
HAL Id: inria-00632269
https://inria.hal.science/inria-00632269

Submitted on 12 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Constraint-based Optimization and Variability to
Support Continuous Self-Adaptation

Carlos Andrés Parra, Daniel Romero, Sébastien Mosser, Romain Rouvoy,
Laurence Duchien, Lionel Seinturier

To cite this version:
Carlos Andrés Parra, Daniel Romero, Sébastien Mosser, Romain Rouvoy, Laurence Duchien, et al..
Using Constraint-based Optimization and Variability to Support Continuous Self-Adaptation. 27th
ACM Symposium on Applied Computing (SAC’12), 7th Dependable and Adaptive Distributed Sys-
tems (DADS) Track, Mar 2012, Trento, Italy. pp.486-491. �inria-00632269�

https://inria.hal.science/inria-00632269
https://hal.archives-ouvertes.fr

Using Constraint-based Optimization and Variability to
Support Continuous Self-Adaptation

Carlos Parra1, Daniel Romero1, Sébastien Mosser2
∗

, Romain Rouvoy1,

Laurence Duchien1, Lionel Seinturier1
†

Université de Lille 1, LIFL CNRS UMR 8022, INRIA Lille-Nord Europe, France
1{name.lastname}@inria.fr, 2sebastien.mosser@sintef.no

ABSTRACT
Self-adaptation is one of the upcoming paradigms that ac-
curately tackles nowadays systems complexity. In this con-
text, Dynamic Software Product Lines model the intrinsic
variability of a family of systems, and dynamically support
their reconfiguration according to updated context. How-
ever, when several configurations are available for the same
context, making a decision about the right one is a hard
challenge: further dimensions such as QoS are needed to en-
rich the decision making process. In this paper, we propose
to combine variability with Constraint-Satisfaction Problem
techniques to face this challenge. The approach is illustrated
and validated with a context-driven system used to support
the control of a home through mobile devices.

1. INTRODUCTION
In the recent years, we have witnessed major advances

in mobile computing. Modern mobile devices are equipped
with sensors and network interfaces that make them versa-
tile. This versatility leads to new requirements for software
which has to be context-aware— i.e., it has to monitor the
events and information coming from its environment and
adapt its architecture accordingly. This software adapta-
tions may affect two phases of the software life cycle: design
and runtime. During the design phase, the elements required
for the adaptation are prepared in advance. At runtime, the
adaptation of applications is based on the context. An ap-
proach considering both phases enables the development of
context-aware applications that can be easily adapted.

Therefore, in this paper we propose an approach for build-
ing context-aware applications based on three paradigms:
(1) variability management for the design phase, (2) Dy-
namic Software Product Lines (DSPL) [7] for the runtime
phase and (3) Constraint Satisfaction Problem (CSP) meth-
ods applied also at runtime phase.

∗SINTEF ICT
†Institut Universitaire de France

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 26-30, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

At the design phase, adaptations can be considered as
multiple configurations that an application may have. One
way to deal with multiple configurations are feature models,
a useful tool from SPL engineering. An adaptive application
can be represented with a feature model that defines differ-
ent products formed by two parts: (1) a kernel representing
the commonalities (or mandatory features), and (2) varia-
tion points that can take different values (i.e., variants) and
that can be added or removed due to an adaptation. Every
configuration is then formed as a set of selected variants.

For the runtime phase, DSPLs [7] enable software prod-
ucts to switch their configuration according to a set of events
like updates in the context. For the configurations to be
achievable at runtime, we specify an explicit link between
every variation point in the feature model and a piece of
context. However, it is possible that multiple configurations
from the DSPL satisfy the context. Different analysis are
required to choose the new configuration. Furthermore, the
design information does not include the constraints of the
specific implementations for the identified variation point.

To overcome these limitations, we propose a new deci-
sion making approach based on CSP techniques. CSP en-
ables the decision making process to consider new elements
to choose a configuration. In particular, it is possible to
model the selection of a new configuration as a CSP, where
we search to optimize the selection of the available variants
by regarding different dimensions, e.g., Quality of Service
(QoS), resource consumption and reconfiguration cost. As
CSP mechanisms may suffer from combinatorial explosion is-
sues, our contribution includes a feature representation that
bounds the exploration space during the adaptation, and
consequently limits this phenomenon.

