
�>���G �A�/�, �B�M�`�B���@�y�y�e�j�k�3�j�R

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�B�M�`�B���@�y�y�e�j�k�3�j�R

�a�m�#�K�B�i�i�2�/ �Q�M �R�N �P�+�i �k�y�R�R

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�.�Q�+�m�K�2�M�i���i�B�Q�M �Q�7 �i�?�2 �/�2�K�Q�M�b�i�`���i�B�Q�M �i�?���i �i�`���M�b�7�2�`�b �m�b�2�`
�K�Q�p�2�K�2�M�i�b �7�`�Q�K �i�?�2 �E�B�M�2�+�i �b�2�M�b�Q�` �i�Q �i�?�2 ���+�`�Q�#���M �`�Q�#�Q�i

�.���K�B�2�M �J���`�i�B�M�@�:�m�B�H�H�2�`�2�x

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�.���K�B�2�M �J���`�i�B�M�@�:�m�B�H�H�2�`�2�x�X �.�Q�+�m�K�2�M�i���i�B�Q�M �Q�7 �i�?�2 �/�2�K�Q�M�b�i�`���i�B�Q�M �i�?���i �i�`���M�b�7�2�`�b �m�b�2�` �K�Q�p�2�K�2�M�i�b �7�`�Q�K
�i�?�2 �E�B�M�2�+�i �b�2�M�b�Q�` �i�Q �i�?�2 ���+�`�Q�#���M �`�Q�#�Q�i�X �_�h�@�y�9�R�j�X �k�y�R�R�X �I�B�M�`�B���@�y�y�e�j�k�3�j�R�=

https://hal.inria.fr/inria-00632831
https://hal.archives-ouvertes.fr

appor t

 techn ique

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-0
41

3-
-F

R
+

E
N

G

Perception, Cognition, Interaction

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Documentation of the demonstration that transfers
user movements from the Kinect sensor to the

Acroban robot

Damien Martin-Guillerez

N° 0413

October 2011

Centre de recherche INRIA Bordeaux – Sud Ouest
Domaine Universitaire - 351, cours de la Libération 33405 Talence Cedex

Téléphone : +33 5 40 00 69 00

Documentation of the demonstration that
transfers user movements from the Kinect

sensor to the Acroban robot

Damien Martin-Guillerez�

Domain : Perception, Cognition, Interaction
�Equipe-Projet FLOWERS

Rapport technique n° 0413 | October 2011 | 16 pages

Abstract: This document describes a demonstration that uses a Kinect sen-
sory to copy the position of a user to the Acroban Robotz. The Kinect sensor
is a sensor able to build a 3-D representation of the user. It was developed
by Microsoft for its video game system XBox 360x. The Acroban Robot is a
lightweight robot used for experimenting on human-robot interface and robot
learning inside the FLOWERS team. The demonstration described by this
document is able to reproduce in real-time the movement of the user on the
robot. This document describe how to run the demonstration, how to adapt it
to di�erent versions of the robot and how it works internally.

Key-words: Acroban, Kinect, inverse kinematic, demonstration

� Inria SED Bordeaux { Sud Ouest
y http://www.xbox.com/kinect
z http://flowers.inria.fr/acroban.php
x http://www.xbox.com

Documentation du d�emonstrateur copiant les
mouvements de l'utilisateur sur le robot

Acroban avec un capteur Kinect

R�esum�e : Ce document d�ecrit une d�emonstration utilisant le capteur Kinect {

pour recopier la position de l'utilisateur sur le robot Acrobank . Le capteur
Kinect est un capteur capable de reconstruire une repr�esentation 3-D de l'utilisateur.
Il a �et�e d�evelopp�e par Microsoft pour son syst�eme de jeux vid�eo XBox 360 �� .
Le robot Acroban est un robot l�eger utilis�e pour exp�erimenter sur les interfaces
homme-robot et l'apprentissage des robots dans l'�equipe-projet FLOWERS. La
d�emonstration d�ecrite par ce document est capable de reproduire en temps
r�eel les movements de l'utilisateur sur le robot. Ce document d�ecrit comment
lancer la d�emonstration, comment l'adapter aux di��erentes versions du robot et
comment elle fonctionne.

