain secants corresponding, up to sign, to the
nonzero elements of S. The images under Φ of the Weierstrass points of H lie on a conic
Q in a hyperplane of P3; that is, a trope of KX . The double cover of Q ramified over the
Weierstrass point images is then (a quadratic twist of) X .

3. THE DOMAIN CURVE

We suppose that H /k is presented as a nonsingular projective model

(1) H : Y 2 = F (X , Z )=
6∑

i=0
Fi X i Z 6−i ⊂P(1,3,1),

where F is a squarefree homogeneous sextic over k (such a model always exists when k

is perfect and has characteristic not 2: see [5, §1.3]). The hyperelliptic involution of H is

ιH : (X : Y : Z ) 7−→ (X :−Y : Z ).

The divisor at infinity on H is

D∞ =
(
1 :

√
F6 : 0

)
+

(
1 : −

√
F6 : 0

)
;

we observe that D∞ is defined over k, fixed by ιH , and equal to 2(1 : 0 : 0) if F6 = 0.
The six Weierstrass points of H are the fixed points of ιH ; they correspond to the

projective roots of the sextic F . The Weierstrass divisor WH of H is the effective divisor
cut out by Y = 0; if F (X , Z ) =

∏6
i=1(zi X − xi Z ) over k, then

WH = (x1 : 0 : z1)+·· ·+ (x6 : 0 : z6).

Note that WH is defined over k. Finally, we fix a canonical divisor on H , defining

KH =WH −2D∞.

4. THE KERNEL OF THE ISOGENY

When defining their method for ℓ= 3, Dolgachev and Lehavi state “unfortunately, we
do not know how to input explicitly the pair (H ,S). Instead we consider H with an odd
theta structure.” We will take a rather more middlebrow approach to the problem: we
suppose that H is presented in the form (1), and that S is given as a collection of divisor
classes on H expressed using an extended Mumford representation (detailed below).

Our motivation for this choice is simple: this is precisely how one computes with
hyperelliptic Jacobians in computational algebra systems such as Magma [11, 2] and
SAGE [13]. This choice also radically simplifies the algorithm: we can omit the theta
structure calculations, and pass directly to the secant computations (short-circuiting
the first four steps of the algorithm in [7, §5.1]).

Points on JH correspond to divisor classes of degree zero on H . The Riemann–
Roch theorem tells us that every nonzero degree-0 class has a unique representative in
the form P +Q −D∞ (this representation fails to be unique for the trivial class, because
[P + ιH (P )−D∞] = 0 for every P in H (k)).

1By “rational curve” we mean a curve of genus 0. In all other contexts, “rational” means “defined over k”.
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Let e be a point of JH , corresponding to the divisor class [P +Q −D∞]. The effec-
tive divisor P +Q is cut out by an ideal in the form (A(X , Z ),Y −B(X , Z )), where B is a
homogeneous cubic and A a homogeneous polynomial of degree d ≤ 2. The triple

〈a(x),b(x),d〉 := 〈A(x,1),B(x,1),d 〉

then encodes the point e. Note that if L is an extension ofk, then e = 〈a,b,d〉 is in JH (L)
if and only if a and b have coefficients in L.

Conversely, given a triple 〈a,b,d 〉, we recover the corresponding point of JH by
computing the effective divisor cut out by (A(X , Z ),Y −B(X , Z )), where B is the degree-3
homogenization of b and A is the degree-d homogenization of a, and then subtracting
(d/2)D∞. If H has two points at infinity (that is, if F6 6= 0) then d must be either 2 or 0.
In the case where H has a single point at infinity (that is, when F6 = 0) we always have
d = deg a, and the pair 〈a,b mod a〉 is the standard Mumford representation. The ad-
vantage of the extended representation above is that it gracefully handles the general
case where there are two points at infinity.

Example 4.1. Consider the following points on the Jacobian of H : Y 2 = X 6 −Z 6.

• 0 is represented by 〈1,0,0〉.
• [(1 : 0 : 1)+ (−1 : 0 : 1)−D∞] is represented by 〈x2 −1,0,2〉.
• [(1 : 1 : 0)− (1 :−1 : 0)] = [2(1 : 1 : 0)−D∞] is represented by 〈1, x3,2〉.

