R. Bardenet and B. Kégl, Surrogating the surrogate: accelerating gaussian-process-based global optimization with a mixture cross-entropy algorithm, Proceedings of the 27th International Conference on Machine Learning, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00580438

T. Bartz-beielstein, C. Lasarczyk, and M. Preuss, Sequential Parameter Optimization, 2005 IEEE Congress on Evolutionary Computation, pp.773-780, 2005.
DOI : 10.1109/CEC.2005.1554761

J. Bibai, P. Savéant, M. Schoenauer, and V. Vidal, On the generality of parameter tuning in evolutionary planning, Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO '10, pp.241-248, 2010.
DOI : 10.1145/1830483.1830528

URL : https://hal.archives-ouvertes.fr/inria-00463437

J. Bibai, P. Savéant, and M. Schoenauer, Divide-And-Evolve Facing State-of-the-Art Temporal Planners during the 6 th International Planning Competition, number 5482 in LNCS, pp.133-144, 2009.
DOI : 10.1016/j.artint.2005.08.004

URL : https://hal.archives-ouvertes.fr/inria-00356069

A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith, Parameter control in evolutionary algorithms, Lipcoll et, pp.19-46, 2007.
DOI : 10.1007/978-3-662-05094-1_8

URL : https://hal.archives-ouvertes.fr/inria-00140549

M. Fox and D. Long, PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains, JAIR, vol.20, pp.61-124, 2003.

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

N. Hansen, S. Niederberger, L. Guzzella, and P. Koumoutsakos, A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion, IEEE Transactions on Evolutionary Computation, vol.13, issue.1, pp.180-197, 2009.
DOI : 10.1109/TEVC.2008.924423

URL : https://hal.archives-ouvertes.fr/inria-00276216

W. Hart, N. Krasnogor, and J. Smith, Recent Advances in Memetic Algorithms, Studies in Fuzziness and Soft Computing, 2005.
DOI : 10.1007/3-540-32363-5

P. Haslum and H. Geffner, Admissible Heuristics for Optimal Planning, Proc. AIPS-2000, pp.70-82, 2000.

F. Hutter, Y. Hamadi, H. H. Hoos, K. Leyton-brown, H. H. Hoos et al., Performance prediction and automated tuning of randomized and parametric algorithms ParamILS: an automatic algorithm configuration framework, CP 2006, number 4204 in lncs, pp.213-228267, 2006.

J. Schoenauer and V. Vidal, An evolutionary metaheuristic based on state decomposition for domain-independent satisficing planning Jacques Bibai; Pierre Savéant; Marc Schoenauer; and Vincent Vidal. 2010b. On the benefit of sub-optimality within the divide-and-evolve scheme, ICAPS 2010 EvoCOP 2010, number 6022 in Lecture Notes in Computer Science, pp.18-25, 2010.

F. Lobo, C. Lima, and Z. Michalewicz, Parameter Setting in Evolutionary Algorithms An evaluation of off-line calibration techniques for evolutionary algorithms, Proc. ACM-GECCO, pp.299-300, 2007.

V. Nannen, S. K. Smit, and A. E. Eiben, Costs and Benefits of Tuning Parameters of Evolutionary Algorithms, Proceedings of the 20th Conference on Parallel Problem Solving from Nature, 2008.
DOI : 10.1007/978-3-540-87700-4_53

N. Nissen, Implementation of a Fast Artificial Neural Network Library (FANN), 2003.

M. Schoenauer, P. Savéant, and V. Vidal, Divideand-Evolve: a Sequential Hybridization Strategy using Evolutionary Algorithms, Advances in Metaheuristics for Hard Optimization, pp.179-198, 2007.

V. Vidal, A lookahead strategy for heuristic search planning, Proceedings of the 14th International Conference on Automated Planning and Scheduling, pp.150-159, 2004.