The rest of this paper is organized as follows. In Sec-
tion 2, we motivate our work by using a smart-home sce-
nario. Then, in Section 3 we introduce our proposal for de-
veloping context-aware applications. In Section 4 we present
the modeling of the problem using CSP. Next, in Section 5
we validate our approach by performing different tests. Sec-
tion 6 discusses some related approaches. Finally, Section 7
presents the conclusions and perspectives of our work.

2. MOTIVATION & CHALLENGES
To introduce the challenges in this paper, we present an

adaptive application called MobiHome. It enables mobile
devices to access different services in smarthomes. The ap-
plication can be adapted using three different types of con-
text as follows: (1) Internet bandwidth, (2) availability of
services, and (3) battery level of the device. The architec-

ture of the application is separated in independent mod-
ules, which can be added, removed, or replaced. Figure 1
illustrates the architecture of MobiHome, using the Service
Component Architecture (SCA) graphical notation1.

BindingComponent
Legend
MobiHome

View

Controller Multimedia
Module

TV Control
Module

Video
Provider Module

Reference ServiceComposite Optional
Binding

Figure 1: MobiHome Architecture.

The architecture of Figure 1 includes the View and Con-

troller components to offer a user interface. These compo-
nents are always present. The architecture also has the TV

Control, Multimedia, and Video Provider modules. The
first module enables the mobile device to control a televi-
sion. The second module accesses a multimedia server to
offer rich content to the users. Finally, the third module is
used to visualize videos on the mobile device. This module
can be provided in two different ways: local or remote.

Regarding the context information used to choose the best
configuration of MobiHome, the Multimedia module de-
pends on the availability of a multimedia service. To choose
between Local and Remote video providers, MobiHome uses
two main conditions: if the battery level is under 50% the
Local module is preferred, and if the bandwidth is over
400kb/s the Remote module is preferred. It is important
to notice here that these conditions can be both satisfied at
the same time, or none at all, depending on the context. In
such cases, the decision on which provider to use will depend
on other parameters such as QoS and reconfiguration cost,
as we explain in the following section.

Furthermore, for each module in MobiHome, it is possible
to have several implementations. In particular, the TV Con-

trol component has two implementations: Wifi and Blue-

tooth. The former one enables the mobile device to control
a Universal Plug’n Play (UPnP)2 television. The latter one
uses bluetooth to replace a traditional remote controller.
The Multimedia module has one implementation allowing
the display of rich content such as photos, and videos. Fi-
nally, regarding the implementations for the video providers,
the Local module has one implementation whereas the Re-

mote module has two different implementations: Low Qual-

ity and High Quality. The Low Quality implementation
reproduces videos with a resolution of 240p. High Quality

implementation allows for resolutions of up to 480p (higher
resolution supported for most current mobile devices).

To define the configurations proposed by this architecture,
in Figure 2 we create a Feature Diagram (FD). A FD [9] con-
sists of (1) a hierarchy of features, which may be mandatory
(commonality) or optional (variability), and (2) a set of con-
straints expressing inter-feature dependencies.

In the diagram, we divide the variability in two layers:
architecture and implementation. Architectural variability

1SCA: http://www.oasis-opencsa.org/sca
2UPnP: http://www.upnp.org/resources/documents.asp

View

MOBIHOME

requires

Controller

TV
Controller Multimedia Video

Provider

Wifi MultimediaI
mpl

Local Video
Impl

Im
pl
em

en
ta
tio
n

A
rc
hi
te
ct
ur
e

Legend

Bluetooth

RemoteLocal

Low
Quality

High
Quality

Alternative (OR) Alternative exclusive(XOR) ConstraintMandatoryOptional

Figure 2: Feature model.

represents the different modules of MobiHome, whereas im-
plementation variability represents the different implemen-
tations of each architectural feature. In the first layer, we
define mandatory features for the Kernel components, and
optional features for the modules that can be added or re-
moved. As Local and Remote video providers are intrinsi-
cally exclusive, we define alternative features (i.e., only one
has to be chosen) to model this fact. In the implementation
layer, we use either mandatory features; when only one im-
plementation is available, or alternative features; to select
one implementation among a list.