Mots-cl�es : Acroban, Kinect, cin�ematique inverse, d�emonstration

{ http://www.xbox.com/kinect
k http://flowers.inria.fr/acroban.php

�� http://www.xbox.com

Kinect to Acroban 3

1 Introduction

This document describes a demonstration that uses a Kinect sensor1 to copy
the position of a user to the Acroban Robot2. The Kinect sensor is a sensor
able to build a 3-D representation of the user. It was developed by Microsoft for
its video game system XBox 3603. The Acroban Robot is a lightweight robot
used for experimenting on human-robot interface and robot learning inside the
FLOWERS team. The demonstration described by this document is able to
reproduce in real-time the movement of the user on the robot.

Figure 1: The Acroban torso and the Kinect sensor

The Kinect sensor is rounded with a red box

This demonstration was actually designed to work with the torso version of
the Acroban robot shown in Figure 1. We can also see in that �gure the Kinect
sensor used to fetch the movements of the user. Of course this demonstration
is easily extendable to other versions of the robot. The reader who wants to
go through this document should �rst have a look at the Rhoban software used
to control motors of Acroban and how to wire Acroban. The reader should
also have a look at the OpenNI4 software and install it on the demonstration
computer. Finally, the reader wanting to read that document should be at ease
using the Urbi framework5 and have Urbi installed on his computer.

In this document, we will go into how to set-up, run and tune the demon-
stration in Section 2 and how the demonstration internals works in Section 3.

1http://www.xbox.com/kinect
2http://flowers.inria.fr/acroban.php
3http://www.xbox.com
4http://openni.org
5http://www.urbiforge.org

RT n ° 0413

Kinect to Acroban 4

A short conclusion in Section 4 gives some pointers for the experimented user
who want to go in the details of the demonstration code.

2 Running the demonstration

This section describes how to set-up the hardware of the demonstration in Sec-
tion 2.1 and how to set-up the software of the demonstration in Section 2.2.
Section 2.3 explains how the system calibrates for the robot and then how the
demonstration unfold in Section 2.4. Section 2.5 explains the adaptation needed
to work with other versions of the Acroban robot (or other robot based on the
same motors).

2.1 Hardware set-up

Figure 2: The hardware needed to run the demonstration

The system hardware is composed of three main components shown in Fig-
ure 2:

1. Acroban is the robot who has a speci�c power-supply and its own con-
troller. The controller and the power supply is wired to Acroban through
its connector. The controller runs a speci�c software developed by the
FLOWERS team and this software can be controlled through a network
service. The hardware of the controller also comes from the FLOWERS
team.

2. The Kinect is the sensor that comes along with its own cables and power
supply.

3. The computer supervises the demonstration. It is connected to the Ac-
roban controller through a local ethernet network and to the Kinect through
USB.

RT n ° 0413

Kinect to Acroban 5

2.2 Software set-up

The software needed for the demonstration are:

ˆ The Urbi framework available at http://www.gostai.com/downloads/
urbi/ is the framework used to orchestrate the system. The development
of the demonstration was done was done using the 2.7.1 version under
MacOSX (self-compiled, using a handmade patch to support the latest
version of libboost6).

ˆ OpenNI, SensorKinect and the Nite MiddleWare are libraries used to grab
content from the Kinect device. A full explanation on how to install those
libraries can be found on the team wiki7.

ˆ UObjects are Urbi primitives to talk to the hardware or analyze data.
Four UObjects, that can be found in the uobjects directory of the gforge
project Flowers Urbi Modules8, are used in that demonstration:

{ UKinect is a UObject that is able, using OpenNI, to grab the skeleton
of users in front of the Kinect and pass it to Urbi through a list of
joints,

{ TrunkWindow is a UObject that renders a skeleton in a window,

{ AngleCalculator is a UObject that can convert positions of joints to
rotation angles between bones, and

{ URhoban is the UObject to control the rhoban software, it requires
the rhoban library.

