Learn-and-Optimize: a Parameter Tuning Framework for Evolutionary AI Planning

Brendel Matthias 1 Marc Schoenauer 1, *
* Auteur correspondant
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Learn-and-Optimize (LaO) is a generic surrogate based method for parameter tuning combining learning and optimization. In this paper LaO is used to tune Divide-and-Evolve (DaE), an Evolutionary Algorithm for AI Planning. The LaO framework makes it possible to learn the relation between some features describing a given instance and the optimal parameters for this instance, thus it enables to extrapolate this relation to unknown instances in the same domain. Moreover, the learned knowledge is used as a surrogate-model to accelerate the search for the optimal parameters. The proposed implementation of LaO uses an Arti cial Neural Network for learning the mapping between features and optimal parameters, and the Covariance Matrix Adaptation Evolution Strategy for optimization. Results demonstrate that LaO is capable of improving the quality of the DaE results even with only a few iterations. The main limitation of the DaE case-study is the limited amount of meaningful features that are available to describe the instances. However, the learned model reaches almost the same performance on the test instances, which means that it is capable of generalization.
Type de document :
Communication dans un congrès
Jin-Kao Hao et al. Artificial Evolution, Oct 2011, Angers, France. Springer Verlag, 7401, pp.159-170, 2012, LNCS
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00632378
Contributeur : Brendel Matthias <>
Soumis le : vendredi 14 octobre 2011 - 11:12:32
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : mardi 13 novembre 2012 - 16:50:49

Fichier

ae2011cameraready.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00632378, version 1

Collections

Citation

Brendel Matthias, Marc Schoenauer. Learn-and-Optimize: a Parameter Tuning Framework for Evolutionary AI Planning. Jin-Kao Hao et al. Artificial Evolution, Oct 2011, Angers, France. Springer Verlag, 7401, pp.159-170, 2012, LNCS. 〈inria-00632378〉

Partager

Métriques

Consultations de la notice

220

Téléchargements de fichiers

778