To obtain the final configuration of MobiHome one has to
select the modules and their implementation. Since context
is used for deciding the modules needed in the application,
it can be understood as a way to filter out the invalid con-
figurations (i.e., the ones that do not respect the particular
context situation). However, context alone is not enough
to decide about the complete configuration of MobiHome.
One can encounter two different situations with respect to
the configurations obtained from the context information:

1. Multiple Candidate Availability: This situation
refers to the fact that context information chooses a
given module, without specifying an implementation.
For example, consider the context information for ser-
vice availability indicating that it is possible to control
a television. In this case we need to choose between
Wifi and Bluetooth implementations.

2. Conflicting Modules Selection: This situation ta-
kes place when there is a contradiction of the restric-
tions between the modules, and the context. Such sit-
uation is due to the lack of a global view of the system
implementation, where different developers can imple-
ment several parts of the system in an independent
way. In this case, it is necessary to choose the best im-
plementation, and also to resolve the conflicts between
module constraints and context. For example, con-
sider the previously discussed rules when bandwidth is
over 400kb/s and battery is under 50%. In this case,
context is telling us to choose both, local and remote
video providers, which would lead to an architectural
error. Therefore, it is necessary to respect the con-
straints between the modules, but also to satisfy, at
least partially, the modifications according to context.

Challenges.
Regarding the previously situations, we propose an ap-

proach to deal with the issues related to the selection of the
new application configuration. The main contribution of
this paper refers to the definition of an adaptation process
based on variability that selects the optimal configuration
in terms of architecture and implementation. In particular,
we answer the following questions:

1. How to link context information and architectural vari-
ability? This challenge refers to the definition of a de-
cision making process that considers both context and
variability. For any adaptation, this process has to
compute the target configuration in terms of architec-
tural features, for a given context information.

2. How to select one implementation for the selected ar-
chitectural variability? The second challenge refers to
the selection of one implementation for a given archi-
tectural configuration. In this case, context and vari-
ability are not enough to make a decision. It is neces-
sary to define new dimensions that allow the process of
decision making to select the optimal implementation.

3. PROPOSAL
In this section we present our approach which uses context

for adapting an application at runtime. Autonomic Com-
puting Paradigm [8] aims to build self-adaptive systems by
using Feedback Control Loops (FCLs). Our contribution fo-
cus in the planning phase of these FCLS in order to define
a new approach that always selects a valid and optimal con-
figuration according to the current user context. To do this,
we divide the planning phase in two sub-phases, one phase
for variability and context analysis, and a second one for
optimization.

3.1 Variability and Context Analysis
The first step of our planning contribution that links con-

text and architectural variability (cf. Section 2) is built upon
DSPL. In particular, we implement a DSPL through the use
of Feature Diagrams (FD) and a composition based on As-
pect Oriented Modeling (AOM) [6], where every variant in
the FD is implemented with a model that can be composed
at design or at runtime. The models allow us to modularize
the architecture of the applications to have both the kernel,
and the optional elements to be incorporated. Every model
includes four parts: (1) an architectural part with a set of
elements to be added, (2) a definition of a place where the
architectural elements are going to be added in the kernel,
(3) a set of modifications required to incorporate the ar-
chitectural elements to the kernel, and (4) a reference to a
context element (i.e., an observable) that is used dynami-
cally to trigger an adaptation.