ˆ There are four scripts, that can be found in the projects/AcrobanKinect
directory of the Flowers Urbi Modules project, to orchestrate the demon-
stration:

{ utils.u contains general purposes functions for the urbiscript part of
the demonstration,

{ acroban.u contains the functions and classes to control the robot,

{ demo.u contains the demonstration set-up, and

{ run.u is a launcher that calls the demonstration function.

ˆ A launcher, run.sh, is provided to run the demonstration.

ˆ A con�guration �le, con�g.ini , enables tuning the demonstration for the
hardware. In particular, it has host and port entries in the general
section that specify where the rhoban server can be found.

To run the demonstration, one should make sure to have all the software
installed and to have the UObjects in a modules subdirectory of the scripts
directory. The computer should be connected to the Kinect and the Acroban
controller. The network con�guration should make the controller accessible by
the supervised computer and the IP address as well as the TCP port of the

6The page https://wiki.bordeaux.inria.fr/flowers/doku.php?id=soft:urbi:compile
explains how to build Urbi 2.7.1 for MacOSX

7https://wiki.bordeaux.inria.fr/flowers/doku.php?id=soft:devices:kinect
8https://gforge.inria.fr/projects/fum/

RT n ° 0413

Kinect to Acroban 6

rhoban server correctly entered in the con�guration �le. The demonstration is
simply ran by launching ./run.sh in a terminal. One can add the -r option to
the command to ignore the robot and run the demo without the robot.

2.3 Calibration

Figure 3: The motors name for the Acroban trunk

Right names are the same as left names but with the pre�x right instead of left

As said before, to run the demonstration, one should launch it with the
./run.sh command in a terminal. This starts the whole demonstration. Make
sure the robot is correctly powered (i.e., the power supply is turned on, the
embedded controller is wired and that the power supply output is turned on).

When the demonstration is launched, it looks for acalibration.txt �le in the
script directory. This �le contains the calibration of each motor of the robot (i.e.,
for each motor name, its identi�er and the several possible positions). Figure 3
shows the names used for the motors of the Acroban trunk. If thecalibration.txt
�le is not found or does not contain su�cient information, a calibration step is
launched. It tries to identify each motor and the required motor positions.

For each motor it has to identify, the program will print " Trying to identify
motor XXX, please move it many times " then the user can move the robot
motors that are not identi�ed. Move several time the motors until the robot
block. The program will then display that it has identi�ed the motor (" Identified
motor YY as motor XXX, can you move it? (set question to 'y' or 'n') ")
and put only the identi�ed motor in compliant mode (i.e., only this motor can

RT n ° 0413

Kinect to Acroban 7

be moved). If the motor can be moved, typey; - in the console and it will go to
next step (and print " Identified motor YY (key = ZZ) as motor XXX ! ").
If it is not the good motor, answer n; - and the program will block this motor
and ask you to move the good motor again. If no more motor are available, the
system will either fail if the motor is mandatory for the demonstration or ignore
the motor.

Once a motor is found, the system calibrates the di�erent motor position
needed to calibrate the motor. So after announcing the calibration ("Calibrating
motor XXX (id YY)"), it will ask the user to move the motor into a certain posi-
tion (" Please put motor XXX in position POS ") and the user can move the
motor. Every time the system found a stable value it prints "Found value N,
does that seems correct? " and the user has to answer byy; - (in which
case the system goes to the next value or the next motor) or byn; - (in which
case the system will reread for the motor value).

This is repeated for every motors and every values. After the calibration,
it is saved into the �le calibration.txt . There is a samplecalibration.txt in the
projects/AcrobanKinect directory of the Flowers Urbi Modules project (Listing
1). To force a recalibration, simply remove the �le. You can also edit by hand
this �le. Its format is very simple: every line contains the motor name then
its identi�er and a series of couple (value name, value) separated by a colon
(<motorname> <id> [<name>:<value>]*).