In this article, we will assume that the points of S are all k-rational. This simplifies
the exposition and the computations; however, all of our calculations are symmetric in
the elements of S. The algorithm should therefore be easily adapted to the case where S

is rational but its elements are not.

5. THE RATIONAL NORMAL CURVE

The Riemann–Roch space L(2ℓKH ) is a direct sum of subspaces

L(2ℓKH ) = L(2ℓKH )+⊕L(2ℓKH )−,

where ιH acts as +1 on the elements of L(2ℓKH )+ and −1 on the elements of L(2ℓKH )−;
writing x = X /Z and y = Y /Z 3, we have

L(2ℓKH )+ =
〈

xi /y2ℓ〉2ℓ
i=0 and L(2ℓKH )− =

〈
xi /y2ℓ−1〉2ℓ−3

i=0 .

The space L(2ℓKH )+ corresponds to the linear system |2ℓKH |〈ιH 〉; we see immedi-
ately that it is 2ℓ+1-dimensional, and therefore defines a map

ρ2ℓ : H −→R2ℓ ⊂P
2ℓ

onto a curve R2ℓ in P
2ℓ. Fixing coordinates on P

2ℓ, we take ρ2ℓ to be defined by

ρ2ℓ : (X : Y : Z ) 7−→ (U0 : · · · : U2ℓ) = (X 0Z 2ℓ : X Z 2ℓ−1 : · · · : X 2ℓ−1Z : X 2ℓ).

We see that R2ℓ is a rational normal curve of degree 2ℓ in P
2ℓ, and ρ2ℓ is a double cover:

(2) ρ2ℓ(P ) = ρ2ℓ(Q) ⇐⇒
(
P =Q or P = ιH (Q)

)
.

(Essentially, ρ2ℓ is a composition of the canonical map of H and an ℓ-uple embedding.)
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6. THE SECANT LINES

We adopt the following convention: if S is a set of points in some projective space P
n ,

then 〈S〉 denotes the linear subspace of Pn generated by S.
For any pair of points P and Q on H , we define LP,Q to be the line in P

2ℓ intersecting
R2ℓ in ρ2ℓ(P )+ρ2ℓ(Q); that is,

LP,Q :=
{ 〈

ρ2ℓ(P ),ρ2ℓ(Q)
〉

if P ∉ {Q , ιH (Q)}
Tρ2ℓ(P )(R2ℓ) otherwise.

We can also define secant lines corresponding to nonzero Jacobian elements: if e is a
nonzero point on JH , then we define

Le :=LP,Q where e = [P +Q −D∞] .

Observe that LP,Q =LP,ιH (Q) =LιH (P ),Q =LιH (P ),ιH (Q) for all P and Q on H , so

Le =L−e

for all e in JH \ {0}.

Remark 6.1. Dolgachev and Lehavi define the secant le =
〈
ρ2ℓ(P1),ρ2ℓ(P2)

〉
for each

nontrivial point e = [P1 −P2] in JH (see [7, Theorem 1.1]). Our secant Le is equal to le ,
because [P1 −P2] = [P1 + ιH (P2)−D∞] and LP1,P2 =LP1,ιH (P2).

The following lemma gives explicit and rational formulæ for the secants Le and their
intersection with arbitrary hyperplanes in P

2. These formulæ are central to the explicit
Dolgachev–Lehavi method.

Lemma 6.2. Let e = 〈a,b,d〉 be a nonzero point of JH . Let H :
∑2ℓ

i=0 Hi Ui be a hyper-

plane in P
2ℓ, and write h(x) :=

∑2ℓ
i=0 Hi xi .

(1) If a = 1 and d = 2, then

Le =
〈

(0 : · · · : 0 : 1 : 0),(0 : · · · : 0 : 0 : 1)
〉

.

(a) If H2ℓ = H2ℓ−1 = 0, then Le ⊂ H.

(b) Otherwise, Le ∩H = (0 : · · · : 0 : H2ℓ : −H2ℓ−1).