A product of the DSPL is then represented as a selection
of features in the FD (i.e., a configuration). For the dynamic
adaptation based on context, we deal specifically with the
process of selecting and/or deselecting features at runtime.
For that, we assume that a product has been built and that
its architecture can be expressed in terms of selected vari-
ants from the FD representing both the kernel, and all the
aspects selected for the given configuration. At runtime, the
dynamic changes of the different observables (e.g., the avail-
able bandwidth) have an impact on the architecture of the

application and trigger the adaptation process. The first
phase defines an algorithm (see Algorithm 1) that finds a
target configuration, using as input a given context situa-
tion, expressed in terms of selected variants from the FD
and the current configuration for a particular product.

The first step of the algorithm consists in creating a tar-
get configuration with the same variants as in the current
configuration. Afterwards, the algorithm iterates over the
updated observables. For the observables whose aspect be-
longs to the current configuration, the algorithm verifies if
the new observable value is false to remove its referenced
aspect model from the configuration. For the observables
whose aspect model does not belong to the configuration,
the algorithm verifies if the new observable value is true to
add its referenced aspect model to the target configuration.
After the variants of the aspects to add have been selected,
and the variants of the aspects to remove have been dese-
lected, the algorithm obtains the target configuration.

Algorithm 1 Adapter algorithm

Require: A set of updated context observables C
and the current product configuration Pcurrent =
{F1, F2, . . . , Fk}

Ensure: A target product configuration Ptarget

1: Ptarget ← Pcurrent

2: for all (On ∈ C) do
3: if (FOn ∈ Pcurrent) then
4: if (On.value() = false) then
5: Ptarget.deselect(FOn)
6: end if
7: else
8: if (On.value() = true) then
9: Ptarget.select(FOn)

10: end if
11: end if
12: end for

3.2 Optimization based on Constraints
The variability analysis generates a configuration. How-

ever, even if we have a target configuration at the architec-
tural level (cf. Section 2), this configuration may be valid
or invalid regarding the constraint analysis. In either case,
further analysis are required to decide which configuration
and which implementation are used for the new target con-
figuration of the product.

To face this challenge we propose a CSP-based strategy to
decide the optimal configuration and implementation for the
target configuration. We model the selection of an optimal
configuration as a CSP. Our goal is to find the best imple-
mentation for a given configuration issued from the previous
phase. To decide which is the most suitable implementation,
we provide the flexibility of choosing between different di-
mensions to optimize, including but not limited to the cost
associated with resource consumption (e.g., memory or en-
ergy), the reconfiguration cost (e.g., in terms of bindings
that we need to add or remove) and the offered QoS [15]
(e.g., response time).

To reduce the complexity of the decision making process
at runtime, and make the CSP problem solvable, we divide
the variability set in two different parts, as shown in the
example of Section 2. Architectural variability for the design
phase, and implementation variability for the runtime phase.

Table 1: Objective functions for Optimization

QS max

i=|V|∑
i=1

j=|Ii|∑
j=1

k=|Q|∑
k=1

qQk
(Ij) × si(Ij) × s(V Pi) × wq(Qk)


Cost min

(
|Cc − Ci| + |Ci − Cc|

)

Cons min

i=|V|∑
i=1

j=|Ii|∑
j=1

k=|R|∑
k=1

rRk
(Ij) × si(Ij) × s(V Pi) × wr(Rk)



The goal of this separation is to avoid the combinatorial
explosion of different configurations at runtime. For this
reason, implementation variability is defined with a limited
set of features. Consequently, during the runtime phase,
the set of available configurations that can be obtained as
a result of an adaptation does not grow exponentially, and
improves the performance of the CSP solving time.

We consider the two situations identified in Section 2. In
the situation 1, we select the best implementation according
to a specific dimension. In the situation 2, we search a valid
solution optimized but that does not satisfy completely the
current context. In this way, we provide adaptation consid-
ering not only the current context but also dimensions for
providing an optimized application that guarantees a better
user experience. The next section presents in detail the CSP
modeling for finding the optimal configuration.

4. MODELING THE PROBLEM
A CSP problem consists in a set of variables and their

finite domains, which are associated by constraints limit-
ing the values that they take. Additionally, to reduce the
number of solutions, it is also necessary to define objective
functions to be optimized—i.e., maximized or minimized.
In this way, we identify two variables: (1) s(V Pi), indicat-
ing the selection or exclusion of the V Pi variation point in
the configuration and (2) si(Ij) that expresses if the im-
plementation Ij is part of the configuration or is not. The
constraints are related to the exclude and require relation-
ships between variation points and implementations.