Listing 1: The calibration.txt �le

r i g h t s h o u l d e r r o t a t i o n 11 f i x e d :575
l e f t s h o u l d e r r o t a t i o n 12 f i x e d :889
l e f t p i n c e r 5 c l o s e d :516
r i g h t p i n c e r 10 c l o s e d :344
l e f t w r i s t 4 na tu ra l :562
r i g h t w r i s t 9 na tu ra l :924
t o r s o r o t a t i o n 20 f i x e d :263
t o r s o t i l t 13 f i x e d :660

r i g h t s h o u l d e r f r o n t 6 top :828 back :100 low :190
l e f t s h o u l d e r f r o n t 16 top :52 back :950 low :671

l e f t s h o u l d e r s i d e 1 top :755 f o l d e d :197 s t r a i g h t :530
r i g h t s h o u l d e r s i d e 7 top :718 f o l d e d :143 s t r a i g h t :450

l e f t e l b o w f o l d 3 s t r a i g h t :500 f o l d e d :841
r i g h t e l b o w f o l d 15 s t r a i g h t :575 f o l d e d :907

r i g h t e l b o w r o t a t e 8 s t r a i g h t :585 f r o n t :950 back :100
l e f t e l b o w r o t a t e 2 s t r a i g h t :882 back :950 f r o n t :100

2.4 Demonstration

When the user run the launcher, the demonstration starts by the robot going
into free mode for calibration. If necessary the calibration is done as described
in the previous section, then the robot goes into its start position with both
arm towards top as shown in Figure 4. The system initializes the Kinect and
displays "Started " when everything is ready.

RT n ° 0413

Kinect to Acroban 8

Figure 4: The start position of the robot, with both arms towards top

Figure 5: The start position of the user

The user then move in front of the Kinect. It then should be detected by the
Kinect showing a "New user... " line on the terminal. The user can switch to
the position with both arm towards top (Figure 5). It is the calibration position
of the Kinect. When the Kinect starts calibrating it will display a " Calibrating
user " line on the terminal. If this line is not displayed then the user has to
adjust a bit its position. After a few seconds the user get calibrated and a
message is displayed saying that the demo is running ("Acroban is ready,
we are now running the demo!"). A window displaying the joint positions
of the user appears. The robot then reproduces the position of the user arms
(Figure 6).

The window showing the skeleton (Figure 7) have a main view that is a 2D
projection of the 3D skeleton using any vector. It can be moved by moving

RT n ° 0413

Kinect to Acroban 9

Figure 6: The robot arms are in the same position than the user's ones

Figure 7: The window showing the skeleton

the mouse with the right button down, zoomed by using the mouse wheel and
translated by moving the mouse with the left button down. The three other
views are front projection, left and right projection. They can be zoomed and

RT n ° 0413

Kinect to Acroban 10

translated but not rotated. The joints and bones whose name is pre�xed by
left_ are colored in green, the one pre�xed byright_ are colored in red and
the ones without left or right pre�x are colored in blue. The 3-D axis given in
the lower left of the views display the X axis in red (right), the Y axis in green
(top) and the Z axis (front) in blue.

The demonstration continues to run until it is killed. If the user leaves the
�eld of view of the Kinect and the Kinect lost it, the system will look for another
user and stops the demo until a new user is found and calibrated. Some errors
might appears in the reproduction of the position because: 1/ motor movements
are limited and some movements cannot be reproduced, and 2/ the Kinect is
based on learning methods and might sometimes guess wrong, especially when
the user is standing with his back in front of the Kinect. Also the system might
be unstable depending on the operating system because OpenNI has some
aws
and random crash happens.