(2) If a(x) = x −α, then

Le =
〈

(0 : · · · : 0 : 1),(1 : · · · :α2ℓ)
〉

.

(a) If h(α) = 0 and H2ℓ = 0, then Le ⊂ H.

(b) Otherwise, Le ∩H =
(
H2ℓ : H2ℓα : · · · : H2ℓα

2ℓ−1 : H2ℓα
2ℓ−h(α)

)
.

(3) If a(x) = x2 +a1x +a0 with a2
1 6= 4a0, then

Le =
〈

(π0 : · · · : π2ℓ), (−a1 : a2π0 : a2π1 : · · · : a2π2ℓ−1)
〉

where π0 = 2, π1 =−a1, and πi =−a1πi−1 −a2πi−2 for i > 1.

(a) If a(x) divides h(x), then Le ⊂ H.

(b) Otherwise, Le ∩H = (γ0 : · · · : γ2ℓ) where

γi =
∑

0≤ j≤2ℓ
H j (a

j
2σi− j −ai

2σ j−i )

with σk = 0 for k < 1, σ1 = 1, and σk =−a1σk−1 −a2σk−2 for k > 1.

(4) If a(x) = x2 +a1x +a0 with a2
1 = 4a0, then writing α for −a1/2, we have

Le =
〈

(1 : α : · · · :α2ℓ), (0 : 1 : 2α : · · · : 2ℓα2ℓ−1)
〉

.

(a) If a(x) divides h(x), then Le ⊂ H.

(b) Otherwise, Le ∩H = (γ0 : · · · : γ2ℓ) where γi = iαi−1h(α)−αi h′(α).
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Proof. In general, given points α= (α0 : · · · :α2ℓ) and β= (β0 : · · · :β2ℓ) in P
2ℓ, we have

H ∩Lα,β = (Aβ0 −Bα0 : · · · : Aβ2ℓ−Bα2ℓ)

where A =
∑2ℓ

i=0 Hiαi and B =
∑2ℓ

i=0 Hiβi ; if A = B = 0, then Lα,β ⊂ H (and the point
above is not defined). In the following, we suppose e = [P +Q −D∞]; we have e 6= 0, so
we can suppose P 6= ιH (Q).

In case (1), both P and Q are at infinity; hence ρ2ℓ(P ) = ρ2ℓ(Q) = (0 : · · · : 0 : 1), and
our expression for Le gives generators for the tangent to R2ℓ at (0 : · · · : 0 : 1). The
intersection formula follows immediately.

In case (2), we have P = (1 : 0 : 0) and Q = (α : ±
p

F (α,1) : 1), so ρ2ℓ(P ) = (0 : · · · : 0 : 1)
and ρ2ℓ(Q)= (1 :α : · · · : α2ℓ). The intersection formula follows immediately.

In case (3), we have P = (α : ±
p

F (α,1) : 1) and Q = (β : ±
√

F (β,1) : 1) with α 6= β,
α+β=−a1, and αβ= a2; so ρ2ℓ(P ) = (1 : α : · · · : α2ℓ) and ρ2ℓ(Q)= (1 : β : · · · : β2ℓ). If we
take

T = (2 :α+β : · · · :α2ℓ+β2ℓ) and S = (α+β : 2βα : · · · : αβ2ℓ+βα2ℓ),

then we easily verify that LP,Q = LT,S ; it is a straightforward exercise with symmetric
polynomials to show that αi +βi = πi for 0 ≤ i ≤ 2ℓ and αβi +βαi = a2πi−1 for i > 0,
whence our formula for Le . The intersection H ∩Le is

H ∩LP,Q = (h(α)−h(β) : h(α)β−h(β)α : · · · : h(α)β2ℓ−h(β)α2ℓ);

it is another straightforward exercise to show that

α jβi −β jαi = (β−α)(a
j
2σi− j −ai

2σ j−i ),

so h(α)βi −h(β)αi =
∑2ℓ

j=0 H j (β−α)(a
j
2σi− j −ai

2σ j−i ) = (β−α)γi for 0 ≤ i ≤ 2ℓ, and thus
H ∩Le = (γ0 : · · · : γ2ℓ).