The objective functions enable us to select the most suit-
able configuration regarding specific dimensions. In partic-
ular, we present three functions for the optimization of the
configuration selection in terms of QoS, reconfiguration cost
and resource consumption. The idea is to offer flexibility
of using different criteria in the context-based adaptation
process to select the new configuration. Nevertheless, our
approach can be easily extended to include new dimensions.
Table 1 summarizes the objective functions.

4.1 Optimizing the Provided QoS
One of the dimension that we use for improving the re-

sult of the decision-making process is the QoS. The usage
of the QoS for selecting the new configuration is a suitable
alternative since we search to improve the user experience
by means of the context-aware adaptation. Therefore, it is
logical that we try to maximize the value associated with the
QS function in Table 1. In this function, we use the qQk (Ij)
expression to estimate the value of the Qk QoS property of-
fered by each implementation. This value is only considered
in the function evaluation if the implementation and the
variation point are part of the configuration—i.e., if si(Ij)
and s(V Pi) are 1. To obtain the weight or importance given

to each QoS property, we use the expression wq(Qk).
For example, we can apply the QS function in Conflict-

ing Modules Selection situations such as the selection of the
Video Provider, when the battery level indicates that the
Local module should be chosen but the bandwidth says the
Remote module. To do this, for the Video Provider vari-
ants, we define a scale of 1 (low) to 3 (high) for the QoS
video quality and response time. The Local Video Impl im-
plementation provides 3 in video quality and 3 in response
time. The Low Quality implementation has 1 in video qual-
ity and 2 in response time. The High Quality presents 3 in
video quality and 1 in response. Therefore, we will choose
Local Video Impl even if we do not respect the context par-
tially. The resulting configuration is optimized regarding the
service offered by the component implementation.

4.2 Optimizing the Reconfiguration Cost
Another dimension that we use is the reconfiguration cost.

To compute this cost, we define the Cost function to search
the configuration requiring the minimal number of opera-
tions to be reached. In the function, we use the set differ-
ences Cc − Ci and Ci − Cc, which provide the implementa-
tions of the points that must be removed and added, respec-
tively. For example, to replace C1 = {Bluetooth} by C2 =
{Bluetooth,Low Quality} or C3 = {Bluetooth,HighQuality},
we make the differences C2−C1 = {LowQuality} and C3−
C1 = {HighQuality}, which indicate what implementations
we need to add in both cases. On the contrary, we do not
need to remove functionality because C1 − C2 and C1 − C3

are empty. We specific an arbitrary value for the add and
delete operations of components in the architecture, which
can be modified at runtime if required (e.g., 1 in both cases).

4.3 Optimizing the Resource Consumption
For the resources, we define the Cons function in Table 1,

which computes the total resource consumption for a given
configuration. We employ rRk (Ij) to determine the con-
sumption associated with each point implementation, value
that will be only considered if the implementation and the
respective variation point make part of the application con-
figuration (by using s and si). Additionally, we use the wr

function to include in the computation the importance of
the resource. These values are extracted from user prefer-
ences stating the relevance of different resources for the user
(e.g., CPU and memory consumption). If a resource is no
relevant in the optimization process its weight is 0.

Considering the situation that requires the selection of the
TV Controller variant (cf. Section 2), we give constant val-
ues to the CPU consumption of x1 and x2 for the Wifi and
Bluetooth implementations respectively, where x1>x2. In a
similar way, we estimate the memory consumption in y1 and
y2 for the Wifi and Bluetooth implementations respectively,
where y1>y2. Additionally, we give the same importance to
both resources. This means that, if we wish to reduce the
resource consumption, applying Cons, we obtain a better
performance if we select the Bluetooth implementation.