2.5 Adaptation to other robot

Some modi�cations of the con�g.ini �le enable the system to adapt to any
robot using the Bioloid 9 motors and the Rhoban server. Thegeneral section
of this �le contains the host and port to the server but also the radian per unit
to convert between angles in radian and motor values (this value was taken
directly from the RX28 Manual). This radian per unit can contains any Urbi
expression. Thus the defaultgeneral section is:

[general]
host=192.168.0.5
port=1234
radianPerUnit=(60 * Math.pi) / (36*1024.0)

Then a motors section provides the list of motors:

[motors]
torso_rotation = fixed :optional
torso_tilt = fixed :optional
left_shoulder_rotation = fixed :optional
right_shoulder_rotation = fixed :optional

left_shoulder_side = folded:max top:min straight:zero
right_shoulder_side = folded:max top:min straight:zero
left_shoulder_front = back:max low:zero top:min
right_shoulder_front = back:min low:zero top:max
left_elbow_rotate = straight:zero back:max front:min
right_elbow_rotate = straight:zero back:min front:max
left_elbow_fold = straight:zero:min folded:max
right_elbow_fold = straight:zero:min folded:max

left_wrist = natural :optional
right_wrist = natural :optional
left_pincer = closed :optional
right_pincer = closed :optional

Each motor that needs calibration has an entry in that section. The name
of the motor is the entry key and the entry value gives the list of motor values

9http://www.robotis.com/xe/bioloid_en

RT n ° 0413

Kinect to Acroban 11

to calibrate. Each motor value can be quali�ed as the value for angle zero
by appending :zero after the value name, but also as the maximum (with
the :max quali�er) or the minimum (:min) value that the motor is allowed to
move to. Theses values will permits to convert between an angle in radian to a
motor value. A last quali�er that might appears in the list of value names is the
quali�er :optional to says that this motor is not needed for the demonstratoin.

Then a start section contains the angles to set at the start of the demon-
stration for each motor allowed to move:

[start]
left_shoulder_front = Math.pi
left_shoulder_side = Math.pi/6
left_elbow_fold = Math.pi/2
left_elbow_rotate = 0
right_shoulder_front = -Math.pi
right_shoulder_side = Math.pi/6
right_elbow_fold = Math.pi/2
right_elbow_rotate = 0

Each entry key is the motor name and each entry value is an angle in radian
to set the start position of the motor.

Finally, the section chains gives the list of chains to convert from the skele-
ton to the robot:

[chains]
right_arm = -head neck \

right_shoulder:right_shoulder_side:right_shoulder_front \
right_elbow:right_elbow_fold:right_elbow_rotate right_hand

left_arm = -head neck \
left_shoulder:left_shoulder_side:left_shoulder_front \
left_elbow:left_elbow_fold:left_elbow_rotate left_hand

Each entry key is ignored, each entry value give the list of joints to use from
the Kinect. Each joint can be quali�ed by two motors giving the rotations of the
joint to copy. To fully understand these chains, the reading of the next section
is needed.

3 Internals

This section presents how the demonstration works internally at the software
level. Figure 8 gives the
owchart of the system. As presented in Section 3.1,
the system grabs a list of joints from OpenNI using the UKinect UObject then
transforms them into angles by passing those joints and a list of chains to the
AngleCalculator UObject. This transformation is presented in Section 3.2. This
list of joints is also passed to the TrunkWindow UObject for display. Finally,
the angles are translated into motor values using the Acroban class in Urbi as
presented in Section 3.3. This class transmits those values to the URhoban
UObject to apply it to the robot.

3.1 Kinect output

Using the UKinect object, a list of joints along with their 3-d position is grabbed
from the Kinect by the demo.u �le. Joints that are provided by the objects are
currently:

RT n ° 0413

Kinect to Acroban 12

Figure 8: Flowchart of the software internals

ˆ for the trunk, neck, head, torso and waist ;

ˆ for the left arm, left_collar , left_shoulder , left_elbow , left_wrist ,
left_hand , left_fingertip ;

ˆ for the right arm, right_collar , right_shoulder , right_elbow , right_wrist ,
right_hand , right_fingertip ;

ˆ for the left leg, left_hip , left_knee , left_ankle and left_foot ;

ˆ for the right leg, right_hip , right_knee , right_ankle and right_foot .