In case (4), we have P =Q = (α :±
p

F (α,1) : 1); our expression for Le gives generators
for the tangent to R2ℓ at ρ2ℓ(P ) = (1 :α : · · · : α2ℓ). The intersection formula follows. �

7. THE WEIERSTRASS SUBSPACE

Since R2ℓ is a rational normal curve of degree 2ℓ, any 2ℓ+1 distinct points on R2ℓ

are linearly independent. In particular, the images of the six Weierstrass points of H

under ρ2ℓ are linearly independent because ℓ≥ 3. In view of (2) the images are distinct,
so the subspace

W :=
〈
ρ2ℓ(WH )

〉
⊂P

2ℓ

is five-dimensional.

Definition 7.1. For each 0≤ i ≤ 2ℓ−6, we define

Wi :=
6∑

j=0
F j Ui+ j .

Lemma 7.2. The space W is

W =
2ℓ−6⋂

i=0
V (Wi ) =V ({Wi : 0 ≤ i ≤ 2ℓ−6}) .

Proof. Each hyperplane V (Wi ) contains W , since Wi ◦ ρ2ℓ = X i Z 2ℓ−6−i F (X , Z ). But
the Wi are linearly independent, so the intersection

⋂2ℓ−6
i=0 V (Wi ) is 5-dimensional, and

hence equal to W . �
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8. THE THEOREM OF DOLGACHEV AND LEHAVI

We are now ready to state the main theorem behind the Dolgachev–Lehavi method.

Theorem 8.1 ([7, Theorem 1.1]). There exists a unique hyperplane H ⊂P
2ℓ such that

(1) H contains W , and

(2) the intersection points of H with the secants Le for each nonzero e in S are con-

tained in a subspace N of codimension 3 in H.

The image of the Weierstrass divisor under the projection P
2ℓ → P

3 with centre N lies on

a conic Q (which may be reducible), and the double cover of Q ramified over this divisor

is a stable curve X of arithmetic genus 2 such that JX
∼=JH /S.

It is crucial to note that Theorem 8.1 is not constructive: it does not in itself yield the
hyperplane H , nor the centre N of the projection to P

3. In [7, §3.4] it is noted that H is
defined by φ∗(ΘX ), but in our application we do not yet have an expression for φ or ΘX .

In the case ℓ = 3, we are saved by a happy coincidence: 2ℓ− 1 = 5, so H = W (we
return to this case in §11 below). For ℓ > 3, we must compute H in some other way;
Lemma 8.2, an easy corollary of Lemma 7.2, characterizes the possible hyperplanes.

Lemma 8.2. The linear system of all hyperplanes in P
2ℓ containing W is generated by the

2ℓ−5 hyperplanes V (Wi ) for 0 ≤ i ≤ 2ℓ−6. That is, if H ⊃W is a hyperplane in P
2ℓ, then

H =V (α0W0 +·· ·+α2ℓ−6W2ℓ−6)

for some (α0 : · · · :α2ℓ−6) in P
2ℓ−6(k).

In view of Lemma 8.2, a naïve approach to computing H for ℓ> 3 could involve taking
a generic H =V

(∑2ℓ−6
i=0 αi Wi

)
, and computing its intersection with the secants Le . This

yields (ℓ2 − 1)/2 points whose coordinates are linear expressions in the αi . We could
then solve for the values of αi by computing the zero locus of the (2ℓ− 2) × (2ℓ− 2)
minors of the matrix formed by the intersections H∩Le ; but each minor is still a degree-
(2ℓ−2) polynomial in 2ℓ−5 variables, and the number of minors is exponential in ℓ.
Alternatively, we could take a generic set of linear equations determining N inside the
generic H ; requiring that this centre intersects any one of the (ℓ2−1)/2 secants imposes
O(ℓ4) quartic polynomial conditions on the O(ℓ) unknowns.