4.4 Constraints in the Selection Problem
In order to respect the exclude and include relations, for

minimizing the Cons, Cost and QS functions in Conflict-
ing Modules Selection situations (cf. section 2), we have to
satisfy the following constraints:

CO1. {∀ (V Ph, V Pj) ∈ E : (Ik ∈ Ih ∧ Il ∈ Ij ∧ Ik ∈

Ci) ⇒ Il /∈ Ci}: All the excludes constraints, at the archi-
tectural level, are respected.

CO2. {∀ (V Ph, V Pj) ∈ R : (Ik ∈ Ih ∧ Il ∈ Ij ∧ Ik ∈
Ci) ⇒ Il ∈ Ci}: All the requires constraints, at the archi-
tectural level, are respected.

CO3. {∀ (Ik, Il) ∈ EI : Ik ∈ Ci ⇒ Il /∈ Ci}: All
the excludes constraints, at the implementation level, are
respected.

CO4. {∀ (Ik, Il) ∈ RI : Ik ∈ Ci ⇒ Il ∈ Ci}: All
the requires constraints, at the implementation level, are
respected.

CO5. {∀ V Pj ∈ VPCi : |ICji | = 1}: Each selected
variation point has one and only one implementation that
has been chosen.

In Multiple Candidate Availability situations, we only need
to satisfy the CO3, CO4 and CO5 constraints since the first
subphase already guarantee the satisfaction of the first two.

The previous constraints represent the basic constraints to
find a valid configuration. Such constraints are derived from
the work performed at design and implementation phases.
Therefore, by respecting these constraints, we can find a
configuration that is part of the product family and at the
same time is the most suitable according to context and the
optimized dimension. Nevertheless, new constraints could
be imposed. As we illustrate in Section 5, the definition of
a high number of constraints makes the resolution process
more expensive. Furthermore, if there are contradictions
between constraints, the problem can become inconsistent.

5. VALIDATION
To validate the approach, we implemented MobiHome

and the service containing the logic of CSP with SCA com-
ponents running on top of the Frascati platform [14]. We
chose this platform because, in addition to its usage of dif-
ferent technologies and provided support for distribution, it
also presents reflective capabilities. Additionally, we also
implemented in Java the feature model analyzer and the
adapter algorithm. Finally, to implement the CSP logic, we
benefit from the JaCoP solver3.

In order to verify the efficiency of the CSP in the decision
making process, we executed several tests by varying the
complexity of the application. Specifically, in different tests
we changed the number of variation points, variants and
requires constraints. In Table 2, we present for each test, the
number of configurations available at both the architecture
and the implementation levels.

Regarding the CSP problem, we present the optimization
of the QS function using two QoS properties. Each test was
executed 1,000 times. We calculate the average time of the
execution by excluding the first 100, which were considered
as part of the warm-up. The first three tests (a, b and c) cor-
respond to the two situations introduced in section 2. In the
other tests, we created bigger product families to vary the
complexity of the CSP. Analyzing the adaptation costs pro-
vided by Table 2, we see that in test a we obtained a cost of
1.0ms approximately, and in test b and c, 1.5ms and 1.6ms,
respectively. As expected, the CSP latency increases, not
only because of the application size, but also because of the
number of constraints. From these results, we observe that
our approach has a good performance for simple applications
having a reasonable quantity of constraints, variation points,

3JaCoP: http://jacop.osolpro.com/

Table 2: Variability and CSP results
Test VPs Number of Number of CSP Latency

Variants by VP Constraints (ms)

a) 1 2 2 1.0044
b) 3 1,1,2 3 1.4822
c) 3 1,1,2 5 1.5766
d) 5 2 5 2.1311
e) 10 4 5 5.5622
f) 20 4 5 10.5055
g) 50 4 5 27.7388

and variants. On the other hand, considering more complex
applications, we see that the overhead increases in a linear
way approximately comparing configurations d, e, f and g.
Even if we have an application with 50 variation points and
4 implementations for each one (cf. configuration g), we are
able to find a suitable configuration in less than 1 second.
This is a good property of our solution, because we can still
deal with context-aware adaptation and decision making by
applying CSP techniques at a reasonable cost.