Joint names are pretty straightforward. Some joint positions are collapsed to
the head position for unknown reason (this comes from OpenNI). In the current
con�guration of the demo only the head, neck, shoulders, elbows and hands are
used.

The demo.uscript provides a methodrunKinectTest(refreshRate = 0.03s,
w = 1000, backup = "test") to simply run that part and display it on the
TrunkWindow UObject. The refreshRate argument gives the period between
each refresh of the window, thew argument gives the window's width and the
backup argument gives in which �le the measured skeleton positions will be
saved. If the backup argument is nil then no backup will be performed. This
allows to backup a set of positions to reload it later using theloadTest(file)
function and then to replay it with the other functions of the demo.u �le.

3.2 From the skeleton to arm angles

As stated in previous section, only the head, neck, shoulders, elbows and hands
position are used in the current position. They de�ne chains of joints (head,
neck, shoulder, elbow, hand) giving us 4 segments for both chain (right and
left). Figure 9 shows a skeleton with only the considered joints and segments.

To work out the rotations for each joint we want to, we �rst need to have
a vector base. Indeed, the computation of oriented angles in 3D is intricate if
based on cross and scalar products. Thus it is simpler and more robust to use
a vector base and compute the Euler angles in that base.

RT n ° 0413

Kinect to Acroban 13

Figure 9: The used joints

Figure 10: The left chain

Figure 11: The four considered vectors
in the left chain

Figure 12: Starting base for the left
chain

Figure 13: Rotations for the left chain

To get that rotation base, for convention reason, we have the minus operator
(-) in the description of chains in the chains section of the con�guration �le.
If we look at the joint list for the left arm from Section 2.5, we can observe
that the actual list is -head, neck, left shoulder left elbow left hand.
When a minus sign is present, then the vector from this joint to the next is
reverted. This gives us, from the chain of Figure 9, the chain of Figure 10. This

RT n ° 0413

Kinect to Acroban 14

gives us four vectors that can be seen in Figure 11. As shown in Figure 12, we
de�ne the vector base using the two �rst vectors by10:

ˆ �! x =
�! v2

jj �! v2 jj

ˆ �! y =
�! v1 ^ �! v2

jj �! v1 ^ �! v2 jj

ˆ �! z = �! x ^ �! y

Using that vector base, we can compute the angles of the next vector (�! v3)
around the X and the Y axis as shown in Figure 13. We �rst compute the
angle around the X axis as the rotation needed for the�! v3 vector to be in the

(X,Z) plan. It is computed by � x = sign(v0
3

y) �cos� 1

�
� v0

3
z

p
(v0

3
y)2 +(v0

3
z)2

�
11 where

�!
v0

3 = M � �! v3 , M being the matrix to switch to our local base.
The angle around the Y axis is computed by �rst rotating the base according

to � x : M 0 = Rx (� � x) � M . We obtain the angle of the rotation around the Y

axis with the formula: � y = sign(� v00
3

z)cos� 1

�
v00

3
x

j
�!
v00

3 j

�
where

�!
v00

3 = M 0 � �! v3 .

Thanks to those both angles, we can computeM 00= Ry (� � y) � Rx (� � x) � M
the matrix of the base at the next point (see Figure 13). We can thus, by
repeating those operations, computess the rotation� x and � y for each joints
between the third and the penultimate in the chain.

This whole computation is done by the AngleCalculator UObject. It takes
the description of the chain and the list of joint positions as input and returns
(� y ; � x) for each joints that is between the third and the penultimate in any
chain.

3.3 Acroban representation

The acroban.uscripts provides two classes to handle the robot. The robot is seen
as a series of motors. A motor is a UMotor provided by the URhoban UObject.
It is encapsulated into the class CalibratedMotor that handles the calibration of
the motor. This class provides the methodsapplyAngle(angle, speed) which
takes an angle in radian, converts it to the motor value (control in position)
according to its calibration (see Section 2.3) and applies it to the motor. The
speed argument gives the maximum speed, in radian per second, to apply to the
motor. The method getAngle do the opposite: it returns the current position,
in radian, of the motor.