In each approach the system is highly overdetermined, and with a clever choice of
minors we might hope to get lucky and find a solutions for toy examples. However, both
approaches already represent a significant undertaking for ℓ= 5, even over finite fields;
they are totally impractical for larger ℓ and for infinite fields.

We continue the treatment for generalℓ in §9 and §10, supposing that an equation for
H has been found; without such an equation, the avIsogenies package [1] represents
a much more sensible approach for ℓ≥ 5. For ℓ= 3, the Dolgachev–Lehavi method is as
highly practical as it is interesting; we specialize to this case in §11 and §12.

9. FROM THEORY TO PRACTICE

To compute X via Theorem 8.1, we must compute the map

Φ :=π◦ρ2ℓ : H →P
3,

where π :P2ℓ →P
3 is the projection with centre N . Suppose that we have an equation

H :
∑

i

αi Wi = 0
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for H . We can then apply Lemma 6.2 to compute the centre N = 〈Le ∩H : e ∈ S \ {0}〉.
Since N ⊂ H , we may compute ν0,0, . . . ,ν0,2ℓ,ν1,0, . . . ,ν1,2ℓ,ν2,0, . . . ,ν2,2ℓ in k such that

N =V

(
2ℓ∑

i=0
ν0,i Ui ,

2ℓ∑

i=0
ν1,i Ui ,

2ℓ∑

i=0
ν2,i Ui ,

2ℓ−6∑

i=0
αi Wi

)
.

(This amounts to computing the kernel of the matrix whose rows are formed by the
coordinates of the Le∩H ; the choice of

∑6
i=0 αi Wi is convenient later in the procedure.)

Fixing coordinates on P
3, the projection π with centre N is defined by

π : (U0 : · · · : U2ℓ) 7−→ (V0 : V1 : V2 : V3) =
(

2ℓ∑

i=0
ν0,i Ui ,

2ℓ∑

i=0
ν1,i Ui ,

2ℓ∑

i=0
ν2,i Ui ,

2ℓ−6∑

i=0
αi Wi

)
,

and the composed map Φ=π◦ρ2ℓ is

Φ : (X : Y : Z ) 7−→ (V0 : V1 : V2 : V3) =
(
Φ0(X , Z ) : Φ1(X , Z ) : Φ2(X , Z ) : Φ3(X , Z )

)
,

where

Φ0 :=
2ℓ∑

i=0
ν0,i X i Z 2ℓ−i , Φ2 :=

2ℓ∑

i=0
ν1,i X i Z 2ℓ−i , Φ2 :=

2ℓ∑

i=0
ν2,i X i Z 2ℓ−i ,

and

Φ3 :=
2ℓ−6∑

i=0
αi X i Z 2ℓ−6−i F (X , Z ).

The image of Φ is a rational curve of degree 2ℓ in P
3. It lies on the Kummer sur-

face KX of the unknown codomain Jacobian JX , and is therefore the intersection of a
quadric and a cubic hypersurface in P

3 (see [9, Chapter XIII]):

Φ(P1) = Q̃∩ C̃ where Q̃ =V
(
Q̃(V0,V1,V2,V3)

)
and C̃ =V

(
C̃ (V0,V1,V2,V3)

)

for some forms Q̃ and C̃ of degree 2 and 3, respectively. The forms Q̃ and C̃ generate the
elimination ideal

(
Q̃,C̃

)
= (V0 −Φ0,V1 −Φ1,V2 −Φ2,V3 −Φ3)∩k[V0,V1,V2,V3];

note that Q̃ is uniquely determined, and C̃ is determined modulo (V0Q ,V1Q ,V2Q ,V3Q).
The Weierstrass points of H map into the hyperplane V3 = 0, which we identify

with P
2. (This simplification motivates our choice of Φ3.) Theorem 8.1 asserts that a

conic Q passes through the six images, and indeed

Q =V (Q(V0,V1,V2)) ⊂P
2, where Q(V0,V1,V2) = Q̃(V0,V1,V2,0).

The image of the Weierstrass divisor under Φ is therefore Q∩C , where

C =V (C (V0,V1,V2)) ⊂P
2 with C (V0,V1,V2) = C̃ (V0,V1,V2,0).