6. RELATED WORK
Several works propose the use of variability and SPL for

adapting applications at runtime. In [2] are proposed SPLs
for adaptive systems. In their approach, a complete spec-
ification of the context and supported changes has to be
provided using a state machine. Each state represents a par-
ticular variant of the system and transitions between states
define dynamic adaptations that are triggered by context
changes. [4] proposes a DSPL with aspect models at run-
time. They use aspect models to define features and feature
constraints. Their approach links what they call dynamic
features, representing late variation points in an SPL, to dy-
namic aspects. In our approach we propose a similar strat-
egy for dealing with multiple configurations at runtime and
product derivation based on context information. However,
we improve this process by adding an implementation level
where CSP is used to choose, the optimal solution based not
only in context information, but also in a set of additional
dimensions. In [3], authors tackle the problem of combina-
torial explosion configurations for dynamic software prod-
uct lines. They present a modular approach whose decision
model combines utility functions, and various optimizations
of the search space. Our approach can be considered as an
alternative to this approach, however, we avoid the combi-
natorial explosion by restricting the kind of variability for
the implementations at runtime.

Regarding the optimization, several works propose the use
of parameters like QoS at runtime to define the best adapta-
tion. For example, in [10] is proposed an approach formed
by two parts: an MDA transformation chain for building
adaptive applications, and a middleware system to make de-
cisions about adaptation based on QoS information. In [1]
authors define an approach to automate the selection of
an optimal service configuration by exploiting two different
methods: i) a greedy method and ii) a constraint program-
ming method. Unlike these two approaches, our solution
uses the CSP as a complement to the configuration process
of the DSPL to deal with ambiguities due to context events
and to the need of choosing a specific implementation.

The work presented in [12] uses Constraint Programming

to verify DOPLER variability models associated with SPLs.
The DOPLER models are converted into constraint pro-
grams to ensure the consistency of derived products of the
SPL. However, this approach focuses in the design time
whereas we focus on the dynamic context-based adaptations.

The FeatUre-oriented Self-adaptatION (FUSION) frame-
work [5] proposes a learning-based approach to build self-
adaptive software systems. In particular, FUSION enables
the tuning of the adaptation logic to unanticipated condi-
tions by using a feature model. Because in our approach we
also define a FD of the system, we can complement it by
applying the FUSION concepts of dynamic adaptation.

Works in [11, 13] focus on the dynamic composition of
Web Services by applying CSP techniques. [11] suggests a
CSP solver extended with semantic Web concepts to enable
the dynamic composition of web services in Semantic Web
Environments. The authors propose a CSP ontology using
OWL, which provides explicit semantics to define the CSP.
The resulting solver is able of dynamically combining soft-
ware agents that hosts the variables and constraints that
make part of the problem. In our approach we could ex-
ploit this idea to make the modification at runtime of the
selection problem easier.

The approach described by [13] defines a dynamic compo-
sition of Web Services based on Fuzzy DisCSP. In this kind
of CSP, different constraints have different importance lev-
els. In [13], authors propose an algorithm modeling provider
preferences as fuzzy constraints and supporting the notions
of preference priorities. In our proposal, we could benefit
from the fuzzy constraints in order to deal with conflict QoS
properties in the optimization of the QS function (cf. 4.1).

7. CONCLUSIONS
In this paper we presented an approach to optimize context-

aware adaptations divided in two contributions. In the first
one, related to variability, our approach represents an adap-
tive application as a set of architectural features. An adap-
tation is a reconfiguration of the different features selected.
Like this, context events are related to architectural features
and can be used to trigger the adaptation.

In the second contribution, we consider the selection of the
best implementation for the context-aware application. To
do this, our approach adds an implementation layer to the
architectural variability. Using this layer, different choices
can be made for the specific implementation of architectural
features. This selection is based on CSP techniques con-
sidering dimensions like QoS. In our approach, we limit the
number of implementations to avoid the combinatorial ex-
plosion in the number of configurations at runtime.