The second class to handle the robot is the Acroban class. It contains the
list of motors discovered during the calibration phase. This class does the mo-
tor detection during the calibration using the UBioloid object provided by the
URhoban UObject. This class also have save / restore functions for the cali-
bration �le. Finally it has functions to transfer the Kinect list of joints to the
motors. Thus, the important functions of this class are:

ˆ backup(file) , restore(file) and identifyMotors() does, respectively,
the backup of the calibration, the restoration of the calibration, and the

10 We use the � ^ � notation for the cross product and the jj � jj notation for the norm 2.
11 vx , vy and vz gives us the three coordinates of the vector �! v

RT n ° 0413

Kinect to Acroban 15

Figure 14: Example of two motors for a joint

The motor for the rotation around the Y axis (green axis) is surrounded by a green
frame and the one around the X axis (red axis) is surrounded by a red frame

calibration itself. These three methods are called at the initialization of
the object.

ˆ applyAngles(joint, angles, speed) apply angles to the speci�c joint
given by the argument joint which is a list of two motors name: the �rst
for the rotation around the Y axis (� y , i.e., the folding of the arm) and
the second for the rotation around the X axis (� x , i.e., the rotation of the
arm). We can see in Figure 14 a joint with the two motors and the axis.
The angles parameter is a list containing the two angles (� y ; � x).

ˆ initTransfer(user) prepare the robot for a transfer from a UKinect.
The user parameter is a UKinectUser object from which the joint posi-
tions will be fetched.

ˆ addChain(joints) adds a chain to transfer. This chain (the joints pa-
rameter) can be either a list or a string. It is of the same format that the
one seen in Section 2.5. Each joints can be negated as seen in previous
section, and each joint between the third one and the penultimate one can
be completed with the name of two motors: the motor for the Y rota-
tion and the motor for the X rotation. Therefore, the chain contained in
the chains section of thecon�g.ini �le is of the form: " <joint> <joint>
(<joint>(:motorX:motorY)?)* <joint> ".

ˆ addChains() adds the list of chains contained in thechains section of
the con�g.ini �le using the addChain function.

ˆ transfer(speed) reads the list of joint positions from the UKinectUser
passed to theinitTransfer function, transfers them to the AngleCalcula-

RT n ° 0413

Kinect to Acroban 16

tor UObject to compute the (� x ; � y) for each joints between the third and
the penultimate of each chains declared throughaddChain, and applies
the computed angles to each motor declared in the chain.

To summarize, we can say that the robot is seen as a series of motors. The
user is seen as a series of chains of joints. Each joint of a chain between the
third and the penultimate can be mapped to two motors of the robot: one for
the rotation around the Y axis (basically, this is the folding of an arm) and one
for the rotation around the X axis (rotation around the arm).

Two methods from the demo.u scripts initialize the Acroban class and use
the transfer function: runAcrobanTest(test) run the test set given in param-
eter and runKinectAcroban launch the whole demonstration (the run.u scripts
simply launch that method).

4 Conclusion

We described how to run the demonstration, how to con�gure the demonstration
and how the internal works.

This demonstration uses several components and thus requires other compe-
tencies. Software that have been speci�cally developed for this demonstration
have Doxygen developer documentation, README and extensive code docu-
mentation. The interested reader should look into it. It can be found in the
project AcrobanKinect (urbi scripts for handling the robot and setting up the
demonstration), and in the UObjects UKinect (handling the kinect sensor), An-
gleCalculator (computing the angles according to section 3.2) and TrunkWindow
(displaying the skeleton).

RT n ° 0413

Centre de recherche INRIA Bordeaux – Sud Ouest
Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex (France)

Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l'Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille – Nord Europe : Parc Scienti�que de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d'Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scienti�que
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-0803