We are more interested in the forms Q and C than in Q̃ and C̃ , and it is a simple matter to
interpolate them. For Q , we compute the six quintic polynomialsΦi Φ j (x,1) mod F (x,1)
for 0 ≤ i ≤ j ≤ 2; the unique linear relation between them (and between the νi ,0ν j ,0 if
F6 = 0) yields the coefficients of Q . Similarly, to find C we compute the ten quintics
ΦiΦ jΦk (x,1) mod F (x,1) for 0 ≤ i ≤ j ≤ k ≤ 2; any one of the linear relations between
them (and the νi ,0ν j ,0νk ,0 if F6 = 0) gives an equation for a valid cubic C .
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10. THE CODOMAIN CURVE

The data (Q,Q∩C ) specifies a genus 2 curve X (up to a quadratic twist) as a double
cover of Q ramified over the six points of Q ∩C . This is the output of the Dolgachev–
Lehavi algorithm and of Theorem 8.1, and it is sufficient for computing isomorphism
invariants of X (see, for example, [4] and [12]).

In some situations, however, we would like to derive a defining equation for X itself.
When Q is nonsingular, we recover a hyperelliptic curve; in the degenerate case where
Q is singular, we recover a union of two elliptic curves X+ and X−, which are generally
defined over a quadratic extension of k (in which case they are Galois conjugates). The
procedure is essentially standard (cf. [4, §2]), but we recall it here for completeness.

Algorithm 10.1. Computes a (possibly reducible) genus 2 curve representing a double
cover of a given plane conic ramified over the intersection with a plane cubic.

Input: A plane conic Q : Q(V0,V1,V2) = 0 and cubic C : C (V0,V1,V2) = 0.
Output: A genus 2 curve X forming a double cover of Q ramified over Q∩C . If

Q is singular, then X will be a one-point union of elliptic curves X+ and X−,
with X± ramified over P0 and C ∩L± where Q =L++L− and P0 =L+∩L−.

1: Let M be the matrix defined by

M :=




2q0,0 q0,1 q0,2

q0,1 2q1,1 q1,2

q0,2 q1,2 2q2,2


 , where

∑

0≤i≤ j≤2
qi , j Vi V j =Q(V0,V1,V2).

2: If det(M) = 0, then Q is singular.
2a: Compute a diagonal matrix D = diag(a,b,0) and an invertible matrix T

such that M = T DT −1.
2b: Set δ =

p
−a/b, and define homogeneous cubics C+(X , Z ) and C−(X , Z )

by C± := C
(
(t00 ± δt01)Z + t02X , (t10 ± δt11)Z + t12X , (t20 ± δt21)Z + t22X

)

where 


t00 t01 t02

t10 t11 t12

t20 t21 t22


= T.

2c: Define elliptic curves X+ and X− over k(δ) in P(2,3,2) by

X+ : Y 2 =C+(X , Z ) and X− : Y 2 =C−(X , Z ),

and return the union of X+ and X− identifying the points at infinity.
3: Otherwise, Q is nonsingular.

3a: Compute a rational point P = (α0 :α1 :α2) in Q(k) (see Remark 10.2).
3b: Let π :P1 →Q be the corresponding rational parametrization, defined by

π : (X : Z ) 7−→ (V0 : V1 : V2) = (P0(X , Z ) : P1(X , Z ) : P2(X , Z ))

(the Pi are quadratic forms).
3c: Return X : Y 2 =C (P0(X , Z ),P1(X , Z ),P2(X , Z )).

Remark 10.2. Step 3a of Algorithm 10.1 requires us to compute a k-rational point P on
the conic Q. If H has a rational Weierstrass point W0, then we may take P = Ψ(W0).
Generically, however, H has no rational Weierstrass points, and then we are obliged to
search for a rational point on Q. We are guaranteed that such a rational point exists
(cf. [12, Lemme 1]). Over a finite field, finding a rational point is straightforward; over
the rationals, we can apply (for example) the Cremona–Rusin algorithm [6].
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11. THE ALGORITHM FOR ℓ= 3

Consider the special case ℓ= 3. The map ρ6 : H →R6 ⊂P
6 is defined by

ρ6 : (X : Y : Z ) 7−→ (U0 : U1 : · · · : U5 : U6) =
(
Z 6 : X Z 5 : · · · : X 5 Z : X 6).