In terms of perspectives, we intend to consolidate the re-
sults obtained so far, following two directions. First, we will
explore the reusability of our approach in terms of finer-
granularity implementations. Thus far, each implementa-
tion is defined independently. However, several generic ele-
ments of such implementations could be created separately
and used across different features. We believe that this could
be also an important factor when evaluating the reconfigu-
ration cost of each adaptation. Secondly, currently in our
approach we only use context to decide which architectural
features to choose. However, there may exist several depen-
dencies between context events and one or more implemen-
tations. We would like to extend our approach to include
this kind of dependencies as part of the CSP problem.

8. REFERENCES
[1] M. Beauvois, D. Beläıd, and G. Bernard. A planning

framework for dynamic configuration in mobile
environments. In GIIS’07: 1st Int. Workshop on Seamless
Services Mobility (SSMO), 2007.

[2] N. Bencomo, P. Sawyer, G. Blair, and P. Grace.
Dynamically adaptive systems are product lines too: Using
model-driven techniques to capture dynamic variability of
adaptive systems. In 2nd Int. Workshop on Dynamic
Software Product Lines (DSPL 2008), 2008.

[3] G. Brataas, S. O. Hallsteinsen, R. Rouvoy, and F. Eliassen.
Scalability of decision models for dynamic product lines. In
SPLC (2), pages 23–32, 2007.

[4] T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini. A
Dynamic Software Product-Line Approach using Aspect
Models at Runtime. In 5th Domain-Specific Aspect
Languages Workshop, 2010.

[5] A. Elkhodary, N. Esfahani, and S. Malek. Fusion: a
framework for engineering self-tuning self-adaptive software
systems. In Proceedings of the 18th ACM SIGSOFT int.
symposium on Foundations of software engineering, FSE
’10, pages 7–16, New York, NY, USA, 2010. ACM.

[6] R. France and J.-M. Jézéquel. Editorial for the special issue
on aspects and model-driven engineering. Transactions on
Aspect-Oriented Software Development, 2009.

[7] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid.
Dynamic Software Product Lines. Computer, 41(4):93–95,
2008.

[8] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang,
M. Parashar, and H. Liu. The autonomic computing
paradigm. Cluster Computing, 9(1):5–17, 2006.

[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-oriented domain analysis (foda)
feasibility study. Technical report, Carnegie-Mellon
University Software Engineering Institute, November 1990.

[10] S. A. Lundesgaard, A. Solberg, J. Oldevik, R. France, J. O.
Aagedal, and F. Eliassen. Construction and execution of
adaptable applications using an aspect-oriented and model
driven approach. In Proceedings of the 7th IFIP WG 6.1
Int. Conference on Distributed applications and
interoperable systems, DAIS’07, pages 76–89, Berlin,
Heidelberg, 2007. Springer-Verlag.

[11] D. Maruyama, I. Paik, and M. Shinozawa. A flexible and
dynamic csp solver for web service composition in the
semantic web environment. In Proceedings of the Sixth
IEEE Int. Conference on Computer and Information
Technology, CIT ’06, pages 43–, Washington, DC, USA,
2006. IEEE Computer Society.

[12] R. Mazo, P. Grünbacher, W. Heider, R. Rabiser,
C. Salinesi, and D. Diaz. Using constraint programming to
verify dopler variability models. In Proceedings of the 5th
Workshop on Variability Modeling of Software-Intensive
Systems, VaMoS ’11, pages 97–103, New York, NY, USA,
2011. ACM.

[13] X. T. Nguyen, R. Kowalczyk, and M. T. Phan. Modelling
and solving qos composition problem using fuzzy discsp. In
Proceedings of the IEEE Int. Conference on Web Services,
pages 55–62, Washington, DC, USA, 2006.

[14] L. Seinturier, P. Merle, R. Rouvoy, D. Romero,
V. Schiavoni, and J.-B. Stefani. A Component-Based
Middleware Platform for Reconfigurable Service-Oriented
Architectures. Software: Practice and Experience, 2011.

[15] X. Xiao. Technical, Commercial and Regulatory Challenges
of QoS: An Internet Service Model Perspective. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