The hyperplane H of Theorem 8.1 contains W =
〈
ρ6(WH )

〉
by definition; but dim H =

dimW = 5, so H =W . Applying Lemma 7.2, we find

(3) H =V (W0) =V

(
6∑

i=0
Fi Ui

)
⊂P

6.

This allows us to simplify Lemma 6.2 for the case ℓ= 3.

Proposition 11.1. If e = 〈a,b,d〉 is a nonzero 3-torsion point of JH , then

H ∩Le =
(
γ0(e) : · · · : γ6(e)

)
,

where the γi are defined as follows:

(1) If a = 1, then γi (e) = 0 for 0≤ i < 5, with γ5(e) = F6 and γ6(e) =−F5.

(2) If a is linear, then γi (e) = 0 for 0≤ i < 6, and γ6(e) = 1.

(3) If a(x) = x2 +a1x +a0 with a2
1 6= 4a0, then

γi (e) =
6∑

j=0
F j (a

j
2σi− j +ai

2σ j−i ) for 0≤ i ≤ 6

with σk = 0 for k < 1, σ1 = 1, and σk =−a1σk−1 −a2σk−2 for k > 1.

(4) If a(x) = x2 +a1x +a0 with a2
1 = 4a0, then

γi (e) =
6∑

j=0
(i − j )F j (−a1/2)i+ j−1 for 0 ≤ i ≤ 6.

Proof. This follows immediately from Lemma 6.2 on setting H =V
(∑6

i=0 Fi Ui

)
and not-

ing that a(x) cannot divide h(x) =
∑6

i=0 Fi xi (since otherwise e would have order 2). �

We are now ready to present a version of the Dolgachev–Lehavi algorithm for ℓ = 3
based on the extended Mumford representation. The algorithm requires only elemen-
tary matrix algebra and polynomial arithmetic, and should be easily implemented in
most computational algebra systems.

Algorithm 11.2. A streamlined Dolgachev–Lehavi-style algorithm for ℓ= 3.

Input: A genus 2 curve H : Y 2 = F (X , Z ) =
∑6

i=0 Fi X i Z 6−i over k and a maximal
Weil-isotropic subgroup S of JH [3], its elements defined over k and presented
as in §4.

Output: A genus 2 curve X /k such that there exists an isogeny φ : JH →JX with
kernel S (the curve X is computed up to a quadratic twist, so the isogeny may
only be defined over a quadratic extension of k).

1: Compute a minimal subset S± of S such that S = {e : e ∈ S±}∪ {−e : e ∈ S±}∪ {0}
(then {Le : e ∈ S±} = {Le : e ∈ S \ {0}}; this avoids redundancy in Steps 2 and 3).

2: For each e in S±, compute the vector ve = (γ0(e), . . . ,γ6(e)) using the formulæ in
Proposition 11.1.

3: Compute vectors ni = (νi ,0 , . . . ,νi ,6) such that {n0,n1,n2, (F j : 0 ≤ j ≤ 6)} is a
basis for the (left) kernel of the 7×4 matrix (v t

e : e ∈ S±). Set

Φi =
6∑

j=0
νi , j X j Z 6− j for 0 ≤ i ≤ 2.
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4: For each 0 ≤ i ≤ j ≤ 2, compute the vector ri , j of length 6 whose nth entry is

the coefficient of xn−1 in (ΦiΦ j )(x,1) mod F (x,1). If F6 = 0, then we take the 6th

entry to be νi ,0ν j ,0: this allows us to correctly interpolate through the image of
the Weierstrass point at infinity.

5: Compute a generator (qi , j : 0 ≤ i ≤ j ≤ 2) for the (left) kernel of the 6×6 matrix
whose rows are the ri , j for 0 ≤ i ≤ j ≤ 2. Set

Q(V0,V1,V2) := q0,0V 2
0 +q0,1V0V1 +q0,2V0V2 +q1,1V 2

1 +q1,2V1V2 +q2,2V 2
2 .

6: For each 0 ≤ i ≤ j ≤ k ≤ 2, compute the vector si , j ,k of length 6 whose nth entry
is the coefficient of xn−1 in (ΦiΦ jΦk )(x,1) mod F (x,1). If F6 = 0, then we take

the 6th entry to be νi ,0ν j ,0νk ,0.
7: Compute any nontrivial element (ci , j ,k : 0 ≤ i ≤ j ≤ k ≤ 2) of the (left) kernel of

the 10×6 matrix whose rows are the si , j ,k for 0≤ i ≤ j ≤ k ≤ 2, and set

C (V0,V1,V2) :=
∑

0≤i≤ j≤k≤2
ci , j ,k Vi V j Vk .

8: Return the result X of Algorithm 10.1 applied to Q =V (Q) and C =V (C ).

12. THE ALGORITHM IN PRACTICE

We conclude with an example for ℓ = 3. To avoid a visually overwhelming mass of
coefficients, we will work over a small finite field; the curve was chosen at random.

Consider the genus 2 curve over F997 defined by

H : Y 2 = X 6 +113X 5 Z +99X 4 Z 2 +363X 3 Z 3 +64X 2 Z 4 +503X Z 5 +630Z 6.

Computing the zeta function of H (using Magma), we see that its Weil polynomial is

P (T ) = T 4 −31T 3 +54T 2 −30907T +994009,

so JH is absolutely simple by the Howe–Zhu criterion [8, Theorem 6]. The elements
D1 = 〈x2 +392x +208,579x +603, 2〉 and D2 = 〈x2 +48x +527,918x +832, 2〉 of JH have
order 3, and S = 〈D1,D2〉 is a maximal 3-Weil isotropic subgroup of JH [3].

Applying Algorithm 11.2, we may take

S± =
{
〈x2 +392x +208,579x +603,2〉,〈x2 +48x +527,918x +832, 2〉,
〈x2 +428x +880,252x +901,2〉,〈x2 +348x +292,596x +269,2〉

}

in Step 1. Equation (3) shows that the hyperplane H ⊂P
6 is defined by

H : 630U0 +503U1 +64U2 +363U3 +99U4 +113U5 +U6 = 0,

so the matrix in Step 3 is 


234 319 906 896
780 16 29 754
500 565 703 398
680 329 823 248
324 68 779 868
742 416 468 392
664 395 698 952




;

computing kernel vectors, we take

Φ0 = 121X 6 +742X 5 Z +549X 4 Z 2 +X Z 5,
Φ1 = 285X 6 +642X 5 Z +332X 4 Z 2 +X 2Z 4,
Φ2 = 889X 6 +701X 5 Z +454X 4 Z 2 +X 3Z 3.
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The quadratic form of Step 5 is

Q(V0,V1,V2) =V 2
0 +52V0V1 +361V 2

1 +548V0V2 +715V1V2 +296V 2
2 ,

and we may take the cubic form in Step 7 to be

C (V0,V1,V2) =V 3
0 +167V 3

1 +149V0V1V2 +836V 2
1 V2 +885V0V 2

2 +538V1V 2
2 +294V 3

2 .

We now apply Algorithm 10.1 to Q : Q(V0,V1,V2) = 0 and C : C (V0,V1,V2) = 0. The
conic Q is nonsingular, and H has a rational Weierstrass point (−76 : 0 : 1) mapping
to the point (−36 : −80 : 1) on Q. The associated parametrization P

1 →Q is defined by

(X : Z ) 7−→ (36X 2 +781X Z +109Z 2 : 80X 2 +865X Z +17Z 2 : 996X 2 +945X Z +636Z 2);

substituting its defining polynomials into C , we find that X has a model

X : Y 2 = 118X 5 Z +183X 4 Z 2 +613X 3 Z 3 +35X 2 Z 4 +174X Z 5 +474Z 6.

In fact, this is the quadratic twist of the true X : explicit calculation shows that its Weil
polynomial is P (−T ).